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Effects of Multirate Systems on the Statistical 
Properties of Random Signals 
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Abstract-In multirate digital signal processing, we often en- 
counter time-varying linear systems such as decimators, inter- 
polators, and modulators. In many applications, these building 
blocks are interconnected with linear filters to form more com- 
plicated systems. It is often necessary to understand the way in 
which the statistical behavior of a signal changes as it passes 
through such systems. While some issues in this context have 
an obvious answer, the analysis becomes more involved with 
complicated interconnections. For example, consider this ques- 
tion: if we pass a cyclostationary signal with period K through 
a fractional sampling rate-changing device (implemented with 
an interpolator, a nonideal low-passfilter and a decimator), what 
can we say about the statistical properties of the output? How 
does the behavior change if the filter is replaced by an ideal 
low-pass filter? In this paper, we answer questions of this na- 
ture. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an application, we consider a new adaptive filtering 
structure, which is well suited for the identification of band- 
limited channels. This structure exploits the band-limited na- 
ture of the channel, and embeds the adaptive filter into a mul- 
tirate system. The advantages are that the adaptive filter has a 
smaller length, and the adaptation as well as the filtering are 
performed at a lower rate. Using the theory developed in this 
paper, we show that a matrix adaptive filter (dimension deter- 
mined by the decimator and interpolator) gives better perfor- 
mance in terms of lower error energy at convergence than a 
traditional adaptive filter. Even though matrix adaptive filters 
are, in general, computationally more expensive, they offer a 
performance bound that can be used as a yardstick to judge 
more practical "scalar multirate adaptation" schemes. 

I. INTRODUCTION 

ULTIRATE digital filtering is used in a variety of M applications such as subband coding, voice privacy 
systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 , [2], transmultiplexers, and adaptive filtering 
[3], [4], to name a few. In multirate digital signal pro- 
cessing, we encounter time-varying linear systems such 

as decimators, interpolators, and modulators [2]. In many 
applications, these building blocks are interconnected with 
linear filters to form more complicated systems. Con- 

sider, for example, some of the simple interconnections 
shown in Fig. 1. The M-fold decimator is shown in Fig. 
l(a). Fig. l(b) shows the L-fold interpolator. Typically, 
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Fig. 1. Some typical interconnections analyzed in the paper 

a low-pass filter is used after an interpolator, to suppress 
the images created by interpolation. This is shown in Fig. 
l(c). The operation of fractional decimation (or sampling- 
rate conversion) is shown in Fig. l(d). 

It is often necessary to understand the way in which the 
statistical behavior of a signal changes as it passes through 
such systems. While some issues in this context have an 
obvious answer, the analysis becomes more involved with 
complicated interconnections. For example, it is easy to 
see that the decimated version x ( n M )  of a wide-sense- 
stationary (WSS) signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(n) remains WSS. But the fol- 
lowing question is more complicated. Consider Fig. l(d), 
which represents a fractional sampling rate changing de- 
vice. If the input x ( n )  is cyclo-wide-sense stationary [6] 
with period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  then what can we say about the stationary 

(or otherwise) of the output? Is the answer to this question 
dependent on whether the low-pass filter is ideal or not, 
and if so, how? 

In this paper, we answer questions of this nature, start- 
ing from a small set of elementary observations. When 
we make transition from single-rate to multirate systems, 
the assumption that the output signals (in response to WSS 
input) are WSS is not valid even in theoretical study. We 
shall find it more natural to assume that the signals are 
cyclo-wide-sense stationary (CWSS). For example, the 
output of an L-fold interpolation filter is CWSS with pe- 

riod L, and becomes WSS only if the filter has certain 
ideal band-limiting properties (as we shall specify in 
Theorem 4.1). Occurrence of CWSS signals in signal pro- 
cessing and communications applications has been re- 
cently discussed in [15]. In Section IV, we shall study the 
effects of multirate filters with reference to CWSS signals. 
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As an application, we consider an adaptive filtering 
structure of identification of band-limited channels. This 
scheme is shown in Fig. 16. As we shall see in Section 
V, this structure exploits the band-limited nature of the 

channel and embeds the adaptive filter into a multirate 
system. (In the past, the band-limited nature, as well as 
the spectral energy distribution have been exploited in 
adaptive filtering, e.g., 131, [4], [lo], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 111.  However, the 
fractional multirate adaptive structure for this purpose, 
shown in Fig. 16, is new). The advantages are that the 
adaptive filter has a smaller length and the adaptation, as 
well as the filtering take place at a speed lower than the 
input data rate, resulting in improved computational effi- 
ciency. In the theoretical analysis of this system, due to 
its multirate nature we cannot assume that the input to the 
adaptive filter is WSS (even if the primary input x ( n )  to 
the channel is WSS). Using the theory developed in this 
paper, we show that the input to the adaptive filter is 
CWSS, and that a matrix adaptive filter gives better per- 

formance than a traditional scalar filter. The fact that a 
matrix adaptive filter is computationally more expensive 
clearly places in evidence the tradeoff involved when we 
switch from single-rate to multirate systems. The matrix 
adaptive filter offers a theoretical performance bound that 
cannot be exceeded by an scalar filter of comparable com- 

plexity. Finally, it is shown that if the nonadaptive filters 
in this system are close to ideal (in the sense of having a 
sharp cutoff and good stopband attenuation), then the ma- 

trix adaptive filter can be replaced by a scalar adaptive 
filter without a significant loss of performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Outline of the Paper 

The paper is organized as follows. In Section 11, we 
include definitions of various statistical and multirate con- 
cepts used in the paper. The effects of the basic multirate 
building blocks (such as decimators, interpolators, and 
modulators) are investigated in Section 111. In Section IV, 

we derive similar results for some useful interconnections 
of the basic building blocks. The multirate adaptive fil- 
tering scheme for identification of band-limited channels 
is discussed in detail in Section V .  Simulation results are 
included. Throughout the paper, all WSS and CWSS pro- 
cesses are assumed to be zero mean. 

B. Notations used in the Paper 

The superscript T stands for matrix (or vector) trans- 
position whereas the superscript dagger (t) stands for 

transposition followed by complex conjugation. Boldface 
italic letters indicate matrices and vectors. The super- 

script asterisk (*) stands for complex conjugation. The 
tilde accent on a function F ( z )  is defined such that, on the 
unit circle, E(z) = F t ( z ) .  Thus, for arbitrary z ,  P(z)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F$ ( z - ’ ) ,  where the subscript asterisk denotes complex 
conjugation of coefficients of the function. Following the 
standard signal processing convention, the operators z and 
z -  I  are used in flow graphs to represent advance and delay 
operations, respectively. Whenever it is convenient, we 

use the notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ( x ) ) ~  to denote (x modulo Q). Here, Q 
is frequently an integer, but on occasion we will need to 
use Q = 2 a .  

11. PRELIMINARIES 
We first review some basic concepts and definitions 

from multirate signal processing and system theory. 

A. M-Fold Decimator 

x (n )  and produces the output sequence 
A decimator is a device that takes an input sequence 

Yo (n) = x (2.1) 

This means that only those samples of x ( n )  that occur at 
sample locations equal to integer multiples of M are re- 
tained. In the transform domain, the Fourier transforms 
are related as 

, M - I  

where WM = e-2Ja/M.  Thus, in general, decimation causes 
aliasing. 

B. L-Fold Interpolator 

duces an output sequence 
The interpolator takes an input sequence x (n )  and pro- 

x ( n / L ) ,  if n is an integer multiple of L 

otherwise. 

(2.3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAio; Yr(n) = 

In the frequency domain, we can write 

Yl (eJw)  = X(e’wL). (2.4) 

This is the well-known imaging effect [ l ] ;  we now have 
L “squeezed” copies of the spectrum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(eJw)  in the region 
0 I w < 2 a .  

C. Blocking a Signal 

version x (n )  by 
Given a scalar signal x ( n ) ,  we define its M-fold blocked 

x (n )  = [x(nM)x(nM - 1) 9 . . x(nM - M + l)]‘. 

(2.5) 

Using decimators and delays, the blocking mechanism can 
be represented as in Fig. 2(a). The signal x ( n )  is called 
the unblocked version of the vector process x (n) .  The un- 
blocking operation can be represented in terms of multi- 
rate building blocks as in Fig. 2(b). We will see below 
that the components of the blocked version are precisely 
the “polyphase components” of x (n) .  

