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Abstract
A number of tryptophan metabolites known to be neuroactive have been examined for their potential associations

with cognitive deficits in schizophrenia. Among these metabolites, kynurenic acid (KYNA), 5-hydroxyindole (5-HI), and

quinolinic acid (QUIN) are documented in their diverse effects on α-7 nicotinic acetylcholine receptor (α7nAChR) and/

or N-methyl-D-aspartate receptor (NMDAR), two of the receptor types thought to contribute to cognitive impairment

in schizophrenia. In this study, serum levels of KYNA, 5-HI, and QUIN were measured in 195 patients with schizophrenia

and in 70 healthy controls using liquid chromatography-tandem mass spectrometry; cognitive performance in

MATRICS Consensus Cognitive Battery and cortical thickness measured by magnetic resonance imaging were

obtained. Patients with schizophrenia had significantly lower serum KYNA (p < 0.001) and QUIN (p= 0.02) levels, and

increased 5-HI/KYNA (p < 0.001) and QUIN/KYNA ratios (p < 0.001) compared with healthy controls. Multiple linear

regression showed that working memory was positively correlated with serum 5-HI levels (t= 2.10, p= 0.04), but

inversely correlated with KYNA concentrations (t=−2.01, p= 0.05) in patients. Patients with high 5-HI and low KYNA

had better working memory than other subgroups (p= 0.01). Higher 5-HI levels were associated with thicker left

lateral orbitofrontal cortex (t= 3.71, p= 2.94 × 10−4) in patients. The different effects of 5-HI and KYNA on working

memory may appear consistent with their opposite receptor level mechanisms. Our findings appear to provide a new

insight into the dynamic roles of tryptophan pathway metabolites on cognition, which may benefit novel therapeutic

development that targets cognitive impairment in schizophrenia.

Introduction
The tryptophan pathway has been increasingly targeted in

drug discovery efforts for treating cognitive impairments in

neuropsychiatric conditions including schizophrenia1,2. One

of the metabolites in this pathway is kynurenic acid (KYNA),

which has attracted considerable interest, as it is a non-

competitive antagonist of α-7 nicotinic acetylcholine recep-

tor (α7nAChR)3,4 that has been linked to cognitive func-

tions, in particular working memory and attention5,6.

Accumulated evidences suggest that schizophrenia is asso-

ciated with abnormal α7nAChR-mediated neurotransmis-

sion7,8 and cortical KYNA contributes to cognitive

impairment through the α7nAChR mechanism3,9–11. KYNA

also antagonizes the glycine-binding site of the N-methyl-D-

aspartate receptor (NMDAR)4,12 and NMDAR dysfunction

has been linked to cognition, especially working memory

deficits in schizophrenia13–16.

Interestingly, another neuroactive metabolite in the

tryptophan pathway, 5-hydroxyindole (5-HI), also affects

α7nAChR17–19. 5-HI is a lipophilic solute and was shown

to permeate epithelial plasma membrane20, implying that

peripheral 5-HI may penetrate the blood–brain barrier

(BBB). In contrast to KYNA, 5-HI potentiates α7nAChR-
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mediated electrophysiological responses and Ca2+ influx

in a concentration-dependent manner18,19,21. Further-

more, 5-HI-potentiated α7nAChR activations are dose-

dependently downregulated by KYNA19. Hence, these two

metabolites of the tryptophan pathway counteract on

α7nAChR-mediated functions and may form an opposing

effect on working memory and other cognitive functions

mediated by α7nAChR (Fig. 1).

5-HI and KYNA may also diverge on their roles in

cognition, as they may modulate γ-aminobutyric acid

(GABA)ergic neurotransmission differently, as 5-HI

facilitates GABAergic transmission via excitation of

α7nAChR22, but KYNA concentration-dependently

reduces GABA levels by modulating α7nAChR func-

tion23. GABAergic dysfunction has also been consistently

linked to working memory deficits in schizophrenia24–26.

Notably, a third metabolite in the tryptophan pathway,

quinolinic acid (QUIN), is an agonist of NMDAR27,28.

QUIN is an excitotoxin that promotes neurodegeneration

and neuroinflammation, and may negatively impact cog-

nition29–31.

