
Research Article

Effects of Nanosilica on Compressive Strength and Durability
Properties of Concrete with Different Water to Binder Ratios

Forood Torabian Isfahani,1 Elena Redaelli,1 Federica Lollini,1

Weiwen Li,2 and Luca Bertolini1

1Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7,
20131 Milan, Italy
2College of Civil Engineering, Shenzhen University, Nanshan, Shenzhen 518060, China

Correspondence should be addressed to Forood Torabian Isfahani; forood.torabian@polimi.it

Received 31 January 2016; Accepted 1 March 2016

Academic Editor: Ying Li

Copyright © 2016 Forood Torabian Isfahani et al. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

�e e�ects of the addition of di�erent nanosilica dosages (0.5%, 1%, and 1.5% with respect to cement) on compressive strength
and durability properties of concrete with water/binder ratios 0.65, 0.55, and 0.5 were investigated. Water sorptivity, apparent
chloride di�usion coe
cient, electrical resistivity, and carbonation coe
cient of concrete were measured. �e results showed that
compressive strength signi�cantly improved in case of water/binder = 0.65, while for water/binder = 0.5 no change was found.
Increasing nanosilica content, thewater sorptivity decreased only for water/binder = 0.55.�e addition of 0.5%nanosilica decreased
the apparent chloride di�usion coe
cient for water/binder = 0.65 and 0.55; however, higher nanosilica dosages did not decrease it
with respect to reference value.�e resistivity was elevated by 0.5% nanosilica for all water/binder ratios and by 1.5% nanosilica only
for water/binder = 0.5.�e carbonation coe
cient was not notably a�ected by increasing nanosilica dosages and even adverse e�ect
was observed forwater/binder = 0.65. Further information ofmicrostructurewas also provided through characterization techniques
such as X-ray di�raction, thermal gravimetric analysis, mercury intrusion porosimetry, and scanning electron microscopy. �e
e�ectiveness of a certain nanosilica dosage addition into lower strength mixes was more noticeable, while, for the higher strength
mix, the e�ectiveness was less.

1. Introduction

In recent years, modi�cation of cement composites by
nanoparticles has attracted intense attention among research-
ers. Concrete, as the most popular cement composite in prac-
tical applications, was also subjected to modi�cation by
replacing a portion of binder with various nanoparticles such
as TiO2 [1], Fe2O3 [2], Al2O3 [3], and SiO2. Among those,
nanosilica (NS) incorporation into concrete was of interest
for many researchers not only because of the similarity of
its chemical composition to constituents of C-S-H, but also
because of the capability of NS to potentially improve cement
composites properties through di�erent mechanisms. NS, as
well as silica fume [4], is a highly reactive pozzolan and
could consume calcium hydroxide (CH) to form secondary
C-S-H [5, 6]. However, some researchers [7] believe that

the addition of NS mostly a�ects initial silicate polymeriza-
tion rather than ultimate amount of C-S-H formed. Another
mechanism, by which NS can in�uence cement composite
properties, is seeding e�ect. NS could provide extra sites
for the precipitation of hydration products, leading to the
acceleration of early stage hydration [5].

�e modi�cation of macroscopic properties of concrete
by NS addition has been subjected to intensive study. As far
as compressive strength is concerned, controversial results
were obtained sorting enhancements from notable [8, 9]
to moderate [10–14], even though no gains were reported
[15, 16]. A certain NS content produced di�erent e�ects on
the strength when NS was incorporated into concrete with
di�erent water/cement (w/c) ratios. For instance, employing
a content of NS around 1% NS into concrete with w/c ratio
of 0.4 [3] and 0.48 [12] resulted in quite di�erent gains in
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compressive strength of about 20% and 12%, respectively.
Similarly, utilization of 2%NS in high volume binary blended
concrete with water to binder (w/b) ratio of 0.4 [17] and
0.45 [14] produced null and 16% strength gain, respectively.
Moreover, when such a small content (i.e., 1-2%) of NS was
added, no analogous trend in strength improvement was seen
by increasing w/c ratio of concrete of former case from 0.4
to 0.48 (descending trend) and those of latter case from 0.4
to 0.45 (ascending trend). It should be underlined that this
discrepancy may have arisen due to the essence of utilized
NS in each study such as production method, particle size,
agglomeration state (speci�c surface area), and above all
agglomeration state a�er coming into contact with cement in
aqueous media. Even subsequent timing of superplasticizer
addition to the mixture plays a role in the e�ectiveness of NS
incorporation on properties of concrete [18].

Concrete is normally reinforced by steel rebars. Besides
compressive strength, durability properties are also of high
importance, when dealing with reinforced concrete. While
strength of concrete containing NS has received particular
attention in the last decade, less consideration has been paid
to its durability properties. So, recently, there are increasing
number of studies in which several durability related prop-
erties of cement composites were investigated such as water
sorptivity [9, 12, 19–22], resistance to chloride penetration
[12, 13, 21–24], electrical resistivity [22–25], and carbonation
resistance [26, 27].

Jalal et al. [9] found that the water absorption of concrete
decreases with the addition of NS. Similar �ndings were,
also, reported by Supit and Shaikh [19] for water sorptivity of
concrete. In another study, Du et al. [12] reported that water
absorption and water sorptivity of concrete were not in�u-
enced by NS. Quercia et al. [13] obtained that NS addition
slightly increased the air content of fresh state concrete. �e
water absorption of mortar with w/c = 0.485 was reduced
by the addition of 2.5% NS [21], while a little higher content
of NS (around 3%) increased the water absorption of mortar
with w/c = 0.43 [26]. As for compressive strength, the same
NS addition into mortars with di�erent w/c ratios did not
produce corresponding e�ects. Du et al. [12] and Quercia
et al. [13] reported that chloride di�usion coe
cient of
concretewas reduced byNS addition. According toMadani et
al. [24] and Belkowitz et al. [25], the bulk electrical resistivity
of concrete samples was increased a�er the addition of NS.

