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The short diffusion lengths in insertion battery nanoparticles render the capacitive behavior of bounded diffusion, which is rarely
observable with conventional larger particles, now accessible to impedance measurements. Coupled with improved geometrical
characterization, this presents an opportunity to measure solid diffusion more accurately than the traditional approach of fitting
Warburg circuit elements, by properly taking into account the particle geometry and size distribution. We revisit bounded diffusion
impedance models and incorporate them into an overall impedance model for different electrode configurations. The theoretical
models are then applied to experimental data of a silicon nanowire electrode to show the effects of including the actual nanowire
geometry and radius distribution in interpreting the impedance data. From these results, we show that it is essential to account for
the particle shape and size distribution to correctly interpret impedance data for battery electrodes. Conversely, it is also possible to
solve the inverse problem and use the theoretical “impedance image” to infer the nanoparticle shape and/or size distribution, in some
cases, more accurately than by direct image analysis. This capability could be useful, for example, in detecting battery degradation
in situ by simple electrical measurements, without the need for any imaging.
© 2012 The Electrochemical Society. [DOI: 10.1149/2.023301jes] All rights reserved.
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In impedance spectra of intercalation battery electrodes, the re-
sponse at low frequencies corresponds to solid-state transport of
charge carriers (e.g. lithium ions and electrons in lithium ion batteries)
in the active material. The transport of charge carriers is limited by
ionic diffusion in many battery materials due to the high mobility of
electrons.1,2 For traditional battery electrodes with large particle sizes,
the Warburg-type diffusion impedance, which draws a 45◦ line in the
complex plane representation (Nyquist plot), has been widely reported
at low frequencies. Such response is well-described by a linearized dif-
fusion model in a semi-infinite planar domain. This model leads to the
original Warburg impedance formula, ZW = AW (1 − i) ω−1/2, where

AW is the Warburg coefficient, i =
√

−1 is the unit imaginary num-
ber, and ω is the radial frequency.3 With conventional particle sizes
in micron scale or larger, the diffusion penetration depth from the ac-
tive material/electrolyte interface does not effectively reach the center
of an intercalation particle in the typical frequency window (MHz
∼ mHz) of an impedance measurement, and the original Warburg
impedance could be widely used in interpreting diffusion impedance
of battery electrodes.4

However, impedance spectra of modern thin film and nanoparti-
cle battery electrodes show a distinguished feature in the diffusion
impedance: the response transitions from the original Warburg behav-
ior to a capacitive behavior in a lower frequency range, represented by
a vertical line in the complex plane representation.5–10 This transition is
observed because the diffusion penetration depth can reach the imper-
meable current collector of a thin film electrode or the reflective center
of a nanoparticle at accessible low frequencies, due to short diffusion
lengths in the thin film and nanoparticles. In the lower frequency range,
the sinusoidal stimuli in impedance spectroscopy lead to effectively
filling up and emptying the active material, much like a capacitor, re-
sulting in the vertical capacitive behavior. When diffusion impedance
has such behavior due to bounded diffusion space in active material,
it is referred to as bounded diffusion (BD) impedance throughout this
article, while it has been called by various other names,2 such as open-
circuit (blocked) diffusion,1 finite-space Warburg,4,11 and diffusion
impedance with impermeable12 or reflecting13 boundary conditions.

The BD impedance has different properties depending on electrode
configuration in terms of diffusion geometry and length distribution
in active material. Ionic diffusivity and some of other electrochemical
parameters can be obtained from the diffusion impedance, provided
the configuration factors from modern electron microscopy and the
functional formula from a mathematical model.14,15 While theoret-
ical formulae of the BD impedance have been derived for a thin
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film electrode and nanoparticle electrodes with some model particle
geometries,2,6,12,13,16 they have not been widely applied by experimen-
talists. In most applications, only the original Warburg impedance
model and an one-dimensional BD impedance model have been ex-
clusively used without considering the actual curved particle shape
and particle size distribution.7–10,17–19 Few studies employ models that
involve such configurational aspects in interpreting impedance.15,16,20

Likewise, only these two models are built into most commercial data-
processing software products (e.g. Zview from Scribner Associates,
Inc., ZSimpWin from EChem Software, and Echem Analyst from
Gamry Instruments). As far as we know, MEISP+ from Kumho
Chemical Laboratories is the only product that involves BD impedance
models for curved diffusion geometries.

In this article, we reformulate BD impedance models for planar,
cylindrical, and spherical diffusion geometries and incorporate them
into an overall impedance model of battery electrodes, investigat-
ing the effect of particle geometry and size distribution on diffusion
impedance. The models assume that the active material forms a solid
solution of intercalated ions, which has isotropic transport properties
and high electron mobility. (Other factors affecting impedance, such
as phase separation, crystal anisotropy and charge separation, are be-
yond the scope of this article, but are currently under investigation
by our group.) In addition, for porous nanoparticle electrodes, it is
assumed that the thickness of the electrode is thin and the electrolyte
conductivity is high, so that the model does not account any gradient
that may develop along the electrode thickness. Various versions of
the model were applied to experimental impedance data of a silicon
nanowire electrode, which provides an ideal test case to study the
effects of including the actual nanowire geometry and radius distribu-
tion in impedance models. Through this application, we show that it is
essential to account for particle geometry as well as size distribution
to accurately interpret impedance spectra of battery electrodes.

Theoretical Model

In impedance spectroscopy, a small sinusoidal stimulus either in
potential or current is applied about a reference state, and other vari-
ables are perturbed accordingly. Each relevant variable can be written
as a superimposition of two terms: a term describing the reference
state response in the absence of the perturbation, and another term
describing the perturbation about the reference state. The small am-
plitudes of the perturbations allow mathematical linearization of the
system, and thus the perturbations in all relevant variables have a sinu-
soidal form with an identical frequency. An arbitrary system variable,
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X, can be expressed as

X = Xre f + Re[X̂eiωt ] [1]

where i is the unit imaginary number, ω is the radial frequency, and t is
the time variable. The former term, Xre f , represents the reference state
response, and the latter term represents the sinusoidal perturbation in
X with a complex exponential, eiωt , and the Fourier coefficient, X̂ .
The Fourier transformation of the perturbation yields X̂ , which is
a complex number containing information related to the magnitude
and the phase of the perturbation. X can be either current density, j ,
potential, φ, or local concentration, c.