Therefore, 5-HI, KYNA, and QUIN are three neuroactive

metabolites within the tryptophan pathway, which may

potentially influence cognition, although their in vivo com-

bined effects are likely complex and are currently unknown.

The effort of targeting the tryptophan pathway for treating

cognitive deficits in schizophrenia should first understand

the independent vs. joint effects of these neuroactive meta-

bolites. Accordingly, we tested the hypothesis that working

memory in schizophrenia may be dynamically dependent on

the balance among 5-HI, KYNA, and QUIN. As these

metabolites are known to influence α7nAChR and

NMDAR32,33, which are distributed in high densities in the

cortex34,35, we will test a second hypothesis that they may

also counteractively impact the cortical thickness in patients

with schizophrenia.

Methods
Participants

The study recruited 195 patients with schizophrenia (all

in-patients) and 70 healthy controls (HCs). Patients who

met the diagnostic criteria of schizophrenia according to

the Structured Clinical Interview of the Diagnostic and

Statistical Manual of Mental Disorders-IV were enrolled

during their hospitalization at the Beijing Huilongguan

Hospital. HCs were recruited through local advertise-

ments at nearby communities and were excluded if they

had a history of psychiatric disorders or psychosis among

their first-degree relatives. Participants were also excluded

if they had a lifetime history of any other Axis I disorders,

head trauma, current or previous substance or alcoholism

dependence (except nicotine), or systemic diseases

including neurological disorders, organic brain disorders,

and unstable medical illnesses. One hundred and twelve

patients were antipsychotic medication-free at the time of

admission and blood sample collection; 19 patients were

on a first-generation antipsychotic alone or combined

with second-generation antipsychotics; and the remaining

patients were on the following second-generation anti-

psychotics: risperidone (14), clozapine (5), olanzapine (5),

and aripiprazole (4). Thirty-six patients were on two or

more second-generation antipsychotics and four patients

were also on sodium valproate. Patients received anti-

psychotic medications once hospitalized and, most initi-

ally, medication-free patients were on antipsychotic

medications during brain imaging, which was on average

5.5 ± 2.3 days after the initial blood draw. The current

antipsychotic medication dose (based on time of blood

draw) was calculated as a chlorpromazine (CPZ)-equiva-

lent dose36,37 (Table 1). This study was approved by the

ethics committee and institutional review board of Beijing

Huilongguan Hospital. All participants provided written

informed consent.

Fig. 1 Abbreviated tryptophan pathway and the presumed neuroactive metabolite effects on α7nAChR and NMDAR. Dotted line refers to

hypothetical effects based on preclinical data. Positive signs show the agonist effect and negative signs show the antagonist effect17,49,89,90.
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Clinical and cognitive assessments

Clinical symptoms were evaluated by the Positive and

Negative Syndrome Scale (PANSS) in patients of schizo-

phrenia by one of the three attending psychiatrists. The

inter-rater intra-class correlation coefficient among the

raters was above 0.80. Cognitive function was assessed

using the validated Chinese version of the MATRICS

Consensus Cognitive Battery (MCCB)38–40. The MCCB

contains assessments of seven cognitive domains: Work-

ing Memory, Speed of Processing, Attention and Vigi-

lance, Verbal Learning, Visual Learning, Reasoning and

Problem Solving, and Social Cognition. Initial scores were

converted to domain scores. Impaired working memory

was evidenced a pervasive and the core of schizophrenia-

related cognitive disability41,42; thus, our primary focus

was on the working memory domain.

Biochemistry

Blood samples were collected with BD Vacutainer

serum tubes in the morning after overnight fasting and

centrifuged immediately at 4 °C for 10 min at 3000 r.p.m.

Serum was then aliquoted into separate tubes and stored

at −80 °C. High-performance liquid chromatography was

used to separate serum KYNA, 5-HI, and QUIN, and

tandem mass spectrometry was then performed to

quantify them using standard protocols. Details of the 5-

HI assay, quality control, and validations were in Sup-

plementary Material 1. Details of the KYNA and QUIN

assays were described as previous reports43–45. The intra-

trial coefficient of variations for high, median, and low

quality were 1.2%, 2.7%, and 1.5% for 5-HI; 4.0%, 12.5%,

and 8.8% for KYNA; and 4.1%, 6.2%, and 7.4% for QUIN,

respectively. We further calculated the 5-HI/KYNA ratio

and the QUIN/KYNA ratio to explore their putative

agonistic/antagonistic effects on α7nAChR and NMDAR,

respectively.