As far as carbonation resistance is concerned, Rao et
al. [26] reported no change in carbonation resistance of
mortar containing NS, while Lim and Mondal [27] found
that 5% NS addition to cement paste led to reduction in
the degree of carbonation. Although there are some works
considering carbonation resistance of cementitiousmaterials,
detailed quantitative data on NS impact on the advancement
of carbonation in time, especially in concrete, are lacking in
the literature.

�e impact of NS on the durability properties of concrete,
particularly when considering various w/c ratios, is not fully
understood. �e main goal of this study is to investigate
NS e�ects on the durability properties of concrete such as
water sorptivity, resistance to chloride penetration, electri-
cal resistivity, and carbonation resistance. Microstructure

Table 1: SSDdensity, fraction of combination, and absorption of �ve
classes of aggregates.

SSD density
(kg/m3)

Aggregates
combination

(%)

Absorption
(%)

Sand 2750 35 0.2

calc1 2750 15 0.9

calc2 2750 15 0.9

calc3 2750 15 0.9

calc4 2750 20 0.9
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Figure 1: Aggregate size distribution of �ve di�erent classes: sand,
calc1–calc4, and optimal (Fuller’s) distribution.

characterization techniques such as X-ray di�raction, ther-
mal analysis, mercury intrusion porosimetry, and environ-
mental scanning electron microscopy were employed to
achieve better understanding of howNS in�uences the factors
by which those durability properties are controlled such as
CH content and porosity distribution.

2. Materials and Experimental Methodology

2.1. Materials. Concrete was cast with CEM I 42.5R; crushed
limestone aggregates, divided in �ve di�erent classes (sand
and calc1–calc4), with maximum size of 12.5mm were used;
the combination was chosen in order to �t Fuller’s grad-
ing curve (Figure 1). Saturated surface dried (SSD) density,
absorption (%) and fraction combination of �ve classes of
aggregates are summarized in Table 1. Commercial NS sus-
pensionwith the concentration of 10%byweight ofwaterwith
nominal mean particle size of 20 nm was used. SEM image
of dried NS (Figure 2) shows particle size lower than 100 nm,
which could be the agglomeration of 3-4 nanoparticles and it
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Table 2: Composition of concrete mixtures and slump values.

w/b NS (%)
Composition (kg/m3)

Slump (mm)
Cement NS Water Sand (SSD) Coarse aggregate (SSD) SP∗

0.65

0 308 —

200 924 924

1.5 175

0.5 306.5 1.5 1.5 120

1 304.9 3.1 1.5 75

1.5 303.4 4.6 1.5 30

0.55

0 344 —

189 924 924

2.4 240

0.5 342.3 1.7 2.4 105

1 340.6 3.4 2.4 40

1.5 338.8 5.2 2.4 40

0.5

0 366 —

183 922 922

1.8 50

0.5 364.2 1.8 2.6 80

1 362.3 3.7 3.1 150

1.5 360.5 5.5 5.5 60
∗Superplasticizer.

200nm

Figure 2: SEM micrograph of nanosilica suspension a�er drying.
�e white circle shows typical agglomerates of NS with size smaller
than 100 nm.

probably was caused by drying process for SEM observation.
Particles size distribution and cumulative distribution, con-
ducted bymeasurement technique of dynamic light scattering
(DLS), showed that 51% of the volume of suspension had
particle size �ner than 21 nm and the most probable particle
size belongs to 18 nm, that is, 25% of the suspension volume
(Figure 3). Furthermore, only 5% volume fraction of the
tested suspension had the size higher than 100 nm. �us,
NS suspension was well dispersed in water with little degree
of agglomeration; however, this did not guarantee uniform
dispersion of NS a�er mixing with solids inside concrete.

2.2. Samples Preparation. Concrete samples with w/b ratios
of 0.65, 0.55, and 0.5 were cast. �e composition of each
concrete is shown in Table 2. �e mix was designed so that
all concrete samples had the same volume of cement paste.
For each w/b ratio, three NS contents of 0.5, 1, and 1.5% with
respect to cement mass were considered as replacement of
cement. NS suspension was added to the mixing water taking
into account water content of suspension and it was stirred
manually; then superplasticizer (SP) was added to the water
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Figure 3: Particle size distribution of NS suspension by dynamic
light scattering method.

mixture. Cement and aggregates were mixed and then water
containing NS and SP was added. For each type of concrete, 4
cubes 100×100×100mmwere cast for compressive strength;
a slab with 500 × 395 × 60mm dimension was also cast.
Cylindrical samples with nominal 100mm diameter were
cored from the slab at the age of 28 days of curing.�e surface
in contact withmould (mould surface) was ground, while the
casting surface (trowelled surface) remained unchanged. All
tests were performed on replicate specimens except chloride
di�usion test.

2.3. Test Methods

2.3.1. Compressive Strength. �e compressive strength test
was performed according to EN-12390-3 on cubes moist-
cured in curing chamber for 7 and 28 days.

2.3.2. Sorptivity and Water Absorption. Capillary water
absorption was measured as the mass of liquid absorbed per
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unit surface (�, kg/m2) of cylindrical specimens in time �. �e
specimens were oven-dried for 1 week at 40∘C to obtain dry
mass and therea�er the mould surface was put in contact
with demineralized water. Water sorptivity (�, kg/m2 h0.5)
was calculated using values at 24 h according to

� = �√�. (1)

�en, the specimens were immersed in demineralized water
until constant mass for calculating total water absorption�
(%) as the di�erence between saturated mass and dry mass
with respect to dry mass.