D. Wide-Sense-Stationary (WSS) Process 

A vector stochastic process x ( n )  is said to be a wide- 
sense-stationary process if 1) E [ x ( n ) ]  = E [ x  (n  + k) ]  for 
all integers n and k;  and 2) the autocorrelation function 
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Appendix I. Notice in particular that a (CWSS)L process 

is also (CWSS),, for any positive integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. 

H. Linear Periodically Time-Varying (LPTV) System 

A system is said to be LPTV with period L (denoted as 
(LPTV),) if the output y ( n )  in response to input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  can 
be written as 

m 

y (n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C h(n,  k ) x ( n  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk )  (2.9) 
- m  

where 

h(n ,  k )  = h(n  + L,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ) ,  V n ,  vk. (2.10) 

An (LPTV), system is also an (LPTV),, system for any 
positive integer m. An implementation of an (LPTV)L 
system is shown in Fig. 3 .  The output at time n is the 

output of one of the L filters, as governed by the value of 

x(nM-M+ 1 ) 

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x (n) 

(b) (n  modulo L) .  
Fig. 2. (a) M-fold blocking o f a  signal. (b) Unblocking of an M x I vector 

I. Pseudocirculant Matrices signal. 

An M X M matrix A (e'") is said to be pseudocirculant 

depends only on the time difference between the two Sam- if the entries a;,/(e'") ( i  = 0,  . . . , M - l , I = O ; * * ,  
ples, i .e.,  M - 1) satisfy the following relation: 

O s i s l  

1 < i I M - I .  

ao. - i (e  '"), 

e- jwuo, I - i+M(e jw) ,  

(2.11) 

In words, a pseudocirculant matrix is a circulant, matrix 
with elements under the diagonal multiplied by e-'". Here 
is an example of a 3 X 3 pseudocirculant matrix 

i E[x(n)x ' (n  - k ) ]  = R,,(k), V n ,  vk. (2.6) 

The mean value E [ x ( n ) ]  will usually not enter our dis- 
cussion because it is normally assumed to be zero. 

E. Jointly WSS Processes 

if the process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU (n )  = [U  T ( n )  w T(n) ]T  is WSS. 

F. Power Spectral Density 

The power spectral density S,,(z) of a WSS process 
x ( n )  is defined as the z transform of its autocorrelation 
matrix defined in (2.6), i .e.,  

a i , / (e ' " )  = 

TWO processes u ( n )  and w(n)  are said to bejointly wss 

i 
a. (e 1") a I (e  j " )  a2 (e  '") 

A(e'") = e-'"uz(ejw) ao(ej") a1(eiw) . 

e-jwal (e'") e-JWa2(ej") ao(ej") 

(2.12) 

( 
m 

S,,(z) = C R,,(k)z-". (2.7) We will be using the following properties of pseudocir- 
culants, which can be verified from [7]: k =  - m 

Thus, each entry of this matrix is the z transform of the 

corresponding entry of R,, (k) .  

G. Cyclo- WSS Process 

1) Definition I :  A stochastic process x ( n )  is said to be 
cyclo-WSS with period L (abbreviated (CWSS),), if the 
L-fold blocked version x ( n )  is WSS. 

2) Dejinition 2: Let R,(n, k )  = E[x(n)x* (n  - k ) ]  de- 
note the autocorrelation function of a process x ( n ) .  The 

process is said to be (CWSS)L if 

E[x (n ) ]  = E [ x ( n  + kL) ] ,  V n ,  vk (2.8a) 

R,,(n, k )  = R,,(n + L ,  k),  V n ,  vk. (2.8b) 

1) If A(eJ" )  is pseudocirculant, then so is A'(e'"). If 

2) The product of pseudocirculant matrices is also 
the inverse [ A  (e'")]- '  exists, it is also pseudocirculant. 

pseudocirculant. 

The above definitions and properties hold true in the 

z-domain if we use the substitution z = e '", and replace 
At (e'") with A(z) (assuming, of course, that the z trans- 
forms exist). 

J .  Polyphase Decomposition 

phase decomposition with respect to M is 
Let X(z) be the z transform of a signal x ( n ) .  The poly- 

X(z) = Z-(M-I)Ro(ZM) + z-(M-*)R I (ZM) 
(Again, mean values such as (2.8a) will not enter our dis- 
cussions, as they are normally assumed to be zero.) A 
proof of the equivalence of these definitions is given in + . . .  + RM- , ( Z M ) .  (2.13) 
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Fig. 3.  Implementation of an (LPTV),. system 

Each function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, ( z ) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM - 1 is called a polyphase 
component of X ( z ) .  In the time domain, the kth polyphase 
component is obtained as 

rk(n) = x (nM + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA4 - 1 - k ) .  (2.14) 

From Fig. 2(a) it is easy to see that the components of 
the blocked version are also the polyphase components of 
the input signal. 

We now tie together seemingly unrelated concepts such 
as pseudocirculant matrices and wide-sense stationarity by 

proving some interesting relations. These results also 
bring out the importance of pseudocirculants in the anal- 
ysis involving WSS signals. 

Fact 2.1:  Let x ( n )  be an N X 1 vector WSS process, 
input to an M X N transfer matrix H ( z )  as shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Then the power-spectral density of the M x 1 vector 
WSS process y ( n )  is given by 

s y y  (z )  = H (z )  sxx (z )  A (z )  ' (2.15) 

(Reminder: The WSS nature of the vector x ( n )  is equiv- 
alent to the property that its unblocked version x ( n )  will 
be (CWSS),,, .) 

Proof: This follows using the convolution expres- 

Fact 2.2. Relation between WSS and Pseudocirculant 
Properties: Let x ( n )  be the M-fold blocked version of a 
zero-mean stochastic process x ( n ) .  Then the following 
statements are true: 

a) If x ( n )  is WSS, then the power-spectral density Sxx(z) 
of x (n) is pseudocirculant. 

b) If, for some M ,  the blocked version x (n )  is WSS and 
Sxx(z) pseudocirculant, then x (n) is a WSS process. 

Proof: 

a) Let x ( n )  be WSS. Then, the (i, 1)th element of Sxx(z)  

sion and the definition of Syy ( z ) .  

can be written as 

~ s x x ( z ) ~ i , /  = E [ x ( n M  - i >  
k =  --a, 

* x*(nM - kM - l > ] z P k .  (2.16) 

Using the WSS property, we can now rewrite this. For 
0 I i I I, we can write (2.16) as 

[Sxx(z)] i , I  = 

m 

E[x(nM)x* (nM - kM - (I - i ) ) ] ~ - ~  

= ISxx(z) l~. / - i .  (2.17) 

k =  - m 

Nx 1 M x  1 

M x N  

Fig. 4.  A multiinput-multioutput system 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 < i 5 M - 1, i - I is positive, but i - 1 - M is 
negative, hence we can write (2.16) as 

m 

[ S X x ( ~ ) ] , , /  = C E[x(nM)x*(nM - kM + M 
k =  - m 

- (1 - i + M ) ) ] z - k  
m 

= C E[x(nM)x* (nM - (k - 1 ) ~  
!,=--OD 

- (I - i + M ) > ] Z - ~  

= lz ' sxx  (z>lo. / I + M. (2.18) 

From the definition of a pseudocirculant, we conclude that 

S,., ( z )  is pseudocirculant. ' 
b) If x ( n )  is a WSS process, then we can indeed write 

a valid autocorrelation matrix as in (2.6). The entries of 
this matrix are 

[Rxx(k)] l , ,  = E [ x ( n M  - i)x*(nM - kM - l ) ]  

= E[x ( - i ) x * ( - kM - Z ) ] .  (2.19) 

The pseudocirculant property of S,, ( z )  implies 

(2.20) 

Hence, we can write 

E [ x ( - i ) x * ( - k M  - l ) ]  = E[x (O)x* ( - kM + i - l ) ] ,  

0 5 i, 1 5 M - 1. 

(2.21) 

Now consider E [ x ( n ) x * ( m ) ] .  We can write the time in- 
dices as n = noM - i and m = moM - I ,  where 0 I i, 
I S M -  1 . s o  

E[x(n)x*(m)]  = E[x(noM - i )x*(moM - l ) ]  

= E [ x ( - i ) x * ( ( m o  - no)M - l ) ]  

= E[x(0)x* ( (mo - no)M + i - l ) ]  

= E[x(O)x* (m - n) ] .  (2.22) 

Remarks: We prove in Appendix I1 that the (0, m)th 
entry of Sxx(z) is the ( M  - 1 - m)th polyphase compo- 
nent of s , ( ~ ) .  This implies that we can write down s, , (~)  
from the 0th row of S,.,.(z). 