Bounded diffusion impedance.— The system under initial inves-
tigation is a thin film or a single nanoparticle of active material, in
which ions intercalate from its interface with electrolyte, and electrons
come from its interface with a current collector or a conducting agent.
We take an equilibrium reference state with uniform concentrations
of the charge carriers, restricting our model to materials that form a
solid solution with the ions. In most active materials, the mobility of
electrons is much higher than that of ions.2 As electrons become freely
available in the system, the mean electric field quickly relaxes, result-
ing in local charge neutrality in the bulk.11,21 Under such conditions
ionic diffusion limits transport of the charge carriers, and a neutral
diffusion equation, Fick’s law, can be recovered for the ion material
balance in the system.22

∂c

∂t
= Dch∇2c [2]

where c is the ion concentration, t is the time variable, and Dch is
the chemical diffusivity of ions in the active material. Impedance
behavior in a system with comparable electron and ion mobilities has
been studied by several groups.22–24

We hereby focus on model electrode configurations, including a
thin film electrode, and nanoparticle electrodes with planar, cylindri-
cal, and spherical particles. Figure 1 shows the model electrode con-
figurations and the corresponding solid-state diffusion geometries in
the active material. Under the assumption of isotropic transport prop-
erties, the diffusion equation can be reduced to an ordinary differential
equation in frequency-space domain through Fourier transformation.

iωĉ = Dch∇2ĉ =
Dch

xn−1

d

dx

(

xn−1 dĉ

dx

)

[3]
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Figure 1. Model electrode configurations, particle geometries, and corre-
sponding coordinate systems, where the blue region and the gray region rep-
resent the active material and the current collector, respectively: (a) thin film
electrode, (b) electrode with planar particles, (c) electrode with cylindrical
particles, and (d) electrode with sphere particles.

where the spatial variable, x , is the distance from the current collector
in the thin film, or the distance from the center of symmetry in the
planar, cylindrical, and spherical nanoparticles (see Figure 1). The
derivative term accounts for variation in the x-normal area with respect
to x , where n is the dimension number: 1 for a thin film electrode
and a planar nanoparticle, and 2 and 3 for cylindrical and spherical
nanoparticles, respectively.

One of the boundary conditions describes the impermeability of
ions at the current collector of a thin film electrode or the symmetry
at the center of a nanoparticle.

dĉ

dx

∣

∣

∣

∣

x=0

= 0 [4]

This impermeable or reflective boundary condition indicates that the
diffusion space is bounded. The other boundary condition applies
Faraday’s law at the active material/electrolyte interface to correlate
the ion flux and the intercalation current density.

ĵintc = −eDch

dĉ

dx

∣

∣

∣

∣

x=l

[5]

where jintc is the intercalation current density, e is the electron charge
constant, and l is the film thickness in a thin film, a half of the thickness
in a planar nanoparticle, or the radius in a cylindrical and a spherical
nanoparticle. With these boundary conditions, the differential equation
can be integrated to give the perturbation profile of ion concentration
in the model geometries.

The contribution of solid-state diffusion in the active material ap-
pears in an equilibrium potential of the intercalation reaction, since it
is a function of the ion concentration at the surface where the reaction
takes place. Therefore, the definition of local diffusion impedance
takes a partial derivative of the equilibrium potential with respect to
ion concentration, and the perturbation in ion concentration at the
surface, in place of a potential perturbation.6,12,16

zD =
�φ̂eq

ĵintc

=
(

∂�φeq

∂c

)

ĉ|x=l

ĵintc

[6]

where �φeq is the equilibrium potential of the intercalation reaction,
and zD is the local diffusion impedance. This definition is applied to
a system of bounded diffusion space to define local BD impedance.

Properties of the BD impedance can be well-studied when the
equations are reduced to their dimensionless forms by proper scaling.
The frequency can be scaled by the diffusion characteristic frequency,
ωD = Dch/l2, that appears when non-dimensionalizing the diffusion
equation.

ω̃ =
ω

ωD

[7]

As the diffusion characteristic frequency is approached, the diffu-
sion penetration depth reaches the impermeable current collector of
a thin film electrode or the symmetric center of a particle. The lo-
cal BD impedance can be scaled by the BD impedance coefficient,
ρD = (−∂�φeq/∂c)(l/eDch), which becomes its apparent scale when
Equations 5 and 6 are combined.

z̃D =
zD

ρD

[8]

In Table I, dimensionless forms of the local BD impedance for the
model diffusion geometries are summarized with their asymptotic
behaviors, where I0 and I1 are the first kind modified Bessel functions
of zero and first order, respectively. z̃D∞ and z̃D0 are the asymptotic
approximations of z̃D at high and low frequencies, respectively.6,12,25

Local interface impedance.— We consider a simple interface
model of the active material in which the active material is in direct
contact with the electrolyte solution without any additional resistive
layer, such as solid electrolyte interface (SEI) layer.16 Local elec-
troactive processes on the active material/electrolyte interface include
charging of the double layer and intercalation of ions into the active
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Table I. Dimensionless local BD impedance and their asymptotic approximations for the model electrode configurations and particle

geometries.