2.3.3. Chloride Penetration Resistance. Chloride penetration
test was carried out according to CEN/TS 12390-11 [28]. �e
specimens were placed in vacuum container with absolute
pressure of 1–5 kPa for 3 h. �e container was �lled with
demineralizedwater for 1 h with the pump still running. Soon
a�er, the samples were placed in the lab for 2–4 h in order
for their surface to become dry. All the surfaces but one
(mould surface)were coveredwith epoxy resin and immersed
in saturated calcium hydroxide for 18 h and were �nally
immersed in sodium chloride solution with concentration of
3%bymass of solution for 90 days. At the end of the exposure,
the specimens were ground to collect powder samples at
di�erent depths for acid soluble chloride analysis according
to EN 14629 [29]. Chloride content (%) of each layer was
obtained and apparent chloride di�usion coe
cient �app
and surface chloride content �� were obtained through the
interpolation of the chloride pro�le according to EN 14629
[29].

2.3.4. Electrical Resistivity. �e electrical resistivity test was
done by measuring conductance, 	, across cylindrical speci-
mens. �e mould surface of the samples was not ground for
this test. �e samples were immersed immediately a�er cor-
ing in demineralized water and kept at 20–25∘C temperature;
periodically, for approximately 4 months, the conductance
was recorded. �e conductance was then converted to elec-
trical resistivity, 
, inΩm using the geometry of the samples:


 = �(	) , (2)

where � and  are surface area and height of the samples.

2.3.5. Carbonation Resistance. Cylindrical specimens were
conditioned inside the lab for 14 days with 18–25∘C tempera-
ture and 50–65% relative humidity and the side surface of the
specimens was then covered with epoxy resin.�e specimens
were placed inside an accelerated carbonation chamber with
4% CO2 concentration, 55 ± 5% relative humidity, and 20∘C
temperature. �e depth of carbonation was measured (by
0.5mm accuracy) a�er 45 and 135 days by phenolphthalein
indicator. For each surface (trowelled ormould), the reported
carbonation depth value was an average of 10 points. �e
data was interpolated with (3) and carbonation coe
cient �
(mm/√year) was determined (for unidirectional di�usion):

� = �√�, (3)

where � is the depth of carbonation in mm and � is the time
in year.

2.3.6. Microstructural Characterization. CH content of con-
crete samples was estimated byX-ray di�raction (XRD), ther-
mal gravimetric analysis, and di�erential thermal analysis
(TGA/DTA).

Di�racted X-ray patterns were acquired in a range of 2�
from 15 to 60 degrees with radiation of Cu(K�) tube (40 kV
and 40mA) with � = 1.5418 Å, step size of 0.02 degrees, and
scan rate of 0.2 deg/s. �e Jade so�ware suite version 6 was
used to characterize the mineralogical crystalline phases.

TGA/DTA tests were performed using isothermal ana-
lyzer on ground fragments of concrete, approximately 100mg.
�is test was performed under a nitrogen �ow of 50mL/min.
�e temperature was programmed rising from ambient
temperature of 25∘C by the rate of 10∘C/min up to 900∘C
and temperature was held at 105∘C for 2 hours to promote
evaporation of free water.�e amounts of CHwere estimated
as

CH (%) =WLCH (%) ×
MWCH

MWH

, (4)

where CH is the calciumhydroxide weight percentage,WLCH
corresponds to the percent weight loss associated with CH
decomposition, and MWCH and MWH are the molecular
weight of CH (74.01 g/mol) andwater (18 g/mol), respectively.

Porosity analysis was conducted by mercury intrusion
porosimetry (MIP) and morphology was observed by envi-
ronmental scanning electron microscopy (ESEM) on con-
crete fragments collected from broken samples of compres-
sive strength test at 28 days. �e samples for MIP, XRD,
thermal analysis, and ESEM were selected according to
the best performance of compressive strength of concrete
incorporating NS compared with the references.

3. Results

3.1. Slump and Compressive Strength. �e values of slump
of fresh concrete are listed in Table 2. Addition of 1.5% NS
signi�cantly decreased the slump from 175 to 240mm as
reference slumps of concrete with w/b = 0.65 and 0.55 to
30 and 40mm, respectively. According to Yu et al. [11] this
behavior could be explained by the formation of the sort of
structure that has high water retention a�er the addition of
NS. Consequently, the amount of lubricating water in the
mixture was reduced; thus, viscosity of fresh concrete may
increase and slump may decrease. �e signi�cant reduction
of slump of the concrete incorporating NS could introduce
more entrapped air. �e slump values for w/b = 0.5 did not
decrease with respect to reference by increasing NS dosage,
since higher amount of SP was used in order to have better
workability during casting.

Figure 4 shows compressive strength of concrete a�er
7 and 28 days of curing as a function of NS content.
�e 28-days compressive strength of concrete with w/b =
0.65 improved considerably by NS addition and showed
progressive increase from control value of 33.8 to 47.8MPa for
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Figure 4: Compressive strength of concrete as a function of NS content (%) and curing time for w/b ratios: (a) 0.65, (b) 0.55, and (c) 0.5.

1.5% NS addition. �e compressive strength a�er 7 days also
exhibited progressive improvement from reference value of
30.3 to 39.5MPa for 1.5%NS addition. For w/b = 0.55, the 28-
day strength was elevated moderately from control 49.1MPa
to 53.8MPa with the addition of 1% NS. �e strength at 7
days also showed similar trend as 28 days and increased from
41.3 to 45.7MPa with 1% NS. No change was observed in the
strength of 28 days of concrete with w/b = 0.5, while 7-day
strength rised from 47.7 to 51.5MPa with 1.5% NS.