Hence, x ( n )  is indeed a WSS process. 

'Notice the difference between S, (z )  and S,, (z)  is our discussions: The 
former corresponds to a vector process and the latter to a scalar process. 
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Scalar System 

Mx 1 
M x M  

(a) (b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  (a) A scalar system. (b) Corresponding blocked version. 

Fact 2.3. Relation between Blocked Versions and 
Pseudocirculants: Consider the scalar system of Fig. 

5(a), with input x (n) and output y (n). With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (n) and y (n) 
denoting the blocked versions of x(n) and y(n), the 
M-folded blocked system is shown in Fig 5(b). Clearly, 
for an arbitrary scalar system, the blocked version is not 
a linear and time invariant (LTI) system. However, we 
can make the following statements: 1) the blocked version 
is LTI [i.e., it can be described by a transfer matrix, say 
H(z)] if and only if the scalar system is (LPTV),,,; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) 
the blocked version is LTI with a pseudocirculant transfer 

matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( z ) ,  if and only if the scalar system is LTI. The 
proofs can be found in [7]. 

Now assume that the system in Fig. 5(a) is LTI and 

that x(n) is WSS. Then the blocked version x(n) has a 
pseudocirculant power spectrum S,, ( 2 ) .  Since the blocked 

version zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( z )  is also pseudocirculant, the product (2.15) 
is pseudocirculant. This is consistent with the fact that the 
unblocked version y(n) is WSS. 

Finally, we mention a result that gives the solution of 
an optimal filtering problem involving WSS signals. 

Fact 2.4. Matrix Version zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Wiener Filtering: Con- 
sider the system shown in Fig. 6.  If the signals w(n) and 

v(n) are jointly WSS, then the best filter A (z) in terms of 
minimizing error variance E [et (n) e (n)] is given by 

A ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= S,, ( z )  S i d  (2) .  (2.23) 

The matrix S,,(z) is the cross-power spectrum, i.e., the 
z transform of cross correlation ~ , , ( k )  = E[W (n) ut (n - 
k)]. This solution is called the Wiener solution to the 
problem mentioned above. 

Proof: This is a simple extension of the scalar ver- 
sion, which can be found, for example, in [8, p. 2651. 

W 
Remarks: It is assumed here that the determinant of 

S,,(z) is not identically zero for all z (i.e., that S,, ( z )  has 
full normal rank). The stability and realizability of the 
solution A ( z )  are in general not guaranteed, and one often 
tries to replace A (e ’“) with a stable practical approxima- 
tion. 

We know that if a matrix filter A (z) is pseudocirculant, 
then, in fact, there exists a scalar transfer function cor- 
responding to the unblocked input-output signal descrip- 
tion (Fact 2.3). On the other hand, if the blocked (matrix) 
transfer function is not pseudocirculant , then the corre- 
sponding unblocked transfer function is an LPTV system. 
So for an optimal matrix-filtering problem, if the solution 
given by (2.23) is pseudocirculant, then it is in fact a sca- 
lar LTI system. Otherwise, the optimal solution is an 
LPTV system. We will use this fact later when we discuss 

the adaptive filtering application. 

Fig. 6. Optimal filtering setup. 

111. BASIC RESULTS 
Using the concepts defined in the previous section, we 

now derive some useful results pertaining to multirate 
building blocks. First, we prove two results about mod- 
ulation of a WSS signal by a deterministic signal. 

Fact 3.1: Let x(n) be an M x 1 vector WSS process, 
modulated by a vector functionf(n) as shown in Fig. 7. 
More precisely, the components of y (n), f (n), and x (n) 
are related as y ,  (n) = J (n)x, (n). Then y (n) is WSS if and 
only iff (n) is of the form 

f (n)  = deJe“, d (possibly a complex) constant, 8 real. 

(3.1) 

This equation says that the time dependence is identical 
for all the components of f (n) .  

Proof: The “if”  part can be easily verified by direct 

substitution. We prove the “only i f ”  part. Let us repre- 
sent all the vector quantities in term of their individual 
components as 

x(n) = 

(3.2) 

We can write the input-output relation as 

Y (n) = A (n)x(n> (3.3) 

where A(n) is an M x M diagonal matrix with entries 

( fo(n) * . f M -  I (n ) )  on the diagonal. The autocorrelation 
function for y (n) can thus be written as 

E[y(n)yt(n - k ) ~  

= A(n)E[x(n)xt(n - k)]At(n - k). (3.4) 

This gives the autocorrelation matrix as 

Ryy(n, k) = A(n)Rx,(k)At(n - k )  (3.5) 

whose (i, I)th entry is therefore 

[Ryy(n, m,/ = J(n>[Rxx(k)l;,/fI“(n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. (3.6) 

For y(n) to be WSS, we want all the above entries to be 
free from the time index n. Consider the diagonal ele- 
ments first. The i th diagonal element will not be a func- 
tion of n, if and only iffi(n) f 7 (n - k) is independent of 
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x(n) 

M x 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA='T-'r: 1 

Fig. 7.  Modulation of signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n ) .  

f(n) M x 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n, for all k. Consider k = 0. Then this implies, in partic- 

ular, that 1 J; @ ) I 2  is independent of n. Hence, J;(n) must 
have the form 

J;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12)  = c, e J " I ( ~ ) ,  a, (n)  real. (3.7) 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i ,  i)th element of (3.6) thus becomes 

[Rxx(k) l , , ,J ; (n) f f (n  - k)  

= [R,, (k)],, , I c, I e J(adn) - adn ~ k ) )  . (3.8) 

Using the fact that this has to be independent of n,  and 
using a particular value of k (k = l),  we get a recursion 
of the type 

a, (n) = a, (0) + no,, 0, constant. (3.9) 

Hence, we can rewrite (3.7) as 

x ( n )  = d,eJB'", 0, real, d, constant. (3.10) 

Now, if we use the expression in (3.10) for the ( i ,  1)th 
element, we get 

f ; ( n ) f ; ( n  - k )  = d,d;eJ(ezn-e'ni-e'k). (3.11) 

For this to be independent of n, we should have ((0, - 
e,)),, = 0. Summarizing,x(n) = d,eJen,  so that (3.1) fol- 
lows. 

Remarks: This result implies that translating the power 
spectrum of a scalar WSS process by unequal amounts 
generates processes that are WSS themselves, but are not 
jointly WSS. 

Fact 3.2: Let x ( n )  be a (CWSS),,, signal. Then the sig- 

nal y ( n )  = f ( n ) x ( n )  is (CWSS),,, if and only if each 
polyphase component of the modulating functionf (n) with 
respect to M has the form (a, possibly complex, 
and 0 real). 

Proof: If x ( n )  is (CWSS),,,, then its blocked version 
of length M will be a vector WSS process. Similarly, if 
we block the modulating function f ( n ) ,  this problem re- 
duces to the setup mentioned in Fact 3.1.  Since the 
(CWSS),,, property of y (n) is equivalent to the WSS prop- 
erty of its blocked version y ( n ) ,  the result follows. I 

Remarks: These results imply, in particular, that if we 
modulate a WSS signal by a cosine wave ( y ( n )  = x ( n )  
cos (won)) ,  then the output y ( n )  is not WSS even if x ( n )  
is WSS (unless wo = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). 

We now turn attention to the remaining multirate build- 
ing blocks. 

Fact 3.3: Let y ( n )  = x ( n M ) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(n) is (CWSS),. 
Then y(n)  is CWSS with period K ,  where K = L/gcd 
(L ,  M ) .  

Remarks: Notice in particular, that y ( n )  is also 

(CWSS),. The following special cases are worth mention- 
ing. 

1) Let L = M .  Then K = 1 ,  so y ( n )  is WSS. 
2 )  Let L = 1 (i.e.,  x ( n )  is WSS). Then K = 1, and 

y ( n )  is WSS. 
3) Let L and M be relatively prime. Then gcd(L, M )  

= 1 and K = L regardless of M .  