Thin film electrode and planar particle (n = 1) Cylindrical particle (n = 2) Spherical particle (n = 3)

z̃D

coth
(√

iω̃
)

√
iω̃

I0

(√
iω̃

)

√
iω̃I1

(√
iω̃

)

tanh
(√

iω̃
)

√
iω̃−tanh

(√
iω̃

)

z̃D∞ (ω̃ ≫ 1) 1√
2ω̃

(1 − i) 1√
2ω̃

(1 − i) − 1
2ω̃

i 1√
2ω̃

(1 − i) − 1
ω̃

i

z̃D0 (ω̃ ≪ 1) 1
3

− 1
ω̃

i 1
4

− 2
ω̃

i 1
5

− 3
ω̃

i

material. The electrochemical double layer develops at the interface
due to the potential drop across it. The double layer charging process
can be modeled with the ideal capacitor equation. Using Fourier-
transformed variables, the current density becomes

ĵdl = iωq̂dl = iωCdl�φ̂ [9]

where ĵdl is the double layer charging current density, qdl is the double
layer charge density, Cdl is the double layer capacitance, and �φ is
the potential drop across the active material/electrolyte interface.

Another current contribution comes from intercalation of ions into
the active material. The intercalation kinetics can be modeled with the
Butler-Volmer equation which, in general, describes a charge transfer
reaction rate. The intercalation current density can then be written as

jintc = j0

[

exp
(

α
eη

kT

)

− exp
(

(α − 1)
eη

kT

)]

[10]

where α is the electron transfer symmetry factor (0 < α < 1), j0 is the
exchange current density, and η = �φ − �φeq is the surface overpo-
tential. Linearization of the Butler-Volmer equation should consider
that both j0 and �φeq fluctuate due to the perturbation in ion concen-
tration at the active material surface. When the system is perturbed
around an equilibrium reference state, the two exponential terms eval-
uated at the reference state cancel each other out, and thus the pertur-
bation in j0 does not effectively contribute to the impedance response.
On the other hand, the perturbation in �φeq brings the contribution
from solid-state diffusion in the active material, and introduces the
local diffusion impedance. Taking the Fourier transformation, the lin-
earized Butler-Volmer equation becomes

ĵintc =
j0e

kT

(

�φ̂ −
(

∂�φeq

∂c

)

ĉ|x=l

)

=
1

ρct

(�φ̂ − zD ĵintc) [11]

where ρct = kT / j0e is the charge transfer resistance, and the definition
of local diffusion impedance was used. The equation can be rearranged
to give a generalized Ohm’s law, which leads to a circuit analog of the
ion intercalation process.

(ρct + zD) ĵintc = �φ̂ [12]

This indicates that ion intercalation could be represented by a series
circuit of ρct and zD , given a small perturbation.

We assume an independent parallel arrangement of the double
layer charging current and the intercalation current on the active ma-
terial/electrolyte surface, following Randle and Graham.26,27

ĵtot = ĵdl + ĵintc [13]

where ĵtot is the total current density. Using the total current density
and the potential drop at the interface, we can define local interface
impedance as

zint f =
�φ̂

ĵtot

= (iωCdl + (ρct + zD)−1)−1 [14]

where zint f is the local interface impedance. The local interface
impedance can be represented by the Randle’s equivalent circuit,
which has Cdl in parallel with a series of ρct and zD , as shown in
Figure 2. As the model contains the parallel contribution of Cdl and

ρct , a resistive-capacitance (RC) characteristic frequency naturally
arises, ωRC = (ρct Cdl )

−1, around which relative magnitudes of ĵdl

and ĵintc are flipped.
The local interface impedance can be scaled by ρct to give its

dimensionless form.

z̃int f =
zint f

ρct

=

(

i (ωDρct Cdl ) ω̃ +
(

1 +
ρD

ρct

z̃D

)−1
)−1

= (i(ω̃/ω̃RC/D) + (1 + ρ̃D/ct z̃D)−1)−1 [15]

where ω̃RC/D = ωRC/ωD is the characteristic frequency ratio, and
ρ̃D/ct = ρD/ρct is the dimensionless BD impedance coefficient. The
two dimensionless parameters, ω̃RC/D and ρ̃D/ct , determine the be-
havior of the local interface impedance. ω̃RC/D is a measure of the
separation of the two characteristic frequencies, ωRC and ωD . For
most battery electrodes, ω̃RC/D is a large number, and the local inter-
face impedance leads to well-separated RC and BD elements in the
overall impedance spectra; the RC element ideally draws a semicircle
at high frequencies with its summit at ωRC , and the BD element draws
a hockey-stick-like curve at low frequencies with its kink around ωD

in the complex plane representation. Relative magnitudes of the two
elements are determined by ρ̃D/ct .

Overall impedance response.— While local impedance response
has been considered to this point, impedance spectroscopy measures
the integrative response of an entire electrode that may involve un-
even local impedance response on its surface. Thus overall electrode
impedance is defined with a total current which could be obtained by
integrating jtot over the entire electroactive surface. When a thin film
electrode has a uniform thickness, jtot is even over the entire surface
and the integration results in a trivial scaling of jtot by the total area.
On the other hand, for porous nanoparticle electrodes, we assume
the conduction characteristic frequency in the electrolyte solution is
considerably higher than ωD and ωRC ; that is, this overall impedance
model does not account for potential and concentration gradient that
may develop along the electrode thickness. This assumption is valid
when the conductivity of the electrolyte solution is high enough and/or
when the thickness of a porous electrode is thin enough. Under such
condition, it is the heterogeneity in particle size that leads to non-
uniform jtot across particles in a nanoparticle electrode, while each
isotropic particle has even jtot on its surface. A particle size, which

C
dl

z
D

Figure 2. Randle’s equivalent circuit, a circuit analogy of local interface
impedance, where Cdl is the double layer capacitance, ρct is the charge transfer
resistance, and zD is the local diffusion impedance.
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is the solid-state diffusion length, l, in the diffusion model, is consid-
ered as a realization of a continuous random variable with a certain
probability density function (PDF). The integration could then be per-
formed with respect to l, in which jtot is weighted by a product of
particle population and surface area.