3.2. Water Sorptivity. Capillary water sorptivity de�nes the
tendency of the concrete to absorb water through capillary
suction by which ingress of aggressive substances can occur.
As an example, typical curves of water uptake per unit
surface, �, as a function of square root of time, are shown in
Figure 5(a) for reference and 1.5% NS addition into concrete
with w/b = 0.65. �e �gure shows small variations of �
for two replicates for each concrete type. �e water uptakes

a�er 24 h were 1.91 and 2.02 kg/m2 for control and 1.5%

NS, respectively. From the data of water uptake in time
intervals, the average values of water sorptivity coe
cient, �,
kg/m2 h0.5 with their variations, were calculated and shown
in Figure 5(b) as a function of NS content. For w/b = 0.65,
0.5% NS addition slightly decreased the water sorptivity

from reference 0.4 to 0.3 kg/m2 h0.5 and then the sorptivity
reached again around reference value by higher dosages. For
w/b = 0.55, it exhibited a clear reduction varying in the

range between reference values of 0.34 and 0.2 kg/m2 h0.5 by
NS incorporation; for w/b = 0.5, it showed slight variation

between control values of 0.27 and 0.31 kg/m2 h0.5 a�er NS
incorporation.

Figure 5(c) shows the average values of water absorption
of concrete as a function of NS content. For w/b = 0.65, the
addition of 0.5% NS slightly decreased the water absorption
from reference value of 3.9% to 3.6%. For w/b = 0.55, it was
clearly reduced from the reference value of 3.8% to 2.3% by
1% NS; for w/b = 0.5, it exhibited a slight variation between
values 2.7% and 3.1% a�er NS incorporation.
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Figure 5: (a) Example of water uptake as a function of square root of time for w/b = 0.65. (b) Sorptivity coe
cient and (c) water absorption
of concrete as a function of NS content.

3.3. Chloride Penetration Resistance. Chloride penetration
test was conducted to investigate the resistance of con-
crete against ingress of chloride ion during a nonstationary
di�usion process. As an example, typical chloride content
pro�les for w/b = 0.65 and 1.5% NS in comparison with
reference are shown in Figure 6(a). From chloride pro�le
interpolation, the apparent chloride di�usion coe
cient,
�app, and surface chloride content, ��, of each concrete
were calculated and presented in Figures 6(b) and 6(c),
respectively. For w/b = 0.65, the di�usion coe
cient slightly

decreased from reference value of 19.1 to 15.2 × 10−12m2/s for
0.5%NS and unexpectedly increased to 32× 10−12m2/s for 1%
NS; then it decreased to 18.9 × 10−12m2/s for 1.5%NS, close to

the reference value. For w/b = 0.55, �app clearly decreased

from control value of 18.1 to 10.4 × 10−12m2/s for 0.5% NS
and it reached around the reference value with the addition of
higher dosages; for w/b = 0.5, initially �app increased for 1%
NS addition and then it decreased with respect to reference
a�er the addition of 1.5% NS. �e surface chloride content,
��, exhibited small variations. For w/b = 0.65, 0.55, and 0.5,
the variation range was 0.21–0.26%, 0.32–0.35%, and 0.28–
0.42% of mass of concrete, respectively.

3.4. Electrical Resistivity. Electrical resistivity of concretemay
be useful for the monitoring and inspection of reinforced
concrete structures with regard to reinforcement corrosion
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Figure 6: (a) Example of chloride pro�le for concrete with w/b = 0.65 for control and 1.5% NS addition. (b) Apparent chloride di�usion
coe
cients and (c) surface chloride content with respect to concrete mass as a function of NS content.

[30] and is a measure of ion permeability of concrete in
saturated condition. A denser concrete results in lower
permeability and consequently higher electrical resistivity.
Immersing concrete samples in water a�er 28 days of
moist curing, hydration of the cement grains continued and
porosity and pore connectivity reduced; consequently, the
electrical resistivity increased progressively through the time.
�e electrical resistivity of concrete with w/b = 0.65 for
reference and with 1.5% NS, as an example, as a function
of time of immersion for two replicates of each type, is
shown in Figure 7(a); zero time is the day of immersion.
�e average electrical resistivity curves experienced a sudden
drop a�er immersion due to saturation with water and the
resistivity a�er the drop is labeled as 
�. �en, the resistivity

increased and the average value a�er 85 days (labeled as

85; see Figure 7(a)) was reported as an indication of the
resistivity when hydration degree of cement is close to
ultimate. Variations of these two parameters as a function
of NS content for all concrete are shown in Figure 7(b). An
addition of 0.5% of NS led 
� to increase with respect to
reference from 53 to 61Ωm, from 57 to 67Ωm, and from
69 to 77Ωm for concrete with w/b = 0.65, 0.55, and
0.5, respectively; therea�er, by increasing NS dosage, the
resistivity of w/b = 0.65 and 0.55 did not considerably
change as compared to reference. Comparing the resistivity of
concrete with w/b = 0.5 to those of 0.65 and 0.55, a di�erent
behavior was observed. �e highest reading of 
� was 87Ωm
for 1.5% NS with w/b = 0.5. �e value of 
85 is an indication
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Figure 7: (a) Electrical resistivity of concrete with w/b = 0.65 immersed in water a�er curing for 28 days for control and 1.5% NS addition.
�e solid lines express average values of the two data points. Initial resistivity, 
�, and resistivity of 85-day immersion, 
85, are also shown and
(b) their average values with their variations as a function of NS content.

of permeability of each concrete when hydration degree of
cement grains in the concrete is close to ultimate and showed
approximately similar trend with that of 
� by increasing NS
content.