Proof of Fact 3.3: Using the input-output relation 
of a decimator, we can write the autocorrelation for y ( n )  
as 

E [  Y (n) y*(n - no11 

= E [ x ( n M ) x * ( n M  - noM)]. (3.12) 

If K is the period of cyclo-wide-sense stationarity, then 

E [ y ( n  + K)y* (n  + K - no)] 

= E [ y ( n ) y * ( n  - no)]. (3.13) 

Thus, from (3.12) we get 

E [ x ( n M ) x * ( n M  - n,M)] 

= E [ x ( n M  + KM)x* (nM + KM - noM)]. (3.14) 

Since x ( n )  is (CWSS),, (3.14) is satisfied if KM = 1L for 
some integer 1. The smallest K is such that all prime fac- 
tors of L are accounted for by the left-hand side. Since M 
has gcd(M,  L )  as the largest factor common with L,  we 

I 
Fact 3.4: Passing a (CWSS)L signal x ( n )  through an 

(LPTV)L system gives a signal y ( n ) ,  which is (CWSS),. 
Proof: To prove the result, consider a corresponding 

blocked system obtained by applying the L-fold blocked 
input x ( n )  to the L-fold blocked version of the (LPTV), 

system above. We know that the blocked version of the 
(LPTV)L system is an LTI system and x ( n )  is WSS by 
definition of cyclo-wide-sense stationarity . Hence, the 
output of the blocked system will be a WSS signal, and 
the corresponding unblocked version y (n) will be 

Fact 3.5: If we pass a WSS signal x ( n )  through an 
L-fold interpolator, the output y ( n )  is (CWSS),. This setup 

is shown in Fig. l(b). 
Proof: Let us block the output y ( n )  into the vector 

process y (n )  = y ( n ~ )  . * * y ( n ~  - L + I)]'. Since y (n) 
is the interpolated version of x ( n ) ,  we get y ( n )  = (x(n) 
0 * - - O)T.  Hence 

get K = L / g c d ( M ,  L) .  

(CWSS),. The result thus follows. 

O \  
/R,(k) 0 . . 

0 0 * . *  

E [ y ( n ) y ' ( n  - k)] = ( , . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1. (3.15) . . .  

The right-hand side of independent of n. This means that 
y ( n )  is a vector WSS process. From the definition of a 
CWSS process, it follows that y ( n )  is a (CWSS), 
process. I 
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So far we have seen the effects of basic multirate build- 

ing blocks on stationary random inputs. In multirate-fil- 

tering applications, these building blocks are intercon- 
nected to form more complex systems. So it is of interest 
to study similar properties for some standard interconnec- 
tions of these building blocks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IV. INTERCONNECTIONS OF THE MULTIRATE 
BUILDING BLOCKS 

We first consider the operation of the L-fold interpola- 
tion filter. We prove that, in general, the output of this 
multirate interconnection is not WSS even if the input is. 

Fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. I: Consider the L-fold interpolation filter shown 
in Fig. l(c). If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  is WSS, then y ( n )  is (CWSS)L. 

Proofi From Fact 3.5, we know that v (n )  is 
(CWSS)L. Hence, from Fact 3.4, we can conclude that 
y ( n )  is (CWSS)L. 

Another important multirate operation is fractional dec- 
imation or sampling-rate conversion. This is used in a va- 
riety of multirate applications. We prove that this opera- 
tion in general does not produce a WSS output for a WSS 
input. 

Fact 4.2: For the multirate filter shown in Fig. l(d), if 
input x ( n )  is WSS, then the output y ( n )  is (CWSS)K where 
K = L/gcd(L, M). 

Proof: From Fact 4.1, we know that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv(n) is 
(CWSS)L. Hence, the result follows from Fact 3.3. 

A .  Necessary and Suflcient Condition for Wide-Sense 
Stationarity of y (n) 

We now prove an important result. From Fact 4.1, we 

know that the output of an L-fold interpolation filter in 
response to a WSS input is (CWSS)L. We now find the 
necessary and sufficient conditions on the interpolation 

filter, such that this (CWSS)L process actually becomes 
wss. 

Let us split H(e j " )  into its polyphase components as 
follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H ( e j w )  = e-Jw(L -  1 ) ~  o(eJwL) + * 

q-&qp -1 

Ro(e 

Fig. 8. Redrawing Fig. 1(c) using polyphase components. 

+-HJq+- +q++ 
Fig. 9. A well-known multirate identity 

Fig. I O .  Simplification of the implementation in  Fig. 8 using the multirate 
identity. 

L. ,(n) 
Fig. 11. The generation of f ( n )  from x ( n )  

Step 2: G ( e  J") Gt (e  '") is pseudocirculant if and only if 
the polyphase components can be represented as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 

Rk(eJW) = R L - , ( e / " ) e J ( L -  I - k ) ( ( w / L ) - ( 2 a P ( w ) / L ) )  

where P ( w )  is an integer valued function satisfying the 
property that 

+ e-'wRL-2(ejwL) + R L P I ( e j w L ) .  (4.1) ( ( P ( w  + 2a)  - P ( w )  - 1))L = 0, vw 

We have explained, in Definition 2.10, how to obtain the 
above representation. Using this, we can redraw Fig. l(c) 
as Fig. 8. Then using the multirate identity of Fig. 9, we 
can simplify the implementation as shown in Fig. 10. 
Consider the signal t ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA y ( n  + L - 1). Fig. 11 shows 

the generation of t ( n )  from x ( n ) .  It is trivially true that 
y ( n )  is WSS if and only if t ( n )  is WSS. From Fig. 11 and 
Fact 2.2, we know that t ( n )  is WSS if and only if the 

blocked version t ( n )  . * tL - I (n)]' is WSS and 

S,,(z) is pseudocirculant. Let us define the matrix transfer 
function C(e ' " )  [Ro(eJ")  * RL-l(eJ") ] ' .  We now 

derive the necessary and sufficient conditions for the wide- 
sense stationarity of t (n )  in the following steps. 

Step 1 :  The signal t ( n )  is WSS if and only if 

G (e  I " )  G t  (e  '") is pseudocirculant. 

[to(n) 

In other words, P ( w  + 2n)  - P ( w )  - 1 is an integer 
multiple of L. 

Step 3: The above representation of Rk (e  J") is possible 

if and only if the filter H ( e  J" )  has the following property: 
no aliasing occurs if we perform L-fold decimation of the 
impulse response h ( a ) .  This is equivalent to the following 
condition (Appendix 111): the frequency regions where 
H(e j " )  is nonzero do not overlap, if the frequency region 
0 I w < 2 a  is reduced modulo 2 a / L .  

Remark: For the interpolation scheme of Fig. l(c), the 
condition for wide-sense stationarity of the output of the 
statistical case is the same as the condition for image-free 
interpolation for the deterministic case. (See Appendix 111 
for an explanation of the term image-free interpolation .) 

Proof of Step 1: Since the vector t ( n )  is the output 
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of a linear system to which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  is the input, it is WSS. 
Using (2.15), we can write 

S,(e J") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(e'")S,(eJ") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG' (e'") 

= S, (e J") G (e J")G + (e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1") (4 .2)  

since Sxx(eJ") is scalar. Thus, t ( n )  [and hence y ( n ) ]  is 
WSS if and only if G(eJ") G t  (e'") is pseudocirculant. 

Proof of Step 2: 

The "Necessary" Part: We first assume that 
G(e'") Gt  (e '") is pseudocirculant, and prove that the 
polyphase components are related as stated above. Using 

the decimation relation (2 .2 ) ,  we can write 

), 
Jw - L '5' e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'((a - 2*m)/L)(L - I - k )  H ( e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ( (w  - 2*m) /L )  

R k ( e  - L m E o  

k = O ; * .  , L -  1 .  (4 .3 )  

Let us represent the polyphase components in their mag- 
nitude-phase form as 

Rk (e J") = \ R k  (e J") 1 e 'M"), 

Vw, k = 0, - , L - 1 .  (4 .4)  

The (i, l)th entry of G(e'")Gt(eJ") is given by 

[G (e  j " )  G (e '")Il, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

(4 .5)  = IR, (eJ " ) I  )RI (e '")I e J('$h(W) -'fX(")). 

If C(eJ") G t  (e'") is pseudocirculant, all the elements on 
the main diagonal have to be equal. This gives 

IRk(e'")I = I R L - l ( e J W ) I ,  

Vu,  k = 0 ,  * , L - 1 .  (4 .6)  

Using the fact that a pseudocirculant is, in particular, 
Toeplitz, we can say that the (k, k + 1)th elements have 
to be equal for k = 0, , L - 2 .  This gives the fol- 
lowing condition on the phases: 

* 

( 4 k ( W )  - 4 k +  1 (w))Zs = 4 (a), 

Vu,  k = 0 ,  - - , L - 2 .  