Ĵ =
∫

ĵtot (l) d A = Ntot

∫ ∞

0

PrL (l) āp (l) ĵtot (l) dl [16]

where J is the total current, A is the electroactive surface area, Ntot

is the total number of particles, and PrL is the PDF of the solid-state
diffusion length, a random variable, L . āp (l) is the average surface area
of a single particle with L = l; āp (l) is 2āx for planar particles, 2πH̄l
for cylindrical particles, and 4πl2 for spherical particles, respectively,
where āx is the average sidewall area of the planar particles and H̄ is
the average height of the cylindrical particles.

Also, an impedance measurement inevitably involves interferences
from cell connections as well as transports of ions in the electrolyte
phase, whose contribution could be modeled with a resistor in the
typical frequency window of an impedance measurement. Therefore,
the overall impedance of a nanoparticle electrode can be written as
follows.

Z = Rext +
�φ̂

Ĵ
= Rext +

�φ̂

Ntot

∫ ∞
0

PrL (l) āp (l) ĵtot (l) dl

= Rext +
(

Ntot

∫ ∞

0

PrL (l) āp (l) z−1
int f (l) dl

)−1

[17]

where Rext is the external resistor that represents the contribution
from cell connections and transports in electrolyte phase. While this
model omits the gradient in potential and ion concentration along
the electrode thickness, detailed elaboration regarding their effects on
impedance of a battery electrode can be found in references 15, 16,
20.

When L has a narrow enough distribution, its PDF can be approx-
imated by a Dirac delta function, which makes the integration trivial.
This approximation is equivalent to assuming an identical particle
size in a nanoparticle electrode. Under such a condition, the overall
impedance becomes

Z = Rext+
(

Ntot

∫ ∞

0

δ
(

l−L̄
)

āp (l) z−1
int f (l) dl

)−1

=Rext+
zint f

(

L̄
)

Atot

[18]
where δ is the Dirac delta function, L̄ is the average solid-state diffu-
sion length, and Atot is the total surface area. The overall impedance
of a uniform thin film electrode has the same expression, having one-
dimensional BD impedance in zint f .

The overall impedance in Equation 17 can be reduced to its di-
mensionless form, defining the dimensionless overall impedance,
Z̃ = Atot Z/ρct , and the dimensionless solid-state diffusion length,
l̃ = l/L̄ , along with the dimensionless variables defined previ-
ously. The frequency and the RC characteristic frequency are now
scaled by ωD(L̄) = Dch/L̄

2, and their dimensionless forms become
ω̃ = ω/ωD(L̄) and ω̃RC/D = ωRC/ωD(L̄). Expanding the local inter-
face impedance, z̃int f , the overall impedance becomes

Z̃ =
Atot Z

ρct

=
Atot Rext

ρct

+

(

∫ ∞

0

PrL̃ (l̃) ˜̄a p(l̃)z̃−1
int f (l̃)dl̃

)−1

= R̃ext + (i(ω̃/ω̃RC/D) +
∫ ∞

0

PrL̃ (l̃) ˜̄a p(l̃)(1 + ρ̃D/ct (l̃)z̃D(l̃))−1dl̃)−1

[19]

Here, R̃ext = Atot Rext/ρct is the dimensionless external resistance,
and it indicates the relative magnitude of the external resistance with
respect to the charge transfer resistance. PrL̃ is the PDF of the dimen-
sionless solid-state diffusion length, a random variable, L̃ = L/L̄ .
When a lognormal PDF is used for PrL̃ , it can be solely described
by the dimensionless standard deviation, σ̃, which is a measure of
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Figure 3. Dimensionless local BD impedance for different particle geome-
tries: (a) complex plane plot, (b) magnitude plot, and (c) phase plot.

the heterogeneity in particle size. ˜̄a p(l̃) = āp(l)/āp(L̄) = l̃n−1 is the

dimensionless average surface area of a single particle with L̃ = l̃,
and it gives different weighting distributions on the local impedance
in the integral, depending on the particle geometry.

Results

Effect of nanoparticle geometry.— To isolate the effect of solid-
state diffusion geometry on diffusion impedance, we first look at the
local BD impedance, z̃D . Figure 3 shows z̃D for the model diffusion
geometries in various formats. For all the diffusion geometries, a
clear transition is observed near ω̃ ≈ 1, around which the diffusion
penetration depth reaches the impermeable current collector of a thin
film electrode or the symmetric center of a particle. At ω̃ ≫ 1, a
Warburg regime is defined, where z̃D asymptotically approaches the
original Warburg behavior in its high frequency limit. In this regime,
the penetration depth is shorter than the diffusion length, l, and the
bounded diffusion behaves much like semi-infinite diffusion. On the
other hand, at ω̃ ≪ 1, a capacitive regime is defined, where z̃D has a
capacitive behavior, drawing a vertical line in the complex plane plot
and approaching 90◦ in the phase plot. In this regime, the penetration
depth exceeds l, and the perturbation leads to effectively filling up and
emptying the active material, much like a capacitor.

In both regimes, z̃D has different behavior depending on diffusion
geometry, as denoted by its asymptotic approximations in high and
low frequencies, z̃D∞ and z̃D0, respectively. For the planar diffusion
geometry, z̃D∞ has the form of the original Warburg impedance, and
z̃D follows the original Warburg behavior in most of the Warburg
regime. On the other hand, for the curved diffusion geometries, the
cylindrical and spherical models, z̃D∞ retains an extra imaginary term
in addition to the original Warburg formula. This implies that for
the curved diffusion geometries, z̃D in the Warburg regime can be
approximated by a series circuit of the original Warburg impedance
and a capacitance, C̃D∞ = 2/(n − 1). Correspondingly in this regime,
the z̃D curves have positive deviation in phase angle, or capacitive
deviation, from the original Warburg behavior. The deviation reflects
the variation in the flux-normal area with respect to the distance from
the active material/electrolyte interface; it is larger for the spherical
geometry than for the cylindrical.