3.5. Carbonation Resistance. A typical curve of carbonation
depth versus time of exposure is presented in Figure 8(a)
for trowelled surface of w/b = 0.65 and 1.5% NS in
comparison with reference.�e carbonation depth increased
from 14.1mm for reference to 17.5mm for 1.5% NS a�er 135
days of exposure. Carbonation coe
cient, �, is known as a
slope of the interpolated line in the �gure and is depicted
in Figures 8(b) and 8(c) as a function of NS content for
trowelled and mould surfaces, respectively. For w/b = 0.65
and trowelled surface, � increased from control of 24 to
a maximum of 29.3mm/√year for 1% NS addition, while,
for w/b = 0.55, � was reduced from 20.8 to a minimum
of 16mm/√year for 1% NS. For w/b = 0.5, no signi�cant
changes for � values were observed. Comparing Figures
8(b) with 8(c), the � values for trowelled surface were
slightly higher than those of mould surface, probably because
trowelled surface was a�ected by bleeding. It is known that
the carbonation resistance depends on various factors such
as CH content and porosity of concrete. For this sake, CH
contents of each concrete type were evaluated qualitatively by
XRD analysis and more quantitatively by thermal analysis in
order to describe the carbonation results.

3.6. Microstructural Characterization

3.6.1. X-Ray Di�raction. Figure 9 shows XRD pattern of
selected concrete samples represented by intensity counts/s
versus di�raction angle (2�). Intense peaks of dolomite
(CaMg(CO3)2) and calcite (CaCO3) coming from calcareous

Table 3: CH contents by weight for selected concrete samples,
calculated from thermal analysis.

w/b NS (%) WLCH (%) CH content (%)

0.65 0 1.21 4.98

0.65 1.5 1.29 5.30

0.55 0 1.01 4.15

0.55 1 0.98 4.03

0.5 0 1.23 5.06

0.5 1.5 0.66 2.71

aggregates are visible in the �gure. Intensity counts of peaks
of 2� = 18.1∘ are associated with the main peak of CH
crystals. Comparing the intensity of this peak of control with
NS containing concrete, it was found that CH content only
decreased in concrete with w/b = 0.5 a�er NS addition. �is
result was further investigated with thermal analysis.

3.6.2. �ermal Analysis. Figure 10 shows as an example the
TGA/DTA graphs for concrete with w/b = 0.65 and 1.5% NS
in comparison with control. �e CH weight loss (in range
of 420–510∘C) and dolomite and calcium carbonate weight
losses (720–810∘C and 820–890∘C, resp.) are shown using
DTA peaks.�e calculated CH contents using (4) are listed in
Table 3. �e CH content of concrete with w/b = 0.5 sharply
decreased from reference value of 5.06% to 2.71% by weight.
In contrast, CH content for other concrete types practically
exhibited no change by NS incorporation.�is outcome is in
accordance with the �ndings of XRD analysis.

3.6.3. Porosity and Pore Size Distribution. Figures 11(a), 11(b),
and 11(c) report di�erential pore distribution (d�/d log�),
that is, the relationship between pore volume, �, and pore
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Figure 8: (a) Example of carbonation depth as a function of square root of time of exposure at 4% CO2 and interpolated lines for trowelled
surface of reference and 1.5% addition into concrete with w/b = 0.65. Carbonation coe
cients of (b) trowelled and (c) mould surface of
concrete as a function of NS content.

size,�, in the range of 6 nm to few hundreds �m for di�erent
specimens. �e higher is the value of d�/d log�, the higher
is the pore volume fraction related to a certain pore size
with respect to total porosity volume. Cumulative intrusion
volume (mL/g) is depicted in Figures 11(d), 11(e), and 11(f).
Pores in the range ≤10 nm, 10–50 nm, and 50–10000 nm are
classi�ed according to [31] as gel pores, micropores, and
macropores, respectively, and porosity percentage of each
category is also shown in Figures 11(d), 11(e), and 11(f).
Gel pores do not contribute to strength and permeability,
unlike themicro- andmacropores that in�uence strength and
durability properties. Total intrusion volume, total porosity
(%), and median pore size (nm) are presented in Table 4.

Figures 11(a) and 11(d) show thatmacroporosity for w/b =
0.65 and total porosity (Table 4) did not change by 1.5% NS

addition with respect to reference; limited re�nement was
observed in microporosity by NS addition. �e gel porosity
was elevated considerably by 1.5% NS addition with respect
to reference. �is could be an indication of higher C-S-
H gel formed when NS was incorporated [13, 14]. From
Figures 11(b) and 11(e), for w/b = 0.55, the micro- and
macroporosity and the total porosity (Table 4) were clearly
reduced with respect to control. �e gel porosity increased
moderately but not as much as that of w/b = 0.65. Finally, for
w/b = 0.5, Figures 11(c) and 11(f) reveal that microporosity
did not change a�er 1.5% NS addition, while macroporosity
showed slight reduction with respect to control. Table 4
shows that the total porosity moderately decreased with
respect to reference and the reduction was smaller than that
of w/b = 0.55. �e gel porosity was raised by 1.5% NS but,
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Table 4: Total porosity percentage, median pore diameter and intrusion volume of pores for selected concrete mixes.

w/b NS (%) Porosity (%) Median pore diameter (nm) Total intrusion volume (mL/g)

0.65 0 16.525 115.7 0.072

0.65 1.5 16.679 103.2 0.074

0.55 0 15.542 119.4 0.068

0.55 1 12.762 115.7 0.055

0.5 0 12.162 106.2 0.052

0.5 1.5 11.102 100.6 0.046
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Figure 9: XRD pattern for concrete containing NS.
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in comparison with the other two w/b ratios, was of minor
concern.