Image processing

Structural images were collected in 153 schizophrenia

patients and 65 HCs using a 3.0 Tesla Prisma MRI scan-

ner (Siemens, Germany) and a 64-channel head coil at the

MRI Research Center of the Beijing Huilongguan

Table 1 Participant demographics, clinical characteristics, and metabolic measures.

Schizophrenia (n= 195) Healthy controls (n= 70) Test statistic p-Value

Male/female 110/85 37/33 χ
2
= 0.26 0.61

Smoker/non-smoker 52/143 17/53 χ
2
= 0.15 0.70

Age (years) 35.60 (13.03) 39.74 (11.82) t= 2.33 0.02

Education (years) 12.37 (3.21) 12.91 (2.56) t= 1.28 0.20

BMI 23.43 (4.36) 23.92 (3.07) t= 1.02 0.31

CPZ 266.31 (349.77) NA NA NA

PANSS total score 72.36 (17.13) NA NA NA

Working memorya 45.16 (11.43) 57.78 (7.65) F= 78.19 <0.001

Processing speeda 44.96 (8.73) 57.09 (8.51) F= 92.99 <0.001

Attention/vigilancea 43.64 (9.85) 56.81 (9.08) F= 59.66 <0.001

Verbal learninga 46.98 (12.17) 57.41 (8.34) F= 39.31 <0.001

Visual learninga 45.23 (10.56) 53.39 (8.47) F= 37.73 <0.001

Reasoning and problem solvinga 45.70 (10.70) 55.88 (7.81) F= 69.88 <0.001

Social cognitiona 46.20 (10.97) 53.22 (9.95) F= 24.76 <0.001

MCCB composite scorea 43.91 (10.21) 57.83 (7.93) F= 103.64 <0.001

5-HI (ng/ml)a 8.57, 8.44 (2.79) 7.85, 7.73 (2.12) F= 2.54 0.11

KYNA (ng/ml)a 6.42, 5.77 (3.36) 8.59, 8.14 (3.09) F= 34.38 <0.001

QUIN (ng/ml)a 49.62, 44.71 (24.73) 54.18, 50.51 (16.55) F= 5.63 0.02

5-HI/KYNAa 1.69, 1.36 (1.30) 1.01, 0.94 (0.40) F= 33.61 <0.001

QUIN/KYNAa 8.67, 8.04 (3.8) 6.77, 6.36 (2.44) F= 18.05 <0.001

Data reported as [mean (SD)], except for 5-HI, KYNA, QUIN, 5-HI/KYNA, and KYNA/QUIN as [mean, median (SD)].
CPZ chlorpromazine equivalent, DBP diastolic blood pressure, 5-HI 5-hydroxyindole, KYNA kynurenic acid, MCCB MATRICS Consensus Cognitive Battery, NA not
applicable, PANSS Positive and Negative Syndrome Scale, QUIN quinolinic acid, SBP systolic blood pressure.
aStatistics included sex and age as covariates.
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Hospital. Parameters of the three-dimensional magneti-

zation prepared rapid acquisition gradient echo sequence

were as follows: echo time= 2.98 ms, inversion time=

1100 ms, repetition time= 2530ms, flip angle= 7°, field

of view= 256 × 224mm2, matrix size= 256mm ×

224mm, and thickness/gap= 1/0 mm covering the whole

brain. Participants used earplugs and foam pads to reduce

magnetic machine noise and head movement, and who

were reminded not to move their head during the pro-

cedure. A computer-connected monitor was acquired to

detect head movement distance. The automated and

validated segmentation were conducted by using Free-

Surfer v5.3 (http://surfer.nmr.mgh.harvard.edu/)46.

Thirty-four cortical gray matter regions in each hemi-

sphere were extracted as regions of interest for statistical

analysis according to the Desikan–Killiany atlas47,48.