On the other hand, z̃D0 indicates that z̃D in the capacitive regime
can be analogized to a series circuit of a resistance, ρ̃D0 = 1/(n + 2),
and a capacitance, C̃D0 = 1/n, whose values differ for the different
diffusion geometries. The differences in this regime arise primarily
from different aspect ratios of the model geometries. ρ̃D0 is smaller
for the more-curved geometry; that is, it is smaller for the spherical
geometry than for the cylindrical, and it is smaller for the cylindrical
geometry than for the planar geometry. This difference exists because
it is easier to diffuse throughout the entire domain with a higher surface
to volume ratio, given an identical diffusion length and driving force on
the surface. C̃D0 is also smaller for the more-curved geometry, because
it has smaller volume to accommodate ions. Correspondingly, in the
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Figure 4. Dimensionless overall impedance of nanoparticle electrodes with
different particle geometries, varying the standard deviation of particle size
distribution (in complex plane plots).

complex plane plot, a curve for the more-curved geometry is shunted
at a smaller real projection, and has a higher imaginary projection
given an identical frequency.

While the transition from the Warburg regime to the capacitive
regime takes place near ω̃ ≈ 1 regardless of the diffusion geometry,
its relative location differs depending on the diffusion geometry. Since
the penetration depth propagates deeper in the more-curved geometry,
given an identical frequency, the transition in its z̃D occurs at relatively
higher frequencies. Therefore, in the absence of the effect of particle
size distribution, ωD as well as Dch are significantly overestimated,
if a simple one-dimensional z̃D model is employed in interpreting
impedance spectra of a curved-particle electrode. The overestimation
is expected to be larger when the actual particles have the more-curved
diffusion geometry.

Effect of particle size distribution.— The effect of heterogeneity
in solid-state diffusion length, l̃, in particles appears in the overall
impedance, Z̃ , given by Equation 19. The dimensionless parameters
required in the model are taken from literature values,16,28 and a log-
normal PDF is employed to describe the distribution in l̃. Figure 4
and 5 show Z̃ for the model electrode configurations, varying the
standard deviation, σ̃. Figure 4 shows their behaviors in the complex
plane plot, and Figure 5 shows their behaviors in magnitude and phase
plots. Since they involve the Randle-type local interface model (Fig-
ure 2) and well-separated characteristic frequencies (ω̃RC ≫ 1), all
impedance spectra in Figure 4 and 5 have well-distinguished RC and
BD elements at high and low frequencies, respectively.
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Figure 5. Dimensionless overall impedance of nanoparticle electrodes with
different particle geometries, varying the standard deviation of particle size
distribution: (a) magnitude plots and (b) phase plots.

Regardless of the particle geometry, the heterogeneity in particle
size makes the BD element of the overall impedance, or the overall
BD impedance, deviate from the pristine behavior of the local BD
impedance. When σ̃ = 0 for an electrode with an identical particle
size, the solid-state diffusion in its particles has a single ωD with-
out any dispersion, and the overall BD impedance keeps the pristine
transition behavior observed in the local BD impedance near ω̃ ≈ 1.
On the other hand, when an electrode has heterogeneous particles
sizes, the diffusion has a dispersion in ωD , and the transition in the
overall BD impedance spreads over a wider frequency range. z̃D of
a smaller particle (l̃ < 1) transitions from the Warburg regime to the
capacitive regime around relatively higher ωD , compared to that of
an average-size particle. Their contribution gives positive deviation
in phase angle, or capacitive deviation, in the Warburg regime of the
overall BD impedance. On the other hand, z̃D of a larger particle
(l̃ > 1) transitions around relatively lower ωD , and gives negative de-
viation in phase angle, or resistive deviation, in the capacitive regime.
These two kinds of contribution are combined to make the transition
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in the overall BD impedance smoother. When σ̃ ≥ 0.5, the transition
become quite blurred, and the Warburg and the capacitive regimes are
not distinguishable. It shows that the particle size distribution may
be another reason for the constant phase element (CPE)-like behav-
ior in the lower frequency range in diffusion impedance of battery
electrodes.13,20,29,30

The deviation due to the heterogeneity in particle size is more
significant for an electrode with the more-curved particles; it is larger
for the spherical-particle electrode than for the cylindrical-particle
electrode, and it is larger for the cylindrical-particle electrode than the
planar-particle electrode. The difference in the extent of the deviation
changes the effect of particle geometry on the BD impedance. The
overall BD impedance curves near σ̃ = 0 maintain the pristine trend
with respect to particle geometry that is observed in the local BD
impedance; the hockey-stick-like curves in the complex plane plot
are shunted more to the left as the particle geometry becomes more-
curved. Also the transition takes place over a higher frequency range
as the particle geometry becomes more-curved. However, when 0.5 ≤
σ̃ ≤ 0.75, the curves show very similar behaviors regardless of the
particle geometry. When σ̃ ≥ 1.0, the trend is switched; overall BD
impedance has a smaller overall envelope in the complex plane plot,
and transits over a wider and lower frequency range, as the particle
geometry is more-curved. A larger extent of deviation is observed
for the more-curved particle geometry because ˜̄a p places relatively

heavier weighting on the local response of large particles (l̃ > 1).
The monotonic correlation between σ̃ and the extent of deviation

implies that it is possible to estimate σ̃ from the BD impedance spec-
tra, once the particle geometry and an appropriate form of the PDF are
known. This estimation would be a good supplement for the existing
combination of an electron microscopy and an automatic image an-
alyzer, since an impedance measurement probes the entire electrode,
rather than a local image.

Since heterogeneity in particle size makes the transition take place
in a lower frequency range overall, it results in underestimation of
ωD(L̄) as well as Dch , if a model of an identical particle size is
employed in interpreting impedance spectra of an electrode that has
heterogeneous particle sizes. The extent of underestimation would be
larger when the distribution in particle size is more heterogeneous,
and when the particle geometry is more-curved. When an electrode
has a broad distribution in particle size (σ̃ ≥ 0.5), the model with an
identical particle size would fail to match the experimental spectra,
leading to apparently poor agreement for the diffusion impedance.

Unlike the previous discussion in the absence of particle size dis-
tribution, it leads to different results depending on the distribution in
particle size, if a one-dimensional z̃D model is employed to interpret
impedance spectra of a curved-particle electrode. When the electrode
has a narrow particle size distribution (σ̃ ≤ 0.25), overlooking the par-
ticle curvature overestimates Dch , similarly to the absence of particle
size distribution. On the other hand, when the distribution is interme-
diate (0.5 ≤ σ̃ ≤ 0.75), it results in negligible disagreement in Dch ,
because the overall BD impedance is insensitive to particle geometry.
When the distribution is broad (σ̃ ≥ 1.0), reasonable agreement results
only if σ̃ is left as a fit parameter; in such cases, σ̃ is overestimated by
overlooking the particle curvature, but the direction of misestimation
in Dch is ambiguous, depending on the actual particle geometry and
size distribution.

Application and Discussion

One of the systems where this model could be well-applied is
a lithium (Li) ion battery electrode made of silicon (Si) nanowires.
Although pristine Si is one of the most common semiconducting
materials, the assumption of fast electron mobility is valid when Si
is doped with Li for a wide range of concentration.31,32 Moreover,
Si nanowires after an initial lithiation remain amorphous for a wide
range of Li concentration, and the transport properties of the charge
carriers are isotropic.33–35 One of the most distinguished features of
Si nanowires is their well-defined cylindrical geometry with a high
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Figure 6. (a) SEM image of pristine Si nanowire electrode and (b) radius dis-
tributions of Si nanowires, adapted by permission from Macmillan Publishers
Ltd: Nature Nanotechnology (Reference 36), copyright 2007.

length-to-radius ratio. Their well-defined geometry combined with
the isotropic transport properties makes the cylindrical model of BD
impedance applicable to impedance spectra of a Si nanowire electrode.

Impedance behavior of a Si nanowire porous electrode has been
investigated by Ruffo et al., in 2009, and the raw data were kindly
provided to us by Professor Yi Cui.8 The details of experimental
procedures and characterization methods are reported in their original
papers.8,36 The electrode configuration is shown in Figure 6, along
with typical radius distributions of the nanowires. The distributions
have lognormal-like forms with mean radii of 44.5 nm and 70.5 nm,
and standard deviations of 22.5 nm and 32.0 nm, for nanowires that are
fully delithiated and lithiated, respectively. The total surface area can
be estimated as a function of Li concentration, using the total mass
of pristine Si nanowires8,36 and the interpolated average radii. The
thickness of the electrode is around 30 µm, and it turns out to be thin
enough that the effect of concentration and potential gradients along
the thickness is negligible in its impedance spectra, which would have
made the impedance curve skewed.15,16,20,37

A representative impedance spectrum of the Si nanowire elec-
trode at Li concentration of 1274 mAh/g is shown in Figure 7. It
shows the typical behavior of electrode impedance with the Randle’s
local interface model and well-separated characteristic frequencies
(ωRC ≫ ωD). The high frequency (20 kHz) intercept on the real axis
corresponds to the value of Rext . The semicircle at high frequencies
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Figure 7. Representative impedance spectra of a Si nanowire electrode and
model fit curves at cLi = 1274 mAh/g.

(20 kHz ∼ 15 Hz) is the RC element which represents the gradual
transition from double layer-dominating response to intercalation-
dominating response around ωRC . At low frequencies (below 15 Hz),
the BD element appears, which shows a transition from the Warburg
regime (15 Hz ∼ 0.5 Hz) to the capacitive regime below 0.5 Hz.

To study the effect of including the actual nanowire geometry and
the radius distribution in modeling, three different models were em-
ployed in fitting the experimental data; model (a) has planar particles
with identical thickness, model (b) has cylindrical particles with iden-
tical radii, and model (c) has cylindrical particles with distributed
radii. While model (a) ignores the primary curvature of the cylindrical
diffusion geometry in the nanowires, models (b) and (c), include the
actual cylindrical geometry of the nanowires. Model (c) takes account
of the radius distribution of the nanowires, whereas model (b) neglects
the distribution and considers the radii identical. Complex nonlinear
least squares (CNLS) regression was performed using a MATLAB
routine based on the Levenberg-Marquardt algorithm that minimizes
the summed squares of real and imaginary relative residuals:

�re,k =
Z ′

k − Z ′(ωk)

|Zk |
, �im,k =

Z ′′
k − Z ′′(ωk)

|Zk |
[20]

where ωk is the k th frequency in the impedance measurement, Zk is
the impedance measured at ωk , and Z is the overall impedance model.
The data and fitted curves are shown in Figure 7, and the obtained
parameters are shown in Table II.

The effect of including the actual nanowire geometry in modeling
can be studied by comparing the fit curves of model (a) and (b).
Model (b), which involves the cylindrical diffusion geometry in the
nanowires, has a better agreement with the experimental data than
model (a), particularly near the curvature of the BD element. The

Table II. Parameters estimated by fitting different versions of the

model to impedance spectra at cLi = 1274 mAh/g.

Model (a) Model (b) Model (c)

Dch (10−11 cm2/sec) 4.01 1.42 1.29

−∂�φeq/∂c (10 2 V cm3/mol) 6.13 3.02 3.01

σ̃ – – 0.23

� 0.0079 0.0028 0.0020
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Figure 8. Relative residuals for the BD element at cLi = 1274 mAh/g.

improvement in goodness-of-fit is quantified by a sum of relative
residual squares for the BD element (ω < 15 Hz), which is denoted
as �. � is 0.0079 in model (a), but shrinks to 0.0028 in model
(b) with the same number of fit parameters. The relative residuals
for the BD element are plotted against ω in Figure 8. It is shown
that the locally correlated residuals are reduced by accounting for
the actual cylindrical geometry of the nanowires in model (b). The
improvement in goodness-of-fit partially advocates employing the
cylindrical diffusion model in interpreting impedance spectra of a Si
nanowire electrode.