3.6.4. Morphology Observation. Micrographs of concrete, as
an example, for reference and 1.5% NS with w/b = 0.65, are
depicted in Figure 12. Large plates of CH and ettringite nee-
dles are clearly visible in Figure 12(a) as shown with solid and

hollow arrows, respectively. As expected, no sign of partially
reacted NS was seen in Figure 12(b) in contrast to [18] who
claimed the observation of unreacted NS agglomeration a�er
28 days of curing. It seems that NS was fully reacted and NS
was no longer visible. �e morphology of concrete with NS,
Figure 12(b), exhibited a rather granular surface compared
with plain concrete; this could be due to C-S-H precipitates
aroundNS. Furthermore, the concrete containingNS showed
more uniform morphology having less visible macropores
with respect to reference, as indicated in the �gure by white
arrows.

4. Discussion

In order to evaluate the e�ects of partial replacement of
cement with NS on macroscopic properties of concrete
with various w/b ratios, initially the relation between the
compressive strength and NS content for a speci�c w/b ratio
is considered. �en, the e�ect of a certain NS content on
compressive strength of concrete fabricated with di�erent
w/b ratios is explored. Similarly, for durability properties, the
role of di�erentNSdosages in a speci�cw/b ratio is described.
Finally, the e�ect of a certain NS content on the properties of
concrete with various w/b ratios is investigated.

�e results presented in Section 3.1 re�ect bene�cial e�ect
ofNSon 7-day strength of concrete; see Figure 4. For eachw/b
ratio, increasing NS content mostly increased the strength
of 7 days with respect to reference. �is bene�cial e�ect
could be attributed to the accelerating e�ect of NS on early
cement hydration. �e strength of 28 days exhibited slightly
di�erent behavior, increasing NS dosage. It showed generally
ascending trend as a function of NS content for w/b = 0.65;
it increased with a gentle slope and reached a maximum a�er
1% NS addition for w/b = 0.55. For w/b = 0.5, Figure 4(c)
shows that the strength did not vary with increasing NS
dosage.

For investigating the e�ect of a certain NS dosage on
compressive strength of concrete with various w/b ratios,
the strength of 7 and 28 days of concrete is depicted as
a function of w/b ratio in Figure 13. For each NS dosage,
the experimental data are �tted through an exponential
relationship according to Abram’s law [32]. Each line is
illustrative of a certain NS dosage and represents a speci�c
exponential relationship between the strength and w/b ratio.
According to Figure 13(a), for 7-day strength, the �tted lines
have converging tendency towards reference (black line) by
reducing w/b ratio. Decreasing w/b ratio, distance between
each line and reference line decreased; thus, the strength
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Figure 11: Pore size distribution and cumulative intrusion volume of selected specimens of concrete.

enhancement decreased as well. Accordingly, for w/b = 0.65,
the strength enhancement was larger than that of w/b =
0.55 and 0.5. For 28-day strength in Figure 13(b), converging
the tendency of the lines is even more pronounced than

7-day strength when w/b decreases. Considerable enhance-
ment relative to reference was detected for w/b = 0.65. For
w/b = 0.55, the enhancement was smaller than w/b = 0.65.
Finally, for w/b = 0.5, no enhancement was found a�er
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Figure 12: ESEM images of concrete with w/b = 0.65: (a) control and (b) with 1.5% NS addition. CH plates (solid arrows) and ettringite
needles (hollow arrows) are also visible in (a).
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Figure 13: Compressive strength of concrete as a function of w/b ratio: (a) 7 days and (b) 28 days of curing. Dashed lines represent interpolated
values according to Abram’s law. �e black line represents reference concrete.

the addition of NS and the lines approximately approached
the reference line. �e e�ect of a certain NS dosage was
more pronounced at the lower strength mixes (higher w/b
ratio). For the higher strength mix (lower w/b ratio), the
e�ect was less.�e reason probably relates to the reduction of
distance between cement grains, when w/b ratio is reduced.
Decreasing the distance, packing, and accelerating e�ects of
NS may di�er.

Among 28-day strength enhancements obtained above
for concrete containing NS, remarkable enhancement of 41%
with respect to reference was obtained for w/b = 0.65
and 1.5% NS addition. �is enhancement could be related
to higher amount of C-S-H formed as a consequence of NS
addition, as indicated by the porosity analysis (Figure 11(d)).
In addition, NS led to more uniform morphology than
reference concrete as evidenced by ESEM micrographs.

�e notable improvement in the strength could be an
intriguing outcome for sustainable concrete technology, even
though such a high w/b ratio is not commonly employed in
practical applications. �e 28-day strength was elevated to
47.8MPa, which is close to that of reference concrete with
w/b = 0.55 (i.e., 49.2MPa).�ismeans that the same strength
can be obtained by increasing w/b ratio from 0.55 to 0.65

and by the addition of NS (4.6 kg/m3; see Table 2), reducing
cement content of 36 kg/m3.

�e results presented in Section 3.2 reveal that no clear
e�ect of NS incorporation into concrete on water sorptivity
for w/b = 0.65 and 0.5 was detected. In contrast, for
w/b = 0.55, by increasing NS dosage, the sorptivity clearly
decreased to a minimum a�er 1% NS. For resistance to
chloride penetration, no comprehensible trend as a function
of NS dosage was observed for concrete with various w/b



Advances in Materials Science and Engineering 13

0

25

50

75

100

125

150

175

200
R

el
at

iv
e 

va
lu

e 
(%

)

0.5% NS

S Dapp �i KTrowelled

w/b = 0.5

w/b = 0.55

w/b = 0.65

(a)

0

25

50

75

100

125

150

175

200

R
el

at
iv

e 
va

lu
e 

(%
)

1% NS

S Dapp �i KTrowelled

w/b = 0.5

w/b = 0.55

w/b = 0.65

(b)