Statistical analysis

Normality of raw data was assessed with normal Q–Q

plots and Shapiro–Wilkinson tests. Serum 5-HI, KYNA,

QUIN levels, and 5-HI/KYNA ratio all deviated from

normal distribution; all were normalized after natural

logarithm (ln) or square root (sqrt) transformation. T-

tests or χ
2-test were used to compare the demographic

data of patients with schizophrenia and HCs. Separate

univariate analyses of covariance (ANCOVAs) were used

to determine between-group differences in metabolites,

MCCB and PANSS subdomain, and total scores, with sex

and age as covariates. Multiple linear regression model

was used to test whether working memory score was

associated with the serum levels of 5-HI, KYNA, and

QUIN in schizophrenia patients, adjusted for age and sex.

Significant but opposite directions of associations of the

metabolites with working memory would imply opposite

roles. For those metabolites having significant opposite

effects on working memory, we further divided patients

into high- (concentration equal to or above the median)

and low- (concentration below the median) level sub-

groups, and compared their working memory perfor-

mance, adjusted for age and sex. Associations between

cortical thickness of 68 cortical regions and serum levels

of 5-HI, KYNA, and QUIN were further explored by

multiple linear regression adjusted by age and sex in

patients. These analyses were also repeated in HCs. The

effects of smoking status and psychotropic medications

on the three metabolites were also explored. Significance

was set at p < 0.05 in all tests.

Results
Group differences

The summary demographics, clinical characteristics,

and outcome variables were presented in Table 1. After

controlling for sex and age, all seven domains and MCCB

total score were lower in patients with schizophrenia

compared to HCs (F= 24.76–78.19, p < 0.001). Patients

with schizophrenia also had significantly lower serum

KYNA (F= 34.38, p < 0.001) and QUIN (F= 5.63, p=

0.02) than in HCs, but 5-HI concentrations did not differ

between groups (F= 2.54, p= 0.11). 5-HI/KYNA (F=

33.61, p < 0.001) and QUIN/KYNA (F= 18.05, p < 0.001)

were significantly higher in patients with schizophrenia

than in HCs. Data were also analyzed in medication-free

patients. Medication-free patients showed significantly

lower KYNA (5.36 ± 2.50 ng/mL vs. 7.31 ± 3.84 ng/mL; F

= 11.87, p= 0.001) and QUIN (41.60 ± 12.26 ng/mL vs.

57.67 ± 30.89 ng/mL; F= 8.09, p= 0.01), but insignificant

on 5-HI (8.63 ± 2.95 ng/mL vs. 8.44 ± 2.77 ng/mL; F=

0.35, p= 0.55) levels compared to patients on anti-

psychotic medications. As medication-free patients have

even lower KYNA and QUIN levels than patients on

antipsychotic medications, the low serum levels of KYNA

and QUIN in schizophrenia are unlikely due to anti-

psychotic medication effects.

Relationship of working memory with 5-HI, KYNA, and

QUIN

The multiple linear regression model using the three

metabolites as predictors was significant (F= 3.18, p=

0.01), wherein working memory was significantly pre-

dicted by higher level of 5-HI (t= 2.10, p= 0.04) and

lower KYNA (t=−2.01, p= 0.05) (Table 2). The results

were not statistically significant, although 5-HI (t= 0.94,

p= 0.35) and KYNA (t=−1.48, p= 0.14) had the same

trend in the medication-free group, similar to findings in

the total-patient group. One possible reason is that each

divided group may have lower statistic power than the

total-patient group. The results were still significant (F=

10.11, p < 0.001) when we added smoke and CPZ

equivalent in the model, and 5-HI (t= 2.18, p= 0.03) and

KYNA (t=−2.24, p= 0.03) have the same opposite

trends as before. The model was insignificant in HCs

Table 2 Multiple regression analysis results of serum

levels of 5-HI, KYNA, and QUIN on working memory score.

Schizophrenia Healthy controls

Standardized β t p Standardized β t P

5-HI 0.15 2.10 0.04 −0.02 −0.19 0.85

KYNA −0.18 −2.01 0.05 −0.02 −0.14 0.89

QUIN 0.06 0.68 0.49 0.11 0.75 0.46

Sex 0.16 2.04 0.04 0.16 1.18 0.24

Age −0.02 −0.26 0.80 −0.10 −0.10 0.92

Model F= 3.18, p= 0.01 F= 0.42, p= 0.83

5-HI 5-hydroxyindole, KYNA kynurenic acid, QUIN uinolinic acid.
Bold values indicates statistical significance at p < 0.05.
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(model p= 0.83). We also explored other MCCB domains

and total score but found no significant results in either

patients or controls (Supplementary Table 2).