The chemical diffusivities, Dch , obtained by employing model (a)
and model (b) are 4.01 × 10−11 and 1.42 × 10−11 cm2/sec, respec-
tively. Overlooking the primary curvature of the cylindrical nanowire
geometry in model (a) results in overestimation of Dch by more than
two and half times, compared to that obtained considering the ac-
tual geometry in model (b). The partial derivative of the equilibrium
potential with respect to Li concentration, −∂�φeq/∂c, is also overes-
timated more than two times by using the planar diffusion impedance
model (a) compared to that from cylindrical model (b). This indi-
cates that to obtain accurate fit parameters from impedance spectra,
it is necessary to employ an appropriate diffusion geometry rather
than a simple one-dimensional diffusion model. For an electrode with
more-curved particles such as sphere-like particles, the overestima-
tion would be even more significant. On the other hand, the pseudo
film model suggested by Ruffo et al. has the one-dimensional BD
impedance formula with a single diffusion length, as model (a) does.
However, their calculation estimates the diffusivity between 1.5 and
3.0 × 10−10 cm2/sec, which is about an order larger compared to that
obtained from model (a), probably because a different length scale
was used.

Additional consideration on the radius distribution in model (c)
employs a lognormal PDF, leaving the standard deviation, σ̃, as an
additional fit parameter. The fit of model (c) now captures the devi-
ation of the diffusion element from the pristine shape of local BD
impedance, which is a generic feature in impedance spectra of a bat-
tery electrode that has heterogeneous particle sizes. Simultaneously,
� decreases to 0.0020, and the locally correlated residuals are reduced
by using model (c) as shown in Figure 8. σ̃ is estimated to be 0.23,
which is smaller than but still comparable to those of the typical radius
distributions.36

Given the extremely good fit of the impedance spectrum with
model (c), the inferred particle size distribution from the impedance
model may be more accurate than that obtained by the typical,
time-consuming method of direct image analysis. This suggests
the tantalizing possibility of non-invasive “impedance imaging” of
battery electrodes in situ by the simple application of small electrical
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Table III. The chemical diffusivities of Li ion in amorphous Si nanowire at different Li concentrations during the second cycle.

cLi (mAh/g) Dch (10−11 cm2/sec) −∂�φeq/∂c (10 2 V cm3/mol) Cdl (10−7 F/cm2) ρct (10 2 � cm2) Rext (�)

954 1.45 2.95 7.79 6.49 1.49

1274 1.29 3.01 6.22 7.26 1.48

2385 1.18 1.78 4.67 9.81 1.47

2705 2.01 6.63 3.41 11.9 1.53

signals, using the diffusion impedance model to solve an inverse
problem for the particle size distribution. Such changes in particle
thickness could be used, for example, to detect the state of charge
(due to volume change upon lithiation) or gradual degradation
over many cycles, e.g. due to the formation of solid electrolyte
interphase. While we are showing here probably one of the simplest
examples of having impedance imaging for an electrode with simple
and well-characterized microstructure, to utilize the impedance
imaging in general, one should be cautious that the impedance
model considers appropriate configurational aspects as well as other
electrode properties that may affect impedance behavior.

Mathematically, the inversion can be performed by choosing a
functional form (such as log-normal) for the size distribution and
solving for the best-fit parameters, as we have done here. It is also
possible to view the inverse problem as a first-kind Fredholm integral
equation for the unknown size distribution function, which can be
solved by Laplace or Mellin transforms, as has been done for vari-
ous inverse problems in statistical mechanics.38 Such practice would
be limited, however, when it involves numerical techniques that may
suffer from noise and insufficient accuracy in impedance data. On the
other hand, the inversion problem may not have a unique solution,
when the model is not an one-to-one mapping with respect to its fit-
ting parameters because two or more physical origins raise a similar
impedance feature. In such a case, it requires additional constraints
from other simulations (e.g. DFT or ab initio calculations) or experi-
mental studies (e.g. SEM or TEM imaging), to extract meaningful fit
parameters.

Using model (c) in the regression, Dch is estimated to be 1.29 ×
10−11 cm2/sec, and −∂�φeq/∂c to be 3.01× 102 V cm3/mol. Compar-
ing the estimator values obtained from model (b) and (c), it is found
that overlooking the radius distribution in model (b) results in a slight
overestimation of Dch . On the other hand, the estimator of −∂�φeq/∂c
changes little by including size distribution in the impedance model,
for this particular case of a Si nanowire electrode with estimated σ̃ of
0.23. In general, the extent as well as the direction of the misestimation
due to overlooking the size distribution depends on the heterogeneity
in size distribution and the actual particle geometry of an electrode.

Impedance spectra of the Si nanowire electrode at various Li con-
centrations are shown in Figure 9. For the intermediate concentrations,
the spectra were fitted using model (c), taking into account the cylin-
drical diffusion geometry as well as the radius distribution of the
nanowires. The fit curves are also plotted in Figure 9, and the fit pa-
rameters obtained from the regression are shown in Table III. Dch is
estimated in the range of 1.18 ∼ 2.01 × 10−11 cm2/sec, depending
on the Li concentration. These values agree well with the diffusivities
measured by N. Dimov et al. for a Si powder electrode, which are 1.7
and 6.4 × 10−11 cm2/sec at Li concentrations of 800 and 1200 mAh/g,
respectively.39 Reported values of the Li diffusivity in amorphous Si
are inconsistent and spread over a wide range, varying from the order
of 10−11 to 10−13 cm2/sec at room temperature.40–42 The excellent fit
of the impedance spectrum using the known particle geometry and
size distribution suggests that our value is among the most accurate
in the literature.