0

25

50

75

100

125

150

175

200

R
el

at
iv

e 
va

lu
e 

(%
)

1.5% NS

S Dapp �i KTrowelled

w/b = 0.5

w/b = 0.55

w/b = 0.65

(c)

Figure 14: E�ect of NS addition on concrete with di�erent w/b; expressed as relative value of each parameter with respect to reference: (a)
0.5% NS addition, (b) 1% NS addition, and (c) 1.5% NS addition.

ratios. For electrical resistivity, a similar trend as a function
of NS dosage was detected for w/b = 0.65 and 0.55. A
comparative increasewas observedwhen 0.5%NSwas added;
therea�er, with the increasing NS content, the resistivity
decreased. Trend of variation of carbonation coe
cient with
the increase of NS content for w/b = 0.65, 0.55, and 0.5 was
ascendant, descendent, and horizontal, respectively.

In order to investigate the relationship between w/b
ratio and the e�ectiveness of a certain NS dosage on dura-
bility properties, measured parameters such as sorptivity
(�), chloride di�usion (�app), electrical resistivity (
�), and
carbonation coe
cient of trowelled surface (�trowelled) of
concrete with di�erent w/b ratios but containing a certain
NS dosage are compared. Relative values (%) of a generic
parameter for concrete with w/b = 0.65, 0.55, and 0.5 are
shown in Figures 14(a), 14(b), and 14(c) for 0.5%, 1%, and
1.5% of NS, respectively. For a generic property, the relative
value is de�ned as the ratio between the generic parameter
for samples containing NS and that of the corresponding
control with similar w/b ratio and curing time, multiplied
by 100. A value above 100% shows an increase in the
considered property, whilst a value below 100% shows a
decrease.

As far as sorptivity of concrete is concerned, a certain
NS addition into concrete with di�erent w/b ratios did not
produce clear e�ect. Comparing Figures 14(a) with 14(b) and
14(c), an addition of 0.5% NS into concrete with w/b = 0.65
and 0.55 led to slight decrease in water sorptivity with respect
to reference and for w/b = 0.5 led to slight increase; however,
this tendency was not maintained when higher dosages were
incorporated. An addition of 1% and 1.5% NS led to no
appreciable change in the sorptivity of w/b = 0.65 and 0.5
with respect to reference; on the contrary, the same contents
of NS led to a reduction in the sorptivity of concrete with
w/b = 0.55.

As far as chloride penetration resistance is concerned, a
certain NS dosage showed di�erent e�ects on the chloride
di�usion coe
cient of concrete with di�erent w/b ratios.
Comparing Figures 14(a) with 14(c), 0.5% NS seems to be
e�ective to promote concrete resistance to chloride penetra-
tion for w/b = 0.65 and 0.55; 1.5% NS reduced the chloride
di�usion coe
cient ofw/b = 0.5 and 0.55.�us, the tendency
of reduction as a function of w/b ratio in Figure 14(a) was not
maintained in Figure 14(c). Di�erent factors are mentioned
in the literature as an explanation for reducing chloride
di�usivity by NS. For instance, for w/b = 0.5 and 1.5%
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NS addition, the reduction of median pore diameter was
probably enough to slightly reduce the di�usion coe
cient
(see Table 4) [13].

Comparing the electrical resistivity in Figure 14(a) with
that in Figure 14(c), an addition of 0.5% NS increased the
resistivity of concrete with all w/b ratios, while the addition
of 1.5% NS only elevated that of concrete with w/b = 0.5.
�e chloride di�usivity and the electrical resistivity are both
dependent on permeability of ions inside pore solution. As
a consequence, the apparent chloride di�usion coe
cient
has linear correlation with inverse of the resistivity [33] and
this correlation was obtained and shown in Figure 15 with
a linear regression as speci�ed in the �gure. According to
Figure 15, a decrease in the di�usion coe
cient corresponds
to an increase in electrical resistivity with a good linear
proportionality. �e grey data point is not included in
the linear regression and this deviation from the linearity
represents clearly the unexpected variation of the chloride
di�usion coe
cient of this data point as compared to other
data; see Section 3.3. �e �-squared of linear regression is
approximately 93% and it means that linear model could
explain appropriately the variability of the data around the
model.

According to Figures 14(a) and 14(b), NS was not e�ective
to increase carbonation resistance of concrete with w/b =
0.65 and 0.5 (0.5% and 1% NS), while incorporation of
the similar dosages in concrete with w/b = 0.55 caused
relative reduction in carbonation coe
cient. NS addition
had negative e�ect on resistance to carbonation of concrete
with w/b = 0.65. Regarding the fact of no variation in
porosity and CH content of w/b = 0.65 with 1.5% NS
with respect to control, probably the reason could be that
C-S-H became more impervious to neutralization and the
carbonation front went faster than reference. Not only CH
can be neutralized in carbonation reaction, but also carbon-
ation of C-S-H is possible when CH is depleted. NS modi�es

the internal structure of the C-S-H gel stabilizing calcium
ions [34].

According to the discussion above, possible bene�cial
e�ects of NS addition on the durability properties of concrete
should not be inferred from bene�cial e�ects on compressive
strength. An equivalent NS addition into concrete with
various w/b ratios did not produce similar e�ect on durability
properties. No consistent trend as a function of w/b ratio was
detected for the e�ectiveness ofNS on durability properties of
concrete, whilst e�ectiveness of NS addition on compressive
strength decreased with decreasing w/b ratio.

5. Conclusions

�is paper investigated the e�ects of NS on compressive
strength and durability properties of concrete with various
w/b ratios. From the results, the following conclusions can be
drawn.

(i) Bene�cial e�ects of NS addition on compressive
strength should not be taken as proof of similarly
bene�cial e�ects on durability properties.