The relationships of working memory with 5-HI/KYNA

and QUIN/KYNA were also explored. 5-HI/KYNA was

positively associated with working memory (t= 2.74, p=

0.007) in patients, but not in HCs (Fig. 2). There was no

significant correlation with QUIN/KYNA in either

patients or controls.

We further divided the patients into high- and low-level

in four subgroups based on medium splits for 5-HI and

KYNA: high 5-HI/low KYNA, low 5-HI/low KYNA, high

5-HI/high KYNA, and high 5-HI/low KYNA (Fig. 3). The

overall ANCOVA was significant (F= 3.81, p= 0.01).

Post-hoc tests showed that patients with high 5-HI and

low KYNA had the best working memory performance

compared with the other three subgroups (p=

0.01–0.004); however, the other three subgroups did not

significantly differ. The model was not significant in HCs

(F= 0.20, p= 0.89).

Relationship of cortical thickness with 5-HI, KYNA, and

QUIN

Multiple cortical regions showed significantly reduced

cortical thickness in patients compared to HCs (Supple-

mentary Table 3). We next explored the associations of 5-

HI, KYNA, and QUIN with thickness of 68 cortical

regions after controlling for sex and age. Only the left

lateral orbitofrontal cortex (LOFC) showed significantly

positive association with the 5-HI levels (t= 3.71, p=

2.94 × 10−4) after Bonferroni correction for multiple

comparisons (0.05/68= 7.35 × 10−4) (Fig. 4). However, we

also observed nominally significant (p < 0.05 uncorrected)

positive associations between 5-HI and the left and right

frontal poles, left insula, right caudal-middle frontal, right

lateral orbitofrontal, and right lingual areas in patients

with schizophrenia (p= 0.03–0.004), whereas the right

lateral occipital region had a nominally negative associa-

tion with 5-HI (p= 0.05) (Supplementary Table 4). In

medication-free patients, 5-HI was still correlated with

LOFC thickness (r= 0.39, p= 1.4 × 10−4). There were no

Fig. 2 Relationship between working memory performance and 5-HI/KYNA or QUIN/KYNA. A Relationship of working memory with 5-HI/

KYNA. B Relationship of working memory with QUIN/KYNA.

Fig. 3 Comparisons of working memory performance in subgroups with 5-HI and KYNA levels by medium splits adjusting for age and sex.

A Patients with schizophrenia. B Healthy controls.
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significant associations between cortical thickness and 5-

HI in HCs. No significant associations between cortical

thickness and KYNA, QUIN, or their ratios were found in

patients or controls after correction for multiple com-

parisons (Supplementary Table 4).

The left LOFC thickness was positively associated with

working memory (t= 2.68, p= 0.008). The left LOFC

thickness was also associated with verbal learning (t=

4.27, p < 0.001), social cognition (t= 3.05, p= 0.003), and

reasoning and problem solving (t= 2.47, p= 0.02) (Sup-

plementary Table 5).

Relationship of tryptophan metabolites with sex, age,

smoking, blood pressure, heart rate, and medication

After controlling for sex and age, CPZ was negatively

correlated with 5-HI (r=−0.24, p= 0.04), but not with

KYNA or QUIN (both p > 0.05). Males had higher 5-HI

(8.70 ± 2.58 ng/mL), KYNA (7.65 ± 3.65 ng/mL), and

QUIN (54.34 ± 26.23 ng/mL) concentrations than

females (7.93 ± 2.75, 5.86 ± 2.66, and 45.45 ± 15.29 ng/

mL, respectively) (F= 6.19, p= 0.01; F= 25.68, p <

0.001; F= 10.40, p= 0.001, respectively), but sex ×

diagnosis interactions were insignificant (all p > 0.20).

Non-smokers had significantly lower KYNA con-

centrations than smokers (6.57 ± 3.27 ng/mL vs. 7.55 ±

3.45 ng/mL; F= 6.67, p= 0.01), but smoking × diag-

nosis interaction was insