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We present a time-dependent density-functional theory approach with proper long-range potential for an ab

initio study of the effect of correlated multielectron responses on the multiphoton ionization �MPI� and high-

order harmonic generation �HHG� of diatomic molecules N2 and F2 in intense short laser pulse fields with

arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI

probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending

on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron

effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the

molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.
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I. INTRODUCTION

Recent advances in laser technology have made possible

experimental investigation of atomic and molecular pro-

cesses on an ultrashort attosecond time scale �1�. High inten-

sities which can be reached at short times allow probing

valence and core electrons and measuring the atomic and

molecular structure �2�. Due to the extra internuclear degrees

of freedom, the responses of molecules to strong fields are

considerably more complicated than that of atoms and pose

additional challenge to researchers. The simplest diatomic

molecules subject to intense laser fields continue attracting

much attention and have been a subject of many experimen-

tal and theoretical investigations �3�. Revolutionary improve-

ments of experimental techniques have made possible im-

pressive observations and measurements on diatomic

molecules including molecular axis orientation effects, mul-

tiple molecular orbitals �MO� contributions, electron diffrac-

tion, MO imaging etc. �4–9� �see also the review paper �10�
and references therein�. Multiphoton ionization �MPI� is one

of the fundamental atomic and molecular processes that take

place in strong laser fields. Recent experiments with di-

atomic molecules �6,7� were able to perform direct measure-

ments of dependence of the ionization signal on the orienta-

tion of the molecular axis with respect to the polarization of

the laser field. Thus the theoretical description of the orien-

tation dependence of MPI remains an important and timely

task. Another important and actively studied process is the

high-order harmonic generation �HHG� which can serve as a

source of coherent extreme ultraviolet radiation with many

applications in the attosecond physics �1,2�.
Traditionally many theoretical studies of MPI and HHG

processes in molecules are based on the models �molecular

Keldysh–Faisal–Reiss �KFR� model �11� and molecular

Ammosov–Delone–Krainov �ADK� �12� model� which can

be regarded as various implementations of the strong-field
approximation �SFA�. While these models result in rather
simple theoretical expressions and are capable of providing
some qualitative predictions, they can fail to explain some
experimental observations in stronger fields. Although many
attempts have been made recently to improve SFA �see, e.g.,
�13–15� and references therein�, it has intrinsic restrictions
and cannot compete with ab initio calculations for accuracy
of the results. Besides other limitations, SFA-based theories
usually deal only with the highest-occupied molecular orbital
�HOMO� and neglect the multielectron dynamics of the tar-
get molecules. However, multielectron effects due to the

electron exchange and correlation may be significant even

when the inner electrons are strongly bound and are not ex-

cited by the driving laser field �16,17�.
In the recent Rapid Communication �18�, we extended the

time-dependent density-functional theory �TDDFT� with

proper long-range potential �19,20� to an all-electron three-

dimensional �3D� ab initio study of the MPI of diatomic

molecules N2, F2, and O2 with arbitrary molecular axis ori-

entation, a subject of much current experimental interests

�6–9�. Our calculations show that the contributions of the

inner-shell MO to the MPI signal can be very significant and

even dominant over the HOMO contribution, depending

upon the target molecule, orientation angle, and the intensity

of the laser field, in general good agreement with the most

recent experimental results �6,7�. Very recently, a similar TD-

DFT approach was successfully applied to the MPI study of

the CO2 molecule and also revealed an importance of mul-

tiple orbital contributions �21�.
In this paper, we extend the approach of Ref. �18� to fur-

ther investigation of the molecules N2 and F2 as well as their

companion atom Ar which has the ionization potential close

to that of N2 and F2. Besides studying the orientation-

dependent MPI at several peak intensities of the laser pulse,

we analyze the HHG spectra, with the emphasis on the effect

of multiple molecular orbitals. In Sec. II, we briefly outline

the basic equations of TDDFT and discuss the properties of

the exchange-correlation potential and the interaction with
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the laser pulse. In Sec. III, we present the details of the

computational method including the spatial discretization of

the wave functions and the time propagation procedure. We

also define the spin orbital ionization probabilities and estab-

lish a relation between the spin orbital probabilities and the

total ionization probability of the molecule. In Sec. IV, we

present the results of our calculations regarding the MPI

probabilities and HHG radiation energies of N2, F2, and Ar.

Sec. V contains concluding remarks.

II. THEORY

The basic equations of TDDFT are the time-dependent

one-electron Kohn-Sham equations for spin orbitals �n��r , t�
which involve an effective potential veff,��r , t� �atomic units

are used�:

i
�

�t
�n��r,t� = �−

1

2
�

2 + veff,��r,t���n��r,t�,

n = 1,2, . . . ,N�. �1�

Here N��=N↑ or N↓� is the total number of electrons for a

given spin �; the total number of electrons in the system is

N=	�N�. The time-dependent effective potential veff,��r , t�
is a functional of the electron spin densities ���r , t� which are

related to the spin orbitals as follows:

���r,t� = 	
n=1

N�


�n��r,t�
2 �2�

�the summation includes all spin orbitals with the same spin�.
The potential veff,��r , t� can be written in the general form

veff,��r,t� = vn�r� + vH�r,t� + vxc,��r,t� + vext�r,t� , �3�

where vn�r� is the electron interaction with the nuclei,

vn�r� = −
Z


R1 − r

−

Z


R2 − r

�4�

with Z being the nuclear charge �we consider homonuclear

diatomic molecules only�, and R1 and R2 being the positions

of the nuclei �which are assumed to be fixed at their equilib-

rium positions�; vH�r , t� is the Hartree potential due to

electron-electron Coulomb interaction,

vH�r,t� =� ��r�,t�d3r�


r − r�

, �5�

��r,t� = 	
�

���r,t� . �6�

In any density-functional calculations, the key role is played

by the exchange-correlation �xc� potential vxc,��r , t� which

must be a functional of the electron density. The exact form

of vxc,��r , t� is unknown. However, high-quality approxima-

tions to the xc potential are becoming available. When these

potentials, determined by time-independent ground-state

DFT, are used along with TDDFT in the electronic structure

calculations, both inner shell and excited states can be cal-

culated rather accurately �22�. In the time-dependent calcu-

lations, we adopt the commonly used adiabatic approxima-

tion, where the xc potential is calculated with the time-

dependent density. The adiabatic approximation had many

successful applications in the recent studies of atomic and

molecular processes in intense external fields �19,22�. In this

work, we utilize the LB� �van Leeuwen–Baerends� xc po-

tential �23�,

vxc,�
LB��r,t� = �vx,�

LSDA�r,t� + vc,�
LSDA�r,t�

−
�x�

2�r,t���
1/3�r,t�

1 + 3�x��r,t�ln�x��r,t� + �x�
2�r,t� + 1�1/2�

.

�7�

The LB� potential contains two parameters, � and �, which

have been adjusted in time-independent DFT calculations of

several molecular systems and have the values �=1.19 and

�=0.01 �23�. The first two terms in Eq. �7�, vx,�
LSDA and vc,�

LSDA

are the exchange and correlation potentials within the local

spin density approximation �LSDA�. The last term in Eq. �7�
is the gradient correction with x��r�= 
����r�
 /��

4/3�r�, which

ensures the proper long-range asymptotic behavior vxc,�
LB�→

−1 /r as r→�. The potential �7� has proved to be reliable in

molecular TDDFT studies �20,24�. The correct long-range

asymptotic behavior of the LB� potential is crucial in photo-

ionization problems since it allows to reproduce accurate

MO energies, and the proper treatment of the molecular con-

tinuum.

The potential vext�r , t� in Eq. �3� describes the interaction

with the laser field. Using the dipole approximation and the

length gauge, it can be expressed as follows:

vext�r,t� = „F�t� · r… . �8�

Here F�t� is the electric field strength of the laser field, and

the linear polarization is assumed. For the laser pulses with

the sine-squared envelope, one has

F�t� = F0 sin2
�t

T
sin �0t , �9�

where T and �0 denote the pulse duration and the carrier

frequency, respectively; F0 is the peak field strength. In our

calculations, we used the laser wavelength 800 nm ��0

=0.056 954 a.u.� and the sine-squared envelope with 20 op-

tical cycles.

III. COMPUTATIONAL METHOD

Before solving the Cauchy problem for the set of equa-

tions �Eq. �1��, one has to prepare the initial Kohn-Sham spin

orbitals �n��r , t=0�. This problem is solved within the

framework of the time-independent DFT, using the same

LB� xc potential and appropriate self-consistent procedure.

The wave functions and operators are discretized with the

help of the generalized pseudospectral �GPS� method in pro-

late spheroidal coordinates �25–28�. The prolate spheroidal

coordinates 	, 
, and � are related to the Cartesian coordi-

nates x, y, and z as follows �29�:

x = a��	2 − 1��1 − 
2� cos � ,
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y = a��	2 − 1��1 − 
2� sin � ,

z = a	
 �1 � 	 
 �, − 1 � 
 � 1� . �10�

In Eq. �10� we assume that the molecular axis is directed

along the z axis, and the nuclei are located on this axis at the

positions −a and a, so the internuclear separation R=2a. The

initial spin orbitals �n��r� satisfy the set of the time-

independent Kohn-Sham equations where the effective po-

tential veff,��r�
veff,��r , t=0� does not include the interac-

tion with the external field,

�−
1

2
�

2 + veff,��r���n��r� = �n��n��r� , �11�

veff,��r� = vn�r� + vH�r� + vxc,��r� ,

n = 1,2, . . . ,N�. �12�

In Eq. �11�, �n� are the spin orbital energies. In the prolate

spheroidal coordinates, the Coulomb interaction with the nu-

clei is expressed as follows:

vn�	,
� = −
2Z	

a�	2 − 
2�
, �13�

and the kinetic energy operator T̂ reads as

T̂ 
 −
1

2
�

2 = −
1

2a2

1

�	2 − 
2�
� �

�	
�	2 − 1�

�

�	
+

�

�

�1 − 
2�

�

�


+
	2 − 
2

�	2 − 1��1 − 
2�

�
2

��2� . �14�

For the unperturbed molecule, the projection m of the angu-

lar momentum onto the molecular axis is conserved, and the

spin orbital �n��	 ,
 ,�� can be represented in a separable

form,

�n��	,
,�� = �n�m�	,
�exp�im�� . �15�

Then the coordinate � is eliminated, and different kinetic

energy operators T̂
m
 for different 
m
 are obtained

T̂
m
 = −
1

2a2

1

�	2 − 
2�
� �

�	
�	2 − 1�

�

�	
+

�

�

�1 − 
2�

�

�


−
m2

	2 − 1
−

m2

1 − 
2� . �16�

Note that the exact eigenfunctions � j�m�	 ,
� have factors

�	2−1�
m
/2�1−
2�
m
/2 which are nonanalytical at nuclei for

odd 
m
. Straightforward numerical differentiation of such

functions could result in significant loss of accuracy. There-

fore different forms of the kinetic energy operators have been

suggested for even and odd m �25,30�. Besides treating the

unperturbed spin orbitals, this method can be applied also for

the case of the laser field linearly polarized along the mo-

lecular axis since m is conserved in this case, too. However,

for arbitrary orientations of the molecular axis with respect

to the polarization of the laser field, the molecular states with

different projections of the angular momentum are coupled

to each other, and the time-dependent Kohn-Sham spin or-

bitals �n��r , t� represent a linear combination of quantum

states with different m. In this case, it is not convenient to

have different kinetic energy operators for the parts of the

wave function corresponding to even and odd m values. We

have solved this problem applying a special coordinate map-

ping transformation which ensures accurate numerical treat-

ment of possible singularities at the nuclei while using a

common discretized kinetic energy operator for the whole

wave function.

Since the projection of the electron angular momentum

onto the molecular axis is not conserved for arbitrary ori-

ented molecules, there is no reason to separate the parts of

the wave function corresponding to definite m. Instead, we

apply a full 3D discretization with respect to the coordinates

	, 
, and �. For 	 and 
, we use the GPS discretization with

nonuniform distribution of the grid points; for �, the Fourier

grid �FG� method �31� with uniform spacing of the grid

points is more appropriate.

The coordinates 	 and 
 are mapped to the interval

�−1,1� with the help of the following transformations

	 = 1 + Rl

�1 + x�2

a�1 − x +
4Rl

Rb − a
�

, �17�


 = − cos��

2
�1 + y�� . �18�

Here Rl is the mapping parameter; it can be used to adjust the

distribution of the grid points thus improving the accuracy of

the calculations. Further improvement of the accuracy is

achieved by solving the problem in the finite volume which

results in a denser grid for the same number of grid points.

Rb is the boundary value for the a	 �pseudoradial� grid; we

choose it large enough for proper description of the ioniza-

tion dynamics. Note that with the mapping transformations

�17� and �18� applied, the wave functions are analytic func-

tions of x and y at the nuclei for both even and odd projec-

tions of the angular momentum. For the GPS discretization

of x and y we use the Gauss-Radau and Gauss-Legendre sets

of collocation points, respectively. Since the point x=1 be-

longs to the Gauss-Radau set, we can impose the zero bound-

ary condition for the spin orbitals at 	=Rb /a explicitly. The

discretized kinetic energy operator takes the form of the ma-

trix Tijk;i�j�k�
,

Tijk;i�j�k�
=

1

2a2� T
ii�

�	�
� j j�

+ T
j j�

�
�
�ii�

��	i
2 − 
 j

2��	
i�

2
− 


j�

2 �
�kk�

+
T

kk�

���
�ii�

� j j�

�	i
2 − 1��1 − 
 j

2�� , �19�

where the partial matrices T
ii�

�	�
, T

j j�

�
�
, and T

kk�

���
related to the

coordinates 	, 
, and �, respectively, are defined as follows:

T
ii�

�	�
=��1 + xi��1 + xi�

�

	i�	i�
�

	
n=1

Nx 	n
2 − 1

	n��1 + xn�
dni

x d
ni�

x
, �20�
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T
j j�

�
�
=��1 − y j

2��1 − y
j�

2 �


 j�
 j�
�

	
n=1

Ny 1 − 
n
2


n��1 − yn
2�

dnj
y d

nj�

y
, �21�

T
kk�

���
=

2

N�
	
n=1

�N�−1�/2

n2 cos�2�n

N�

�k − k��� . �22�

In Eqs. �19�–�22�, xi and y j denote the collocation points of

the Gauss-Radau and Gauss-Legendre quadrature, respec-

tively,

xi: PNx
�xi� − PNx+1�xi� = 0, �23�

y j: PNy
�y j� = 0, �24�

Pl�z� being the Legendre polynomials. Nx is the number of

grid points for the coordinate 	 �not including the end point

Rb�, Ny is the number of grid points for the coordinate 
, and

N� is the number of the �equally spaced� grid points for the

coordinate �; N� must be an odd number for the current

implementation of the FG method. The notations 	i and 
 j

stand for the discretized spheroidal coordinates while 	i� and


 j� are used for the derivatives of the mapping functions �17�
and �18�, respectively, at the grid points. The matrices d

ii�

x

and d
j j�

y
represent the discretized first derivative operator,

using the corresponding �Gauss-Radau and Gauss-Legendre�
sets of collocation points,

d
ii�

x
=

1

xi − xi�

�i � i��, dii
x = −

1

2�1 + xi�
,

dNx+1,Nx+1
x =

1

4
Nx�Nx + 2� , �25�

d
j j�

y
=

1

y j − y j�

�j � j��, d j j
y =

y j

1 − y j
2

. �26�

The discretized eigenvalue problem �11� takes the form:

	
i�j�k�

�Tijk;i�j�k�
+ veff,��	i,
 j��ii�

� j j�
�kk�

��n�;i�j�k�
= �n��n�;ijk.

�27�

Note that the potential terms are diagonal in the GPS and FG

methods. They are represented by their values at the dis-

cretized coordinates, so no calculation of the potential energy

matrix elements is required. The quantities �n�;ijk are related

to the spin orbital at the discretized coordinates,

�n��	i,
 j,�k� = �n�;ijk

�
�Nx + 1��N�

�4�a3
�1 − y j

2

1 + xi

PNx
�xi�PNy

� �y j�

�	i�
 j�
�	i

2 − 
 j
2

,

�28�

PNx
�x� and PNy

� �y� being the Legendre polynomial and its

first derivative, respectively. With the appropriate Gauss

quadrature rules used to perform integration with respect to 	
and 
 coordinates, the normalization integral of the spin or-

bitals �n��	 ,
 ,�� can be expressed as follows:

� d3r
�n��r�
2 = a3�
1

�

d	�
−1

1

d
�
0

2�

d��	2 − 
2�

�
�n��	,
,��
2

= 	
i=1

Nx

	
j=1

Ny

	
k=1

N�


�n�;ijk

2. �29�

The time-dependent Kohn-Sham equations �Eq. �1�� are

solved by means of the split-operator method with spectral

expansion of the propagator matrices previously developed

for our H2
+ calculations �25,26�. The initial values for the spin

orbitals come from the self-consistent solution of the time-

independent equations �Eq. �11��. We employ the following

split-operator, second-order short-time propagation formula,

�n��r,t + �t� = exp�−
i

2
�tĤ0�exp�− i�tV�r,t +

1

2
�t��

�exp�−
i

2
�tĤ0��n��r,t� + O„��t�3… . �30�

Here �t is the time propagation step, Ĥ0 is the unperturbed

electronic Hamiltonian which includes the kinetic energy and

the effective potential before the laser field switched on,

Ĥ0 = −
1

2
�

2 + veff,��r,0� . �31�

The potential V�r , t� describes the interaction with the laser

field and can be expressed as follows:

V�r,t� = veff,��r,t� − veff,��r,0� . �32�

It contains the direct interaction with the field vext�r , t� Eq.