(ii) E�ectiveness of a certain NS dosage on compressive
strength and durability properties for high strength
concrete mixes was di�erent than low strength mixes.
By the incorporation of 1.5% NS into concrete with
w/b = 0.65, 0.55, and 0.5, strength gains of 41%, 6.5%,
and nil, respectively, were obtained.

(iii) Durability properties of concrete with di�erent w/b
ratios showed highly varying tendency by increasing
NS dosage. For a certain NS dosage, analogous e�ect
on concretewith di�erentw/b ratioswas not detected.
Furthermore, the tendency of the variations as a
function of w/b ratio was not preserved by increasing
NS content.

(iv) Sorptivity and water absorption exhibited negligible
change a�er NS addition for w/b = 0.65 and 0.5;
only for w/b = 0.55 they were clearly reduced by NS
addition, having an optimum on 1%.

(v) Apparent chloride di�usion coe
cient of concrete
decreased with 0.5% NS addition for w/b = 0.65 and
0.55. However, it did not decrease with the addition
of higher NS contents as e�ective as 0.5% NS. For
w/b = 0.5, slight reduction was found only a�er 1.5%
NS addition.

(vi) �e electrical resistivity of saturated specimen mod-
erately increased a�er the addition of 0.5% NS for all
w/b ratios. For w/b = 0.5, it also increased for 1.5%
NS addition.

(vii) NS addition resulted in detrimental e�ect on carbon-
ation coe
cient for w/b = 0.65 and the carbonation
coe
cient was elevated from the reference of 24
to 29.3mm/√year by 1% NS, in contrast to that of
w/b = 0.55 which was reduced from the reference
of 20.4 to 16mm/√year by the same NS content.
Calcium hydroxide content of concrete was found to
be reduced only in case of w/b = 0.5.



Advances in Materials Science and Engineering 15

(viii) NS clearly re�ned porosity microstructure of w/b =
0.55 and 1% NS addition compared to reference.
Limited re�nement ofmacroporositywas observed by
1.5% NS addition to w/b = 0.5. Gel porosity of w/b =
0.65 increased considerably with 1.5% NS addition.

Competing Interests

�e authors declare that they have no competing interests.

Acknowledgments

�e work received partial funding by the European IRSES
project “Development of Sustainable Electrochemical Cor-
rosion Protection Systems for Reinforced Concrete Struc-
tures” (DOSECOPS project) and the Shenzhen Strate-
gic Emerging Industry Development Special Fund (no.
JCYJ20150625102603853).

References

[1] M. V. Diamanti, F. Lollini, M. P. Pedeferri, and L. Bertolini,
“Mutual interactions between carbonation and titanium diox-
ide photoactivity in concrete,” Building and Environment, vol.
62, pp. 174–181, 2013.

[2] H. Li, H.-G. Xiao, J. Yuan, and J. Ou, “Microstructure of cement
mortar with nano-particles,” Composites Part B: Engineering,
vol. 35, no. 2, pp. 185–189, 2004.

[3] A. Nazari and S. Riahi, “Abrasion resistance of concrete contain-
ing SiO2 and Al2O3 nanoparticles in di�erent curing media,”
Energy and Buildings, vol. 43, no. 10, pp. 2939–2946, 2011.

[4] J. Song and S. Liu, “Properties of reactive powder concrete and
its application in highway bridge,”Advances inMaterials Science
and Engineering, vol. 2016, Article ID 5460241, 7 pages, 2016.

[5] P. Hou, S. Kawashima, D. Kong, D. J. Corr, J. Qian, and S. P.
Shah, “Modi�cation e�ects of colloidal nanoSiO2 on cement
hydration and its gel property,” Composites Part B: Engineering,
vol. 45, no. 1, pp. 440–448, 2013.

[6] S. Haruehansapong, T. Pulngern, and S. Chucheepsakul, “E�ect
of the particle size of nanosilica on the compressive strength and
the optimum replacement content of cementmortar containing
nano-SiO2,” Construction and Building Materials, vol. 50, pp.
471–477, 2014.

[7] J. Björnström, A. Martinelli, A. Matic, L. Börjesson, and I.
Panas, “Accelerating e�ects of colloidal nano-silica for bene�-
cial calcium–silicate–hydrate formation in cement,” Chemical
Physics Letters, vol. 392, no. 1–3, pp. 242–248, 2004.

[8] F. U. A. Shaikh and S.W.M. Supit, “Chloride induced corrosion
durability of high volume �y ash concretes containing nano
particles,”Construction and BuildingMaterials, vol. 99, pp. 208–
225, 2015.

[9] M. Jalal, E. Mansouri, M. Shari�pour, and A. R. Pouladkhan,
“Mechanical, rheological, durability and microstructural prop-
erties of high performance self-compacting concrete containing
SiO2 micro and nanoparticles,” Materials and Design, vol. 34,
pp. 389–400, 2012.

[10] A. M. Said, M. S. Zeidan, M. T. Bassuoni, and Y. Tian, “Prop-
erties of concrete incorporating nano-silica,” Construction and
Building Materials, vol. 36, pp. 838–844, 2012.

[11] R. Yu, P. Spiesz, and H. J. H. Brouwers, “E�ect of nano-silica on
the hydration and microstructure development of Ultra-High
Performance Concrete (UHPC) with a low binder amount,”
Construction and Building Materials, vol. 65, pp. 140–150, 2014.

[12] H. Du, S. Du, and X. Liu, “Durability performances of concrete
with nano-silica,” Construction and Building Materials, vol. 73,
pp. 705–712, 2014.

[13] G. Quercia, P. Spiesz, G. Hüsken, and H. J. H. Brouwers, “SCC
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