(4 .7 )  

Using the property of pseudocirculants that the ( 1 ,  0)th 
entry is obtained by multiplying the (0, L - 1)th entry by 
e-Jw, we get 

(4o(w) - 4 L -  1 ( W ) ) 2 r  

= (w + 41b) - 4 0 ( w ) ) 2 , ,  vu. (4 .8 )  

Using the recursion (4 .7 )  we get 

( 4 k ( ~ ) ) 2 r  = ( 4 ~ -  I (U) + ( L  - 1 - 4 4  (w))zs, 

VU, k = 0, * , L - 2 .  (4 .9 )  

Setting k = 0 in (4 .9 )  and subtracting from ( 4 . 8 ) ,  we get 

(L4(0) - w ) 2 *  = 0 ,  vu. (4.10) 

This can be written as an exact functional equality as 

&(U) = w - 27rP(w), v w  (4.11) 

for an appropriate integer-valued function P (U). Substi- 
tuting (4 .11)  in ( 4 . 9 )  we get the following relation among 
the polyphase components: 

R~ (e j w )  = R~ - I (e '"1 e j ( L  - I - 4 ( ( w / L )  - (2nP(w) /L ) )  
9 

VU, k = 0 ,  * , L - 1 .  (4 .12)  

Let +(U)  = ( ( w / L )  - (27rP(w)/L) ) .  Since this is a phase 
function, the quantity (+ ( w ) ) ~ ~  (i.e., the value modulo 
2 ~ )  is periodic with period 27r. This gives the following 
condition on the integer-valued function P (U)  

P ( w  + 27r) = P(w)  + 1 modulo L ,  Vw. (4.13) 

Once again, the modulo notation means that P ( w  + 27r) 
- P ( w )  - 1 is an integer multiple of L .  This proves the 
"necessary" part. 

An example of P ( w )  is shown in Fig. 12 for L = 4 .  It 
can be seen that for this example, P ( w )  takes three differ- 

ent integer values in the interval 0 s w < 27r. This pat- 
tern repeats as in (4 .13 ) .  

The "Sujicient" Part: We have to prove that (4 .12)  
implies that G(e'")Gt(ei") is pseudocirculant. If we as- 
sume that (4.12) holds for the polyphase components, then 
the (i, 1)th entry is given by 

[G (e '")G (e  9 1 i ,  I 
= 1 ~ ~ -  I ( , jw )12 , jC l - i )Kw - 2 r P ( w ) ) / L ) .  (4 .14)  

It is easy to see that this satisfies the pseudocirculant con- 
ditions (2.1 1). 

Proof of Step 3: 
The "Necessary" Part: We first prove that (4 .12)  

implies the spectral properties mentioned in Step 3. Sub- 
stituting the relation (4 .12)  in ( 4 .  l ) ,  we get 

L -  1 

~ ( ~ i w )  = C ~ ~ ( ~ . i m L ) ~ - j 4  - I - k )  

k = O  

L -  I 
- - R~ - I (e  j d )  e-( j2*(L - OP(wL)/L)  C W - k P ( w L )  

k = O  

(4 .15)  

Consider the sum 

in (4 .15) .  This sum will be nonzero for a frequency w if 
and only if P(wL)  = 0 mod L .  Let us study the behavior 
of P(wL)  in the interval 0 I w < 27r. Consider a set of 
L equispaced frequencies 

27rl 
L 

3 , = 3 , + - - ,  O I l I L - 1 .  
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. An example of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( w )  

In view of (4.13), the integer-valued function P ( w )  will 
take on the value (0 modulo L) for one and only one of 
the above frequencies &,. (This statement is true for any 
initial choice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo). The transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH(e'") can there- 
fore be nonzero only at one such frequency. This means 

that if for two distinct frequencies w l  and w2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wI f w2 

modulo 2n), H(eJ" ' )  and H(e'"') are nonzero, then wI - 
w2 # (2nk lL )  unless k is an integer multiple of L. 

Fig. 13 indicates an example of H ( e J " ) ,  corresponding 
to the function P ( o )  shown in Fig. 12. The filter has non- 
zero frequency response only in the interval where P (COL) 
has the value (0 modulo L). 

The "Suficient" Part: We assume that H ( e  I " )  has 
the above mentioned frequency characteristics and prove 
that the relation (4.3) holds. 

Consider (4.3), which shows how each polyphase com- 
ponent Rl(eJ")  is obtained from H ( e J " ) .  Each polyphase 
component is obtained by the weighted addition of L 
stretched and shifted copies of H(e ' " ) .  The stretching is 
by a factor of L and the shifting is by the amount 2am, 
m = O ; . .  , L - 1. For the particular frequency char- 

acteristics of H(e'"),  the stretched and shifted versions of 
H(eJ" )  will not overlap. Hence, for each frequency 0, 

there will only be one nonzero term in the summation 
(4.3). We can represent the index of that term as a func- 
tion m(w) of the frequency w .  Furthermore, m(w) is in- 
dependent of k .  Hence, (4.3) can be rewritten as 

R~ (e J U )  = 1 e ./I(" - 2 7 " ) ) / L I ( I  - 1 - k ) ~ ( ~  - 27r tn (w) ) /L  

k = O ; * . , L - l .  (4.17) 

This shows that the polyphase components satisfy the re- 
lation (4.12) with P ( o )  = m ( o ) .  This completes the proof. 

We can summarize the results proved above in the fol- 

lowing theorem. 
Theorem 4.1: The output of Fig. l(c) is WSS for a 

WSS input x (n)  if and only if H(e'") is such that the L-fold 
decimation of its impulse response does not create alias- 
ing. This condition is equivalent to the statement that 
H(e'") is an ideal image-free (or image-suppressing) in- 
terpolation filter, a term explained in Appendix 111. 

Remarks: 

0 X 277 

Fig. 13. A corresponding possible H(e'") .  

2) Suppose y h ( n )  and y,(n) are two signals generated 
from the WSS signal x ( n ) ,  by use of two interpolation 
filters H(eJ" )  and G(eJ") .  If H ( e J w )  and G(e'") satisfy 

the conditions of Theorem 4.1 ,  then yh (n)  and yg (n )  are 
WSS. Suppose, however, that the filter H(e'") + G(eJ") 
does not satisfy the frequency occupancy conditions of 

Theorem 4.1.  Then, according to the theorem, the sum 
y (n)  P yh (n )  + yg (n) is not WSS. This is consistent with 

the fact that the sum of two WSS processes is not neces- 

sarily WSS (unless the two processes are jointly WSS). 

Summarizing, we have shown that for a scalar WSS 
process x (n)  and corresponding power spectrum Sxx(e'"), 
we can perform the following operations on Sxx(eJ") with- 
out changing the WSS property at the output: 

1) filtering (or "distortion" of the power spectrum); 

2) translation by any amount (time-domain modula- 
tion); 

3) stretching (decimation in time domain); 
4) compression, and piecewise translation as explained 

in Theorem 4.1.  

Since ideally band-limited filters cannot be imple- 

mented in practice, Theorem 4.1 implies that if we use 
interpolators in a multirate filtering scheme, the subse- 
quent signals will not be WSS (their appropriately blocked 

versions will be WSS). This fact has some interesting im- 
plications. One of these is illustrated next. 

V.  AN APPLICATION: ADAPTIVE IDENTIFICATION OF 

BAND-LIMITED CHANNELS USING A MULTIRATE 
ADAPTIVE FILTER 

Consider the channel identification scheme of Fig. 14. 
The channel is assumed to be a linear time invariant sys- 
tem with transfer function C(z). The adaptive filter is rep- 

, L, - l ) ,  and resented by coefficients (i = 0, - 
La is the filter length. The second subscript indicates the 
time instant of adaptation. In the adaptive identification 
procedure, the coefficients are updated to minimize an ap- 
propriate measure of the error e (n). If the adaptation iden- 
tification procedure converges to some steady state values 
a ! ,  then the frequency response of the corresponding filter 
(A' (e'") I resembles the channel frequency response. 

Suppose that the channel is band limited to frequency 
a (i.e., a-BL). In that case, \A' (ej")l will also be close to 
being a-BL. We can use this information to modify the 
adaptive filter as follows: split the adaptive filter as a cas- 

1) Assuming that H ( e j " )  satisfies the conditions of the 
above theorem, the power spectrum of the WSS process 
y(n)  is given by (Appendix IV) 

1 
(4. 18) cade of a fixed u-BL filter h ( ~ )  and an-adaptive part (Fig. 

15). One advantage of this is that the adaptive part would 
S,,(e'") = L ~ ~ ~ ( e " ~ )  IH(eJ")I2. 
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the length of the interpolation filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,(z). Using the ef- 
ficient polyphase technique mentioned in [ 121, we require 
L,/M MPU and (Lf - 1)/M APU. Similarly, if Lh is the 
length of H,(z), we need L h / M  MPU and (Lh - l ) /M 
APU for implementating H,(z). One way to choose the 
length of the adaptive filter is to use the length constraint 

CHANNEL 

ADAPTIVE 
FILTER 

Fig.  14. Adaptive identification of an unknown channel. 

Lh - 1 + M X (La - 1 )  

= Lf - 1 + L x (Lc - 1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.1) 

This constraint implies that the highest powers of z - '  in 
the transfer functions in the upper and lower branches of 
Fig. 16 are equal. However, in our experience, the adap- 
tive filter can have a smaller length without degrading 
performance significantly. Using (5.  I ) ,  and using the fact 
that the adaptive filter is implemented at a rate slower than 

for the algorithm as 

bandlimited 
channel 

cutoff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

F ig .  15. Splitting the adaptive filter into fixed and adaptive parts. the input data rate, we get the computational complexity 

now typically have fewer coefficients as it is required to 
match the passband shape of IC(e'">I only. 

We can further note that the input U (n)  to the adaptive 
filter is a a-BL signal. This suggests that there is some 
redundancy in u ( n )  due to oversampling. We can thus 

.decimate the signal using a fractional decimator before 
feeding to the adaptive filter. If L and M are two (rela- 
tively prime) integers such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU I r L / M ,  then we can 
decimate the signal by the ratio M I L .  The filter H ( z )  can 
now be combined with the fractional decimation circuit as 
shown in Fig. 16. The advantage of the decimation is that 
the adaptive filter now operates at a lower rate. (The band- 
limited property has been exploited in the past in adaptive 
filtering literature. See, for example, [lo], and (1 1 1 .  Also, 
subband adaptation [3], [4] is a more sophisticated, though 

conceptually different, way to exploit band-limitedness 
and more generally spectral nonuniformity.) To match the 
data rates from both the branches in Fig. 16, we perform 

fractional decimation at the output of the band-limited 
channel also. Qualitatively, we can say that the adaptive 
filter is now required to match the MIL-fold stretched re- 

sponse C(eJ"L'M) in the region 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw s i~. 

Summarizing, the multirate adaptive filtering structure 
of Fig. 16 has the following advantages: 

1)  the adaptation takes place at a lower rate; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 )  the adaptive filter has a smaller length because it 

has to match only the passband of the channel's fre- 
quency response. 

A. Computational Complexity of the Proposed Method 

Suppose the unknown channel impulse response is es- 
timated to have length L,. For running the LMS algorithm 
[9] on the adaptation scheme shown in Fig. 14, we have 
to perform 2L, + 1 multiplications per input sample 
(MPU) and 2L, + 1 additions per input sample (APU). 

For the multirate method, we have to calculate com- 

putational complexity for 1 )  the adaptation procedure; and 
2) the implementation of the nonadaptive filters. Let Lf be 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 M (2  - ;) (5.2a) 

This method thus offers savings in computations by a fac- 
tor (M/L)'  for a sufficiently long length L,. of the channel 
impulse response. 

B. Need for a Block Adaptive Filter 

Even though the above scheme has its own advantages, 
it also brings with it some disadvantages. To explain this, 
let us analyze the scheme of Fig. 16 to get the optimal set 
of coefficients a,' under the assumption that the input x (n) 
is WSS. From Fact 4.1,  we know that the signal w(k )  
input to the adaptive filter is CWSS with period K = 

L /gcd (L ,  M )  = L (the signal would be WSS if and only 
if H,(e'") satisfies the conditions of Theorem 4.1). Due 

to this, we cannot use traditional Wiener filter theory to 
derive the optimal set of coefficients a,'. The L-fold 

blocked version w ( n )  is a vector WSS process. We can 
thus pose a matrix-Wiener filtering problem (Fig. 17) to 
solve for the L x L optimal coefficient matrix a,'l. The L 
x 1 output y ( n )  of the block filter is compared with the 

blocked signal v ( n )  to obtain error e ( n ) .  The error e(n) 
will be WSS and we can obtain the Wiener solution A ( z ) ,  
which minimizes error energy E[e'(n) e ( n ) ] .  We sum- 
marize the discussion above by proving the following re- 
sult. 

Fact 5. I: Consider the channel identification problem 
of Fig. 16, where L and M relatively prime, and H,(eJ") 
and H, (e'") are low pass with same passband region. The 
Wiener (optimal) solution is, in general, an (LPTV), sys- 
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Fig. 16. Multirate adaptive filtering scheme for identification of band-lim 
ited channel. 

v(n) 

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w(n) 

Fig. 17. Optimal filtering problem for the scheme in  Fig 16 

tem and is a scalar LTI if and only if both the filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H,(e'") and H, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e'") are such that the decimation of their 
impulse responses do not result in aliasing (i.e., they are 

image-free interpolation filters; see Appendix 111). 
Remark: Since we consider only low-pass filters, we 

can say that the Wiener solution is scalar LTI if and only 
if the filters are ideally band limited to a L / M .  

Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Fact 5.1: From Theorem 4.1, for nonideal 
low-pass filters H, (e  '") or H, (e'"), the input w (n )  and the 
desired signal v(n) will be (CWSS)L. Both the signals are 
WSS if and only if the filters are ideal low-pass filters. 
Since the signals are (CWSS)L in general, the blocked 
versions U ( n )  and w ( n )  are vector WSS. 

The vector processes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw (n) and U (n )  are jointly WSS, 
as justified in Appendix V. So we can apply the vector 
version of Wiener-filtering theory; from (2.23) we know 
that the Wiener solution is given by 

(5.3) 

(assuming the full normal-rank condition mentioned after 
Fact 2.4). The matrices SWu(eJw) and Si; (e'") in general 
are not pseudocirculant, so A (e  '") in general need not be 
pseudocirculant. From Fact 2.3, it can be seen that the 
optimal filter cannot be written as an LTI system. If the 
optimal solution has a matrix form as in (5.3), then the 
output at time n is the output of one of L filters [each filter 

being a row of A(e'")] depending on the value ( k  modulo 
L) .  Thus, the optimal filter is an (LPTV)L system. 

However, in the case when both the low-pass filters are 
ideal, both the signals w(n)  and v (n )  are WSS. In this 
case, the matrices Swv(eJw)  and S,, (e  I") are pseudocir- 
culant (as shown in Appendix V). As a result, the inverses 
and transposed conjugates (as well as their products) are 
pseudocirculant. Thus, the optimal filter A (e'") will be a 
pseudocirculant, i .e.,  its unblocked version is an LTI sys- 
tem for this case. The transfer function of the optimal fil- 

A (e  '") = S (e  '") S i d  (e  '") 

ter in this case would be A(e ' " )  = C f Z d e p ' W k A  k ( e  IWL) 9 

where A, (e'") are entries of the 0th row of A (e'"). 

following conclusions. 
For a real-time setup, the above result leads us to the 

1) To be able to converge to the optimal solution, we 
should use an L x L adaptive filter a,. This would result 
in a better performance compared to a scalar adaptive fil- 
ter. However, a matrix filter is inherently more compli- 

cated than a scalar filter and might offset the advantages 
offered by the multirate approach. 

2) As the stopband attenuation of filters Ha ( z )  and H,. ( z )  
increases, the performance of the scalar filter will ap- 
proach that of the matrix filter. As a result, the use of a 
scalar adaptive filter would result in little loss in perfor- 
mance. 

Clearly there is a tradeoff involved in designing H , ( z )  
and H,.(z). We shall not further discuss the optimal choice 

in this tradeoff (which appears to require a careful study) 
but proceed to demonstrate the above ideas with an ex- 
ample. It should be noted that the passband ripple size for 
IH,(e'")I is not very crucial, as the adaptive filter will 
perform passband equalization. This fact can be exploited 
to reduce cost of the prefilter H,(z ) .  However, this pass- 

band ripple cannot be excessively large, because the 
adaptive filter itself would then fail to represent the chan- 
nel faithfully. The ideal responses of H,(z) and H,.(z), 
which we should approximate, are shown in Fig. 18. 

C. A Simulation Example 

We now demonstrate the above results by simulation. 
We have used the LMS algorithm for updating the adap- 
tive filter. The channel C ( z )  was simulated using an FIR 
filter of length 77. The channel was designed to be band- 
limited to frequency 3 a / 4 .  We thus chose L = 3,  M = 4 
for the simulation. The filters H,(z) and H,(z) were de- 
signed to be linear phase FIR filters of length 47 and 31, 
respectively, designed by the Parks-McClellan program 
1131. Two different cases were studied: 1) scalar adaptive 

filter; and 2) matrix adaptive filter. For the scalar adaptive 
filtering case, the adaptive filter was chosen to have length 
30, since this length gave satisfactory performance [al- 
though this length does not satisfy (5 .  l)]. For the matrix 
adaptive filter, the adaptive filter was a 3 x 3 matrix with 
each entry being a length 10 filter. The reason for this 

choice was that if the low-pass filters were ideal, blocking 
a length 30 filter (chosen for the scalar adaptive case) 
would have resulted in a block matrix, each of whose en- 
tries would have 10 coefficients. The blocked signals w ( n )  
and v ( n )  were used in the adaptive updating. The adap- 
tation procedure was run for various step sizes p for both 
the methods. The results presented here are for the case 
where p = 0.1 for the scalar and p = 0.3 for the matrix 
adaptive filter. These step-size values were chosen be- 
cause the algorithms gave minimum error energy at con- 
vergence (over a wide choice of p ) .  The error energy at 
convergence of these two cases was compared for differ- 
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t 

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) 

Fig. 18. Ideal magnitude response for (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,.(z); and (b) H,(z) 

ent attenuations of the low-pass filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,(z). The filter 
H,(z) had 51-dB stopband attenuation and was not 

changed throughout the simulations. Table I gives the re- 
sults of the simulation. A typical plot of the error energy 

versus iteration number is shown in Fig. 19, for both 
methods. The normalized error energy at the nth iteration 
is computed as 

n 

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 2 ( k ) X n p k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k = O  

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4) 
c v2 (k )X" -k  

where the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 0.99 was used for the simulations. 
The quantity in the numerator represents the exponential 
window estimate of the error energy at time n. This is 
normalized by the exponential window estimate of the de- 
sired signal energy in the denominator. 

The results show that the matrix adaptive filter per- 
forms better than the scalar adaptive filter in terms of min- 
imizing the error energy at convergence. This agrees with 
Fact 5.1 ,  because the scalar adaptive filter converges to 
an LTI system that is suboptimal if H,(z) is not ideally 
band limited. On the other hand, the matrix filter con- 
verges to an (LPTV), filter. As the stopband attenuation 
of H, ( z )  increases, the signal w (n )  gets closer and closer 
to being WSS. So the relative degradation in the perfor- 

mance of the scalar adaptive filter reduces, as seen from 
Table I. This shows that designing Ha(z) to have "good" 
attenuation reduces the degradation in the performance. 

k = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D. Special Case when (T = a/M 

Now we consider the special case where the channel 
bandwidth is U = ? r / M .  This means that we now decimate 
the appropriate signals by the integer factor M .  The adap- 

TABLE I 
A COMPARISON OF THE PERFORMANCES OF THE SCALAR AND MATRIX 

ADAPTIVE FILTERS 

Error energy at 
Stopband convergence (dB) 

attenuation of 
H,, ( I )  (dB) Scalar Matrix 

41 - 15.4 - 14.1 
29 -13.1 - 13.4 
21 -9.5 -11.4 
18 -1.4 -9.0 
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Fig. 19. Error energy versus iterations curves for scalar and matrix adap- 
tive filtering cases. 
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I 

Fig. 20. Adaptive filtering scheme for a K I M  band-limited channel 

Unknown 
Bandlimited 

Channel 

Fig. 21. Redrawing the adaptation scheme of Fig. 20 after convergence. 

tive filtering scheme now has the form shown in Fig. 20. 
The adaptive filter has approximately M times fewer coef- 
ficients, and operates at an M times lower rate. So we 
achieve computational savings by a factor of M 2 .  At con- 
vergence, the system is equivalent to Fig. 21. The cas- 
cade transfer function Ha (z) A ( z M )  now approximates the 
channel C(z). This scheme can therefore be considered an 
extension, to the adaptive regime, of the interpolated FIR 
(IFIR) approach for efficient design and implementation 
of narrow-band FIR filters [14]. Once again, the main 
purpose of H, (z) is to provide satisfactory out-of-band at- 
tenuation. Its passband ripple size is not crucial. 
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VI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACONCLUSIONS 

In this paper, we have addressed the question of the 
effects of multirate systems on a few statistical properties 
of random inputs. Starting from the basic multirate build- 
ing blocks, viz., decimators, interpolators and modula- 
tors, we have derived results for more complex intercon- 

nections. We saw that when we start analyzing multirate 
systems, the assumption that signals are wide sense sta- 
tionary is not valid even in theoretical study. It is more 
natural to assume that signals are CWSS. For example, 
the output y(n) of an L-fold interpolation filter (in re- 
sponse to a WSS input) is (CWSS)L. We showed that y(n) 
reduces to a WSS process if and only if the filter coeffi- 
cients are such that the L-fold decimation of these coef- 
ficients results in no aliasing. 

We have illustrated an application of the theoretical 
analysis to a multirate adaptive filtering scheme for iden- 
tification of band-limited channels. This scheme exploits 
the fact that the channel is band limited and embeds the 
adaptive filter in a multirate configuration. We saw that 
this scheme is computationally efficient because the adap- 
tive filter has smaller length, and is implemented at a 
lower speed. Using the results derived in the paper, we 

proved that the optimal filter for this scheme is a matrix 
filter. A matrix adaptive filter is computationally more ex- 
pensive. However, the performance of a scalar adaptive 
filter (which is computationally less expensive) tends to 

be close to the matrix case if the fixed low-pass filters in 
the multirate scheme are designed to have good stopband 
attenuation and narrow transition bandwidth. 

APPENDIX I 

We prove the equivalence of the two definitions of cy- 
clostationarity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

1) Dejinition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI * Dejinition 2: From Definition 1, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( i ,  1)th entry of the autocorrelation matrix is independent 
of n. Hence, the quantity 

E[x(n,L - i)x*(noL - koL - l)] (Al . l )  

is independent of no, for all ko, for 0 I i ,  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 L - 1. 
Now let n = noL - i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = koL + 1. Then 

E[x(n)x*(n - k] = E[x(noL - i )  

x*(noL - koL - i - l ) ]  

= E[x((no + l ) L  - i)x*((no + 1) 

* L - koL - i - l)] (A1.2) 

(Since the expression is independent of no) 

= E[x(n + L)x*(n + L - k)] 

(Al.3) 

so that Rf , (n ,  k) = R,,(n + L, k ) .  
2 )  Dejinition 2 * Dejinition 1: The (i, 1)th entry of the 

autocorrelation matrix in Definition 1 is given by 

E[x(nL - i)x*(nL - kL - l)] 

= E[x(nL + L - i)x*(nL + L - kL - l)] 

(by Definition 2) (Al.4) 

= E[x ( (n  + l )L  - i)x*((n + l)L - kL - l)]. 

(A1.5) 

Clearly, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i ,  I)th entry is independent of n.  

APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 

Reproducing (2.17) for the (0, m)th entry of Sxx(z) we 

get 
m 

[Sxx]o,m = E[x(nM)x*(nM - kM - m)]zPk. 
k =  -m 

(A2.1) 

If R,,(k) is the autocorrelation function of x ( n ) ,  then 
(A2.1) can be written as 

m 

[S,]O.~ = c R,(kM + m)z-k. (A2.2) 
k =  -m 

From (2.14) we can clearly see that this is the z-transform 
of the (M - 1 - m)th polyphase component. Thus, the 
(0, m)th entry of Sxx(z) is the (M - 1 - m)th polyphase 
component of S,, (2). 

APPENDIX I11 

We first prove that if the signal h(n) has the spectral 
characteristics mentioned in Theorem 4.1, then L-fold 

decimation of the signal does not result in aliasing. In the 
frequency domain, the decimation process creates L cop- 
ies of the original function stretched by the factor L, 
shifted by 2 r m ,  m = 0, * , L - 1 and added. Clearly, 
no aliasing results for the spectral conditions of Theorem 
4.1. 

Conversely, if no aliasing results after L-fold decima- 
tion, then the L-fold stretched and 2rm-shifted versions 
do not overlap. This in tum implies that the frequency 
response has a total spectral occupancy of at most 2 r / L ,  
and that its frequency shifted versions (in integer multi- 
ples of 27rIL) do not overlap. This is precisely the con- 

Remarks: A filter H(e ’“) with the frequency character- 
istics as above has some special properties in the deter- 
ministic multirate filtering case. The filter can be used be- 
fore the L-fold decimator as shown in Fig. 22(a) to ensure 
that no aliasing takes place after decimation. Similarly, if 
this filter is used following an L-fold interpolator [Fig. 
22(b)], it suppresses unwanted images. So we call it an 
image-free interpolation filter or an ideal image suppres- 
sor. 

General Meaning of “Image-Free Interpolator ”: In a 
traditional image suppressing interpolation filter ([ 1 1, [2]), 
we suppress L - 1 images and retain one of the L images. 

dition given earlier in Theorem 4.1. 



144 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fa) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) 

Fig. 22. Deterministic cases. (a) Alias-free decimation. (b) Image-free in- 
terpolation. 

However, the filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH(eJ" )  satisfying the conditions of 
Theorem 4.1 can be more general. The Fourier transform 
of its output will in general consist of different pieces from 

different images such that these pieces can be put together 
by frequency translation, in order to obtain an L-fold 
compressed version of the input power spectrum. Such a 

filter H(e j " )  is called a generalized image-free interpola- 
tion filter (or image suppressor). 

APPENDIX IV 

With H(e'") as in Theorem 4.1, we now derive an 
expression for the output power-spectral density. 

We assume that y ( n )  [and hence t (n ) ]  is WSS. We de- 
rive the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI, (e  '") [ = s,, (e  '")]. In Appendix 
11, we have proved a result that implies that the entries of 
the 0th row of the matrix &(e'") are the polyphase com- 
ponents of Sf l (eJ" ) .  Using this and the expression (4.5) 
we can write 
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we can rewrite (A4.1) as 

Using (4.15) we can write 

Using the fact that the sum (4.16) can only take two val- 
ues (0 and L), we can write this down as 

APPENDIX V 

Many of the definitions and properties pertaining to 
(CWSS), signals extend easily to joint statistics of two 

random processes. We now summarize these. 
Consider two scalar random processes x (n)  and y (n) .  

We say that they are jointly (CWSS)L if the L-fold blocked 
versions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  and y ( n )  are jointly WSS, i .e . ,  x ( n )  and 
y ( n )  are WSS and 

E [ x ( n ) y t ( n  - k ) ]  is independent of n. (A5.1) 

Properties: 

1) Notice, in particular that the joint CWSS property 
means that each process is individually (CWSS), . Defin- 
ing 

Rx,(n,  k )  = E[x(n)y*(n - k ) ]  (A5.2a) 

it can be shown that (A5.1) is equivalent to the property 

Rx,(n + L, k )  = R,,(n, k ) ,  tln, h .  (A5.2b) 

(This is proved by simple modifications of the proof given 
in Appendix I). 

2) Let x (n) and y (n )  be jointly (CWSS)L. Then the dec- 
imated versions of x ( M n )  and y ( M n )  are individually 
(CWSS)L (Fact 3.3). In fact x ( M n )  and y ( M n )  are jointly 
(CWSS)L, since it can be shown that they satisfy a result 
similar to (A5.2b). 

3 )  Let the L-fold blocked versions x ( n )  and y ( n )  be 
jointly WSS. Let S,, (e'") be their cross-power-spectral 
density. If the scalar processes x ( n )  and y ( n )  are jointly 
WSS, then S,,(eJ") is a pseudocirculant. Conversely, if 
x ( n )  and y ( n )  are WSS and Sx,(eJ") is pseudocirculant, 
then x (n )  and y (n)  are jointly WSS. The proof is identical 
to that of Fact 2.2. 

4) Now consider Fig. 23 where we generate the vector 

processes v ( n )  and w ( n )  by passing a scalar process x ( n )  
through two LTI system with L X 1 transfer matrices 

b(e'") and a ( e J w ) .  Let x ( n )  be WSS. Then 

s,, (e  '"1 = s,, (e  )@)a (e jw)bt (e 

where Sx,(eJ")  is the (scalar) power spectral density of 
x ( n ) .  So Sw,(eJw)  is pseudocirculant if and only if the 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx L matrix a (e  )") bF (e  J " )  is pseudocirculant. 

5 )  Let H,(eJ") and Hb(eJ")  be filters with polyphase 
components u,(e'") and b, (e'"), 0 I i I L - 1. Define 

a ( e l w )  = [uO(eJ") * * . uL-  I 

b(eJ")  = [bo(eJ") * . . bL- I (eJ")JT. (A5.3) 

Let H, (e  and Hb (e  I " )  be ideal filters satisfying the con- 
ditions of Theorem 4.1, with same P (U) (i.e., same pass- 
band regions). Then u (e  )") bt (e'") is pseudocirculant. The 
reason for this is sketched as follows: The k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI element of 
a(eJ")bt (eJ")  is given by ak(e'")b?(e'"). Since H,(eJ") 
and Hb(e'") satisfy the conditions of Theorem 4.1, the 
polyphase components U, ( e  '") and b, (e'") have forms 
similar to (4.12). By using this in the product 

uk (e  b7 (e'") we can show that a (e  I " )  bt (e'") is pseu- 
docirculant indeed. 
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Unblock- 

Unblock- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(n)E L x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

v (n) 

Lxl  Lx l  

Fig. 23. Two vector processes generated from a scalar process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

'('1 w(n) 

Fig. 24. A redrawing of Fig. 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Applications: The above results on joint statistics have 

been applied in our discussion of the matrix Wiener filter 
of Fig. 17, which in turn was derived from Fig. 16 by 
blocking the scalar signals w(n)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv(n). 

Application I :  First note that Fig. 16 can be redrawn 
as in Fig. 24 where Hb(e'") = C(eiaL)H,.(ej"). With 
Hb (e'") and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,  (e,'") denoting the blocked versions of 
Hh(eJw)  and H,(eJ"), we can redraw the filtering part as 
in Fig. 25. Notice that &(n)  and $(n)  are the blocked ver- 
sions of the inputs to the M-fold decimators. If x ( n )  is 
WSS then s ( n )  is (CWSS)L, i.e.,  s ( n )  is WSS. Now the 

vector random process (:E;) is the output of the LTI 

system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(;::;I;), and is therefore WSS. So the vectors 

6(n)  and $(n) are jointly WSS, i.e., the unblocked ver- 
sions B(n) and k ( n )  are jointly (CWSS)[,. In view of 
Property 2 above, the decimated versions v(n) and w(n)  
are jointly (CWSS)L, i.e.,  their blocked versions v(n) and 
w ( n )  are jointly WSS. We used this joint WSS property 
in writing down the Wiener solution (5.3). 

Application 2: We claimed that when the filters 
Hb(e'") and H,(eJ") are ideal low pass, the matrices 
S,, (e'") and S,, (e'") are pseudocirculant (assuming of 
course that x ( n )  in Fig. 16 is WSS). This is proved as 
follows (refer to Fig. 24): the ideal nature of the filters 
ensures that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG (n ) ,  B (n ) ,  w (n ) ,  and U (n )  are individually 
WSS. In particular, this means that the power-spectral 
density Sww(eJ")  of the blocked version w ( n )  of w ( n )  is 
pseudocirculant [Fact 2.2(a)]. 

We now prove the subtler fact that SWL, (e / " )  is pseu- 
docirculant. The generation of 0 (n )  and cii ( n )  can be rep- 
resented as in Fig. 26 where b(e'") and a(e'") are the 

polyphase vectors of Hb (e I " )  and H, (e  I"), respectively. 
Since Hb(e'") and H,(eJ") have the same passband re- 
gion, the matrix b (e '") a' ( e  /") is pseudocirculant (Prop- 

erty 5 ) .  So the joint power-spectral density of the outputs 

Fig. 26. Polyphase implementation of H,,(z)  and H , , ( z )  

of b(e'") and a(e'") is pseudocirculant. This means that 
B(n) and k ( n )  are jointly WSS (Property 3). So the dec- 
imated versions v(n) and w ( n )  are jointly WSS as well. 
By invoking Property 3 again, we finally conclude that 
Swv(e I " )  is pseudocirculant indeed! 
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