�8� as well as terms due to the variation of the density. For

the field polarized under the angle � with respect to the mo-

lecular axis, the direct interaction can be expressed as fol-

lows, using the prolate spheroidal coordinates:

vext�	,
,�,t� = aF�t��	
 cos �

+ ��	2 − 1��1 − 
2� cos � sin �� . �33�

The operator exp�− i

2
�tĤ0� is constructed by the spectral ex-

pansion,

exp�−
i

2
�tĤ0� = 	

n

exp�−
i

2
�tEn�
�n���n
 . �34�

In practical calculations, the summation in Eq. �34� includes

all eigenvectors of Eq. �11� with the energies En
Eb where

the upper limit Eb should be large enough to describe all

relevant physical processes. The high-energy contributions

are discarded because for the limited accuracy of the calcu-

lations �that is, finite number of grid points�, spurious tran-

sitions to high-energy states may occur during the time

propagation. With the control of high-energy contributions to

the propagator matrix, we can avoid population of physically

irrelevant regions of the energy spectrum and improve nu-

merical stability of the computations. In the present work, we
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use Eb=5 a.u.; this is a reasonable value for the carrier fre-

quency and intensities of the laser field used in the calcula-

tions.

For the given �t, the propagator matrix exp�− i

2
�tĤ0� is

time independent and constructed only once before the

propagation process starts. The matrix exp�−i�tV�r , t

+
1

2
�t�� is time-dependent and must be calculated at each

time step. However, for interaction with the laser field in the

length gauge, this matrix is diagonal �as any multiplication

by the function of the coordinates in the GPS and FG meth-

ods�, and its calculation is not time consuming.

The propagation procedure based on Eq. �30� is applied

sequentially starting at t=0 and ending at t=T. As a result,

the spin orbitals �n��	 ,
 ,� , t� are obtained on a uniform

time grid within the interval �0,T�. The space domain is

finite with the linear dimension restricted by the end point

Rb. We choose Rb=40 a.u.; the corresponding space volume

contains all relevant physics for the laser field parameters

used in the calculations. Between 20 and 40 a.u. we apply an

absorber which smoothly brings down the wave function for

each spin orbital without spurious reflections. Absorbed parts

of the wave packet localized beyond 20 a.u. describe un-

bound states populated during the ionization process. Be-

cause of the absorber, the normalization integrals of the wave

functions �n��r , t� decrease in time. Calculated after the

pulse, they give the survival probabilities Pn�
�s� for each spin

orbital,

Pn�
�s� =� d3r
�n��r,T�
2. �35�

Then one can define the spin orbital ionization probabilities

Pn�
�i� as

Pn�
�i� = 1 − Pn�

�s� . �36�

We note that the quantities Pn�
�s� represent the survival prob-

abilities for the electron occupying the unperturbed �n��r , t

=0� spin orbital before the laser pulse. They may not de-

scribe the actual population of the same unperturbed spin

orbital after the pulse. The final wave function �n��r ,T� re-

flects transitions to other bound states as well, resulting from

the interaction with the laser field. Similarly, the electrons

originally occupying other unperturbed spin orbitals may ex-

hibit transitions to this particular spin orbital after the pulse.

In intense fields or when a resonance condition between any

two spin orbitals is satisfied, these effects may be significant.

Accordingly, the quantity Pn�
�i� represents the ionization prob-

ability for the electron originally occupying the unperturbed

�n��r , t=0� spin orbital.

The total survival probability P�s� can be calculated as a

product of the spin orbital survival probabilities,

P�s� = �
n�

Pn�
�s� = �

n�

�1 − Pn�
�i� � . �37�

Accordingly, the total ionization probability can be written as

P�i� = 1 − P�s� = 1 − �
n�

�1 − Pn�
�i� � . �38�

The total ionization probability as defined by Eq. �38� re-

duces to the sum of the spin orbital probabilities only in the

limit of the weak laser field �small Pn�
�i� �.

IV. RESULTS

In the calculations, we used the experimental values of the

equilibrium internuclear separations for the diatomic mol-

ecules �32� �2.074 a.u. for N2 and 2.668 a.u. for F2�. In Table

I, we summarize the energies for the spin orbitals that have a

significant contribution to MPI and HHG and the corre-

sponding experimental vertical ionization energies. Also pre-

sented are the data for the companion Ar atom which has an

ionization potential close to that of N2 and F2 and is expected

to manifest close ionization probabilities as well. The agree-

ment between the calculated and experimental values is

fairly good for all three systems indicating a good quality of

the LB� exchange-correlation potential. We note that the

original unmodified potential �7� was used in all calculations.

A. Multiphoton ionization

We have computed the orientation-dependent MPI prob-

abilities for N2 molecule at the peak intensities 1�1014, 2

�1014, and 5�1014 W /cm2 �Figs. 1–3�. The orientation de-

pendence of the total MPI probability is in a good accord

with the experimental observations �6,7� for this molecule

and reflects the symmetry of its HOMO: the maximum cor-

responds to the parallel orientation. However, multielectron

effects are quite important for N2, particularly at intermedi-

ate orientation angles. In the angle range around 30°, the

ionization probability of HOMO-1 �1�u� is larger than that

of HOMO �3�g� for all three intensities used in the calcula-

tions; the largest difference between the HOMO and

HOMO-1 contributions in the vicinity of 25° is observed at

the intensity 2�1014 W /cm2 �Fig. 2�. For the highest inten-

sity 5�1014 W /cm2 �Fig. 3�, the ionization probability of

HOMO-2 �2�u� also exceeds that of HOMO for the angles

between 10° and 40°. Despite the orbital ionization prob-

abilities have local minima and maxima, the total probability

TABLE I. Absolute values of spin orbital energies of N2, F2,

and Ar. �A� Present DFT calculations �eV�. �B� Experimental ion-

ization energies �eV�.

Molecule Spin-orbital A B

N2 2�u 18.5 18.7 �Ref. �33��

1�u 16.9 17.2 �Ref. �33��

3�g �HOMO� 15.5 15.6 �Ref. �33��

F2 3�g 21.9 21.0 �Ref. �34��

1�u 19.2 19.0 �Ref. �34��

1�g �HOMO� 16.0 15.7 �Ref. �34��

Ar 3s 29.0 29.3 �Ref. �35��

3p 15.3 15.8 �Ref. �35��
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shows monotonous dependence on the orientation angle.

With increasing the peak intensity of the laser field, the ori-

entation angle distribution of the total ionization probability

becomes more isotropic. For comparison, we show also the

ionization probability of the Ar atom. As one can see from

Figs. 1–3, the absolute values of the ionization probabilities

of N2 and Ar are close to each other. However, the inner-

shell contributions are less important for Ar: the total prob-

ability is dominated by the highest-occupied �3p� shell con-

tribution. An analysis of the spin orbital energies �Table I�
can help to understand the relative importance of MPI from

the inner shells in N2 compared to that in Ar. The smaller the

ionization potential of the electronic shell, the easier it can be

ionized. That is why HOMO is generally expected to give

the main contribution to the MPI probability. However, in N2

the ionization potential of HOMO-1 is quite close to that of

HOMO �the difference between the calculated values is 1.4

eV�, and in the strong enough laser field both shells show

comparable ionization probabilities �a possible resonance be-

tween HOMO and HOMO-1 in the 800 nm laser field also

favors that; see discussion of HHG in Sec. IV B below�. At

the same time, the gap between the 3p and 3s spin orbital

energies in Ar is much larger �our calculation gives the value

13.7 eV�, and the 3p contribution to the MPI probability

remains dominant for all three laser intensities.

For F2, the total ionization probability appears smaller

than that of N2 �and Ar� at the same laser intensity. We

present here the results for the peak intensities 2�1014, 5

�1014, and 1�1015 W /cm2 �Figs. 4–6�. The ratio of the

MPI probabilities of Ar and F2 �at 40°� is approximately

equal to 4.2 for the intensity 2�1014 W /cm2, 1.9 for 5

�1014 W /cm2, and 1.4 for 1�1015 W /cm2. As one can

see, with increasing the intensity of the laser field, the MPI

probabilities of all three systems become closer. At the lower

intensity 2�1014 W /cm2 �Fig. 4�, the pattern for the orien-

tation dependence of MPI in F2 resembles that experimen-

tally observed in O2 �6� since both molecules have the

HOMO of the same symmetry �1�g�, and the HOMO con-

tribution is dominant at this intensity. The maximum in the

orientation angle distribution of the total MPI probability

points at 40°. The HOMO-1 contribution is less important

than that in N2, and this is well explained by the larger gap

between the HOMO and HOMO-1 energies �3.2 eV�. At the

higher intensity 5�1014 W /cm2 �Fig. 5�, the overall MPI
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FIG. 1. �Color online� MPI probabilities of N2 molecule and Ar

atom for the peak intensity 1�1014 W /cm2 in polar �panel A� and

Cartesian �panel B� coordinates: �a� total probability for N2, �b� 3�g

�HOMO� probability for N2, �c� 1�u �HOMO-1� probability for N2,

�d� 2�u probability for N2, �e� total probability for Ar, �f� 3p0 prob-

ability for Ar.
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FIG. 2. �Color online� MPI probabilities of N2 molecule and Ar

atom for the peak intensity 2�1014 W /cm2 in polar �panel A� and

Cartesian �panel B� coordinates: �a� total probability for N2, �b� 3�g

�HOMO� probability for N2, �c� 1�u �HOMO-1� probability for N2,

�d� 2�u probability for N2, �e� total probability for Ar, �f� 3p0 prob-

ability for Ar.
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orientation dependence becomes more isotropic with shallow

minima at the angles �=0° and �=90°. The contributions of

the inner electronic shells to the total MPI probability be-

come significant. For example, in the vicinity of �=90°,

HOMO and HOMO-1 have equal orbital ionization prob-

abilities; for the parallel orientation ��=0°�, HOMO-2 con-

tribution exceeds that of HOMO-1, and these two inner

shells together contribute as much as HOMO to the total

MPI probability.

The picture changes even more dramatically for the high-

est intensity 1�1015 W /cm2 �Fig. 6�. First, the orientation

dependence of the total MPI probability becomes almost iso-

tropic. Second, the contribution of HOMO-1 exceeds that of

HOMO at all angles, and for small angles �0° to 18°� both

HOMO and HOMO-1 are dominated by HOMO-2 �3�g�.
Thus with increasing the laser intensity, we observe the same

orbital switching as for N2 at the intensity 5�1014 W /cm2

where the HOMO-2 becomes dominant at intermediate ori-

entation angles. This significant and interesting phenomenon

was reported previously for the parallel orientation of the

molecular axis �20�. We are aware of the recent research �36�
that reported the absence of the orbital switching. However,

the work �36� is based on the static model potential ap-

proach, that is, unlike TDDFT, no dynamic response of the

electron density to the laser pulse was taken into account.

Besides that, it adopted the molecular strong-field approxi-

mation which does not take into account the correlated mul-

tielectron effects. Thus the conclusions made in Ref. �36�
may be subject to the limitations of the method used in that

study.

B. High-order harmonic generation

To calculate the HHG spectra, we employ the widely used

semiclassical approach, where the basic expressions come

from the classical electrodynamics but the classical quanti-

ties such as dipole moment and its acceleration are replaced

with the corresponding quantum expectation values. For

nonmonochromatic fields �as in our case�, the spectral den-

sity of the radiation energy emitted for all the time is given

by the following expression �37�:

S��� =
4�4

6�c3

D̃���
2. �39�

Here � is the frequency of radiation, c is the velocity of

light, and D̃��� is a Fourier transform of the time-dependent

dipole moment,

D̃��� = �
−�

�

dtD�t�exp�i�t� . �40�

The time-dependent dipole moment is evaluated as an expec-

tation value of the electron radius-vector with the time-

dependent total electron density ��r , t�,

D�t� =� d3rr��r,t� . �41�

The total energy E emitted in the harmonic radiation can be

calculated by integration of S���,

E = �
0

�

d�S��� . �42�

For a long enough laser pulse, the radiation energy spectrum

�39� contains peaks corresponding to odd harmonics of the

carrier frequency �0. We define the energy E�Nh� emitted in

the Nhth harmonic �Nh is an odd integer number� as follows:

E�Nh� = �
�Nh−1��0

�Nh+1��0

d�S��� . �43�

Besides the total induced dipole moment D�t�, one can also

calculate the spin orbital contributions to this quantity re-

placing the total density ��r , t� in Eq. �41� with the spin

orbital density 
�n��r , t�
2. Unlike the total dipole moment,

the total harmonic energy �43� is not equal to the sum of the

spin orbital contributions due to the interference terms in Eq.

�39�.
In Figs. 7 and 8 we present the HHG data for N2 and F2

molecules, respectively, at the peak intensity 2

�1014 W /cm2. To show the orientation dependence of the

HHG spectra, we choose three values of the orientation angle
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�: 0°, 40°, and 90° which represent the limiting cases of the

parallel and perpendicular orientation as well as the interme-

diate angle case. According to the semiclassical recollision

model of HHG �38�, the cutoff beginning position in the

harmonic spectrum is expected at the energy Ei+3.17Up,

with Ei and Up being the ionization energy and the pondero-

motive potential, respectively. For the intensity 2

�1014 W /cm2 and the wavelength 800 nm, the predicted

cutoff position corresponds to the harmonic order 35. This

value is in fairly good agreement with the computed data

�Figs. 7 and 8� for the orientation angles �=40° and �
=90°; for the parallel orientation ��=0°�, the computed

HHG spectra extend to slightly higher energies and do not

show a clear cutoff at the predicted position.

For all three orientations, the HHG signal from N2 is

about an order of magnitude stronger than that from F2; this

observation is consistent with the MPI results of Sec. IV A:

at this intensity, the MPI signal from F2 is four to ten times

weaker than that from N2, depending on the orientation. The
orientation dependence of HHG also resembles that of MPI:
HHG is more intense for the orientations where MPI reaches
its maximum. It is clearly seen for F2 where the radiation
energy at 40° exceeds that at other orientations for almost
every harmonic. For N2, the HHG signal at 0° is dominant in
the low-order part of the spectrum whereas in the central part

a stronger signal is observed at 40°. One can also see that the

emission of the harmonic radiation at the perpendicular ori-

entation ��=90°� is suppressed for both N2 and F2 in the

low-order and central parts of the HHG spectra. The maxi-

mum in the harmonic energy distribution at 90° is shifted to

higher orders. This result is in a good accord with the recent

experimental measurements on N2 �9�. In Ref. �9� it was

explained by the dominant contribution from HOMO-1 to

the HHG signal at �=90°. Our calculations also reveal sig-

nificant presence of HOMO-1 and other inner MO in the

HHG spectra, and not only at the perpendicular orientation.

To analyze the importance of multielectron effects in

HHG, we compare in Figs. 9 and 10 the actual energy emit-

ted in the harmonic radiation with the energy that would be

produced by HOMO alone. As one can see, the first few

harmonics �3 to 7� always manifest strong involvement of
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FIG. 7. �Color online� Energy emitted in harmonic radiation by

N2 molecule for the peak intensity 2�1014 W /cm2: left �blue� bar,

orientation angle �=0°; middle �green� bar, orientation angle �

=40°; right �red� bar, orientation angle �=90°.
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FIG. 8. �Color online� Energy emitted in harmonic radiation by

F2 molecule for the peak intensity 2�1014 W /cm2: left �blue� bar,

orientation angle �=0°; middle �green� bar, orientation angle �

=40°; right �red� bar, orientation angle �=90°.
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FIG. 9. �Color online� Energy emitted in harmonic radiation by

N2 molecule for the peak intensity 2�1014 W /cm2: upper panel,

orientation angle �=0°; middle panel, orientation angle �=40°;

lower panel, orientation angle �=90°. The left �blue� bar for each

harmonic shows the actual radiation energy while the right �green�
bar shows the spectrum that would be a response of HOMO only.

The middle �red� bar corresponds to the harmonic spectrum that

would be produced by HOMO and HOMO-1 together.
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the inner electronic shells. The interference is mostly de-
structive, so the total radiation energy appears less than that
resulting from HOMO only. However, for F2 at �=90° �Fig.
10� the contributions from different spin orbitals interfere
constructively, and the result exceeds the HOMO-only radia-
tion energy. For N2 �Fig. 9�, the central part of the HHG

spectrum at the parallel orientation ��=0°� suggests that the

HOMO contribution is dominant; multielectron effects be-

come more important for higher harmonic orders �27 to 43�.
However, at the orientation angles �=40° and �=90°, the

HOMO-only radiation energy is considerably larger than the

actual HHG output. These results imply a strong destructive

interference between HOMO and the inner shells and indi-

cate that HOMO alone may not provide a correct description

of the HHG process. The reason for such a behavior of the

HHG spectra lies in the resonance nature of the process. The

photon energy corresponding to the carrier frequency of the

laser field is 1.55 eV, and the energy difference between

HOMO �3�g� and HOMO-1 �1�u� in N2 is about 1.4 eV.

Thus the process takes place in the vicinity of the one-photon

resonance between HOMO and HOMO-1. However, because

of the selection rules, the 3�g and 1�u states can be coupled

by the linearly polarized laser field at nonparallel orienta-
tions only. Thus the resonance is present at �=40° and �
=90° and absent at �=0°. In the vicinity of the resonance,

HOMO and HOMO-1 are strongly coupled to each other,

and one must consider their combined response to the laser

pulse. As Fig. 9 shows, this combined response results in a

radiation energy distribution which appears a good approxi-

mation for the total multielectron HHG spectrum.

The gap between the HOMO and HOMO-1 energies in F2

is about 3.2 eV, and the resonance condition is not satisfied.

The HOMO HHG spectrum appears a reasonable approxima-

tion for the actual radiation energy distribution at all three

orientations presented in Fig. 10. Addition of the HOMO-1

response generally improves the agreement with the total

HHG spectrum, particularly at �=90°. A large deviation

from the total spectrum for the harmonic orders 9 to 13 at

other orientations may be attributed to the resonantly en-

hanced contributions from the inner 3�g and 2�u spin orbit-

als.

For comparison with the diatomic molecules, we show in

Fig. 11 the HHG spectrum from the Ar atom. The MPI prob-

ability of Ar �see the previous subsection� shows a dominant

contribution from the outer 3p0 electron which has a zero

angular momentum projection onto the laser polarization di-

rection, so the Ar atom may be considered as a single-active-

electron atom in the MPI process. Surprisingly, the multi-

electron effects appear quite important in the HHG process.

The central and high-energy parts of the spectrum show sig-

nificant contributions from the other electrons in the 3p shell

as well as from the inner 3s shell. The interference of differ-

ent contributions is mostly constructive in the central part of

the spectrum and destructive in the high-energy part. A large

deviation of the total radiation energy from that produced by

the 3p shell only at the ninth harmonic appears due to the

nine-photon resonance between the 3p and 3s shells; a cor-

rect description of the HHG in this region of the spectrum

requires taking into account the 3s contribution. The total

HHG spectrum has a clear minimum at the 33rd harmonic
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FIG. 10. �Color online� Energy emitted in harmonic radiation by

F2 molecule for the peak intensity 2�1014 W /cm2: upper panel,

orientation angle �=0°; middle panel, orientation angle �=40°;

lower panel, orientation angle �=90°. The left �blue� bar for each

harmonic shows the actual radiation energy while the right �green�
bar shows the spectrum that would be a response of HOMO only.

The middle �red� bar corresponds to the harmonic spectrum that

would be produced by HOMO and HOMO-1 together.
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FIG. 11. �Color online� Energy emitted in harmonic radiation by

Ar atom for the peak intensity 2�1014 W /cm2. The left �blue� bar

for each harmonic shows the actual radiation energy while the right

�green� bar shows the spectrum that would be a response of the 3p0

orbital only. The middle �red� bar corresponds to the harmonic spec-

trum that would be produced by the entire 3p shell.
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�51 eV� while the HHG from the 3p shell only exhibits the

same minimum at the 31st harmonic �48 eV�. This is a mani-

festation of the well-known Cooper minimum in Ar. In the

photoionization cross section of Ar it was measured at 48 eV

�39� and at 50 eV �40�; recently it was observed also in the

experimental HHG spectra approximately at the same energy

�41�. As one can see from Fig. 11, accounting for the inner-

shell contributions to the HHG spectrum slightly shifts the

position of the minimum toward higher energies. Note that

the one-electron model calculations �42� give the position of

the Cooper minimum at the lower energy of 40 eV. In the

vicinity of the Cooper minimum, the contribution from the

3p shell to the Fourier-transformed dipole moment �Eq. �40��
changes its sign relative to that of the 3s contribution, and

this sign change is responsible for switching of the interfer-

ence pattern from constructive in the central part of the spec-

trum to destructive for the harmonic orders 31 and higher.

The HHG spectra of diatomic molecules manifest inter-

ference effects related to the two-center nature of the mol-

ecules. A simplified one-electron two-center recollision

model of the molecular HHG results in a straightforward

condition for the interference minima or maxima �43�,

cos � =
�n

R�2Ek

, n = 1,2,3. . . �44�

where Ek is the kinetic energy of the recolliding electron.

Provided all the kinetic energy of the electron is converted

into the harmonic radiation energy upon recollision, the con-

dition for the first �n=1� extremum in the series �44� can be

recast in the following form:

cos � =
�

R�2Nh�0

. �45�

Here Nh is the harmonic order �an odd integer number�, and

the dispersion relationship Ek=Nh�0 is taken into account. If

the electronic MO can be approximated as a symmetric com-

bination of the atomic orbitals,

�m
+ �r� = �a�r −

1

2
R� + �a�r +

1

2
R� , �46�

then the extremum �45� is a minimum. In the case of an

antisymmetric combination of the atomic orbitals,

�m
− �r� = �a�r −

1

2
R� − �a�r +

1

2
R� , �47�

the extremum �45� represents a maximum. Note that not all

harmonics in the HHG spectra exhibit the orientation-

dependent two-center interference minima or maxima: the

right-hand side of Eq. �44� must be less than unity at least.

For N2 and F2 molecules subject to the 800 nm laser field

with the intensity 2�1014 W /cm2, at their equilibrium in-

ternuclear separation, only the first extremum �45� can be

important for the two-center interference analysis. In our pre-

vious HHG calculations of the one-electron molecule H2
+

�25�, we tested Eq. �45� against accurate numerical results

and got a fairly good agreement.

For multielectron diatomic molecules, one can try using

Eq. �45� based on their HOMO symmetry. For F2, HOMO is

1�g and satisfies the symmetry of Eq. �47�. Thus one can

expect maxima in the orientation dependence of the radiation

energy. Indeed, our calculations reveal such maxima for the

harmonics in the central part of the HHG spectrum. In Fig.

12, we show the radiation energy for several harmonics in

the range 15 to 39. For better presentation, the radiation en-

ergy has been normalized to unity at the maximum for each

harmonic. One can see that the orientation angle correspond-

ing to the maximum is shifted toward larger values as the

harmonic order is increased, in accordance with Eq. �45�.
The numerical values of the orientation angle corresponding

to the interference maximum are summarized in Table II. As

one can see, the agreement between the present TDDFT re-

sults and the two-center model �45� is good for the harmon-

ics in the middle of the spectrum �23 to 31� and becomes less

accurate for the low-order and high-order harmonics. These

results agree well with the recent measurements �44� which
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FIG. 12. �Color online� Normalized energy emitted in harmonic

radiation by F2 molecule for the peak intensity 2�1014 W /cm2 vs

the orientation angle. For each harmonic, the radiation energy is

normalized to unity at the maximum; the curves are marked by the

harmonic order.
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FIG. 13. �Color online� Normalized energy emitted in harmonic

radiation by N2 molecule for the peak intensity 2�1014 W /cm2 vs

the orientation angle. For each harmonic, the radiation energy is

normalized to unity at �=0°; the curves are marked by the har-

monic order.
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have shown that the dispersion relationship between the ki-

netic energy of the recolliding electron and the harmonic

frequency used in Eq. �45� �Ek=Nh�0� is better satisfied in

the central part of the HHG spectrum while for both low-

order and high-order harmonics the deviations have been ob-

served. In general, Eq. �45� provides a reasonable description

of the two-center interference effects in F2.

The situation is different for the N2 molecule. The sym-

metry of HOMO �3�g� corresponds to Eq. �46� and suggests

that the orientation-dependent harmonic radiation exhibits an

interference minimum according to Eq. �45�. The results of

our calculations are shown in Fig. 13 for several harmonics

in the range 19 to 39. Since the internuclear separation R for

N2 is shorter than that for F2, the minimum can be observed

for the harmonic order higher than 21. As it follows from Eq.

�45�, for the harmonic orders 23 to 39, the orientation angle

corresponding to the minimum varies from 21° to 44°. As

one can see from Fig. 13, this is not the case. Harmonics 27

to 39 do have a minimum but it is located at much larger

angles, in the interval 65° to 75°. Thus the formula �45�
being successful in the case of the F2 molecule does not

provide a correct description of the interference phenomena

in N2. We attribute this striking difference in behavior of the

two molecules to the resonance nature of the HHG process in

N2. The resonantly enhanced induced time-dependent dipole

moment of the molecule significantly affects HHG, that ulti-

mately means a breakdown of the simple one-electron two-

center recollision model. Previously, a failure of Eq. �45� to

correctly describe the HHG interference in N2 was detected

in Ref. �45� and explained as a result of substantial contribu-

tions to HOMO from the atomic orbitals with different sym-

metries.

V. CONCLUSION

In this paper, we have presented ab initio all-electron TD-

DFT calculations of MPI and HHG in diatomic molecules N2

and F2 with arbitrary orientation of the molecular axis with

respect to the polarization of the laser field. Both processes

are affected by the electronic structure of the molecules and

symmetries of their HOMO and inner-shell molecular orbit-

als. We have shown that for the N2 molecule subject to 800

nm laser pulses with the moderate peak intensity 1

�1014 W /cm2, the contributions of the inner shells the MPI

probability are quite significant, particularly at intermediate

orientation angles. Multielectron effects in MPI become

more pronounced at the higher intensity 2�1014 W /cm2.

For the same intensity, the HOMO contribution is still domi-

nant for the F2 molecule at all orientations. These observa-

tions are in agreement with the electronic structure and po-

sitions of the spin orbital energy levels for these species: the

gap between the HOMO and HOMO-1 energies in F2 is

larger than that in N2. With further increasing the intensity,

the effect of the inner-shell electrons on MPI generally be-

comes more important, and orbital switching may occur: the

contributions of spin orbitals with larger ionization potentials

exceed those of spin orbitals with smaller ionization poten-

tials. We can see such a behavior in F2 at the highest inten-

sity 1�1015 W /cm2 used in the calculations. Note that for

the companion Ar atom the contribution of the highest-

occupied 3p0 orbital �with the zero angular momentum pro-

jection onto the field polarization direction� remains domi-

nant for all intensities; this is well explained by the large

difference between the 3p and 3s orbital energies. Another

observation is related to the orientation angle dependence of

the total MPI probability of N2 and F2: with increasing the

intensity of the laser field it becomes less anisotropic. Sev-

eral spin orbitals possessing different symmetries make sub-

stantial contributions to MPI, and that results in a more uni-

form distribution of the total MPI probability with respect to

the orientation of the molecular axis.

The HHG spectra are influenced by the multielectron ef-

fects even more than the MPI probabilities. The high-order

harmonics are very sensitive to the interference of the con-

tributions from multiple electronic shells. Even tightly bound

electrons which do not contribute much in the MPI process

make their presence in the HHG process. In part this is re-

lated to possible resonances between different electronic

shells. Such a one-photon resonance exists between HOMO

and HOMO-1 in N2 for the laser field parameters used in the

calculations. Under these conditions, the response of HOMO

alone to the laser pulse does not provide a correct description

of the HHG spectrum. HOMO and HOMO-1 are strongly

coupled by the laser field at nonparallel orientations, and

only a coherent sum of their contributions gives a reasonable

approximation for the harmonic radiation energy. The inter-

ference of the contributions is destructive in this case; in

other cases it can be constructive, as one could see in the

HHG spectra of F2, Ar or N2 at the parallel orientation. In

any case, the account of the multielectron effects can change

the resulting harmonic radiation energy by orders of magni-

tude, as compared with the HHG spectrum produced by

HOMO only. Some well-understood phenomena such as

two-center interference in the HHG spectra of homonuclear

diatomic molecules are also affected by the contributions

from multiple molecular orbitals with different symmetries;

in particular, they may be responsible for the failure of the

simple one-electron recollision model in the case of the N2

molecule.
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TABLE II. Orientation angles of interference maxima for sev-

eral harmonics in the F2 HHG spectrum for the peak laser intensity

2�1014 W /cm2.

Harmonic order

15 19 23 27 31 35 39

Present work 32° 40° 43° 48° 51° 57° 60°

Eq. �45� 26° 37° 43° 48° 51° 54° 56°
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