Limitations of the diffusion model, however, can be found at both
of low and high Li concentrations. At the low Li concentrations, it
is difficult to identify either RC or BD elements in the impedance
spectra. The two elements seem overlapped, and the behavior at low
frequencies is different from the typical BD impedance observed at
the intermediate Li concentrations. The model is not able to interpret

these features. A possible explanation is that the assumption regard-
ing fast electron transport is not valid at low Li concentrations, as the
electron mobility becomes orders of magnitude smaller than at higher
Li concentrations.31 Although it is beyond the scope in this article,
an accurate interpretation of the impedance spectra at the low Li con-
centrations may involve solving simultaneous transport of Li ions and
electrons from two different kinds of interfaces: radial diffusion of
ions from the electrolyte and axial diffusion of electrons from the cur-
rent collector.43 On the other hand, when Li concentration approaches
the full capacity, cycled Si nanowires encounter rapid phase transfor-
mation from the amorphous phase to the Li15Si4 crystalline phase.34,35

When it comes to the crystalline phase at high Li concentrations, the
assumption regarding isotropic transport properties is not valid any
more, and our model would need to be modified to account for the
onset of crystal anisotropy, as well as possibly the dynamics of the
phase transformation.
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Conclusions

Modern battery electrodes have nanoparticles of active material
which have various shapes and heterogeneous sizes. In impedance
spectra of such electrodes, the responses at low frequencies correspond
to the bounded diffusion of ions in the particles. While properties of
the BD impedance are expected to essentially depend on the diffusion
geometry and the diffusion length distribution in the nanoparticles,
the effects of such configurational aspects have been largely over-
looked. Commercial data-processing software products only contain
the one-dimensional BD impedance model and the original Warburg
impedance model, which are not able to account for these effects. In
this study, an impedance model is proposed that accounts for curved
diffusion geometries as well as the diffusion length distribution. Using
this model, we have investigated the ways these configurational as-
pects affect interpretation of diffusion impedance spectra. The model
also opens the possibility of conversely using impedance spectroscopy
to diagnose battery electrodes in terms of the configuration-related
status, in situ during a test that requires many cycles.

Various versions of the model were then applied to experimental
impedance data of a Si nanowire electrode. Comparing the regression
results of the different versions, we are able to show that including
each of the cylindrical diffusion geometry and the heterogeneous ra-
dius distribution of the nanowires greatly improves the fit and leads to
rather different, and presumably more accurate, values of the electro-
chemical parameters. In general, the effects of including appropriate
particle geometry and particle size distribution in modeling depend
on the actual particle geometry and size distribution of an electrode.
From this study, we conclude that it is important to account for the
configurational aspects of a battery electrode to accurately interpret
diffusion impedance.
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List of Symbols

āp average surface area of a single particle [cm2]
āx average sidewall area of a planar particle [cm2]
˜̄a p dimensionless surface area of a single particle ( ˜̄a p = ln−1)
A electroactive surface area [cm2]
Atot total electroactive surface area [cm2]
AW Warburg coefficient [�/s1/2]
c concentration of ionic charge carrier [mol/cm3]
Cdl local double layer capacitance [F/cm2]
C̃D∞ high-frequency-limit dimensionless extra capacitance of

bounded diffusion
C̃D0 low-frequency-limit dimensionless capacitance of bounded

diffusion
Dch chemical diffusivity of positive charge carrier [cm2/s]
e elementary electric charge [C]
H̄ average height of a cylindrical particle [cm]
j0 exchange current density [A/cm2]
jdl double layer charging current density [A/cm2]
jintc intercalation current density [A/cm2]
jtot total current density [A/cm2]
J total current [A]
k Boltzmann’s constant [eV/K]
l solid-state diffusion length [cm]
l̃ dimensionless solid-state diffusion length (l̃ = l/L̄)
L solid-state diffusion length, a random variable [cm]
L̄ average solid-state diffusion length [cm]

L̃ dimensionless solid-state diffusion length, a random vari-
able (L̃ = L/L̄)

n dimension number
Ntot total number of particles
PrL probability density function of a random variable, L [cm−1]
PrL̃ probability density function of a random variable, L̃
qdl double layer charge [C/cm2]
Rext external resistance contribution [�]
R̃ext dimensionless external resistance contribution (R̃ext =

Atot Rext/ρct )
t time [s]
T temperature [K]
x spatial variable [cm]
X arbitrary variable
Xre f arbitrary variable at reference state

X̂ Fourier coefficient of perturbation in X
zD local diffusion impedance [�cm2]
z̃D dimensionless local diffusion impedance (z̃D = zD/ρD)
z̃D0 low-frequency-limit of dimensionless local diffusion

impedance [�cm2]
z̃D∞ high-frequency-limit of dimensionless local diffusion

impedance [�cm2]
zint f local interface impedance [�cm2]
z̃int f dimensionless local interface impedance (z̃int f = zint f /ρct )
ZW original Warburg impedance [�]
Z overall impedance [�]
Zk measured impedance at frequency ωk [�]
Z̃ dimensionless overall impedance (Z̃ = Atot Z/ρct )

Greeks

α symmetric coefficient
δ Dirac delta function [cm−1]
�re,k real relative residual at frequency ωk

�im,k imaginary relative residual at frequency ωk

�φ potential drop across active material/electrolyte interface
[V]

�φeq equilibrium potential of intercalation reaction [V]
ρct local charge transfer resistance [�cm2] (ρct = kT / j0e)
ρD BD impedance coefficient [�cm2]
ρ̃D/ct dimensionless BD impedance coefficient (ρ̃D/ct = ρD/ρct )
ρ̃D0 low-frequency-limit resistance of bounded diffusion
σ standard deviation [cm]
σ̃ dimensionless standard deviation (σ̃ = σ/L̄)
� sum of relative residual squares for diffusion impedance
ω perturbation frequency [rad or Hz]
ωD diffusion characteristic frequency [rad or Hz] (ωRC =

Dch/l2)
ωk kth experimental frequency [rad or Hz]
ωRC RC characteristic frequency [rad or Hz] (ωRC = 1/ρct Cdl )
ω̃ dimensionless perturbation frequency (ω̃ = ω/ωD)
ω̃RC/D characteristic frequency ratio (ω̃RC/D = ωRC/ωD)
η surface overpotential [V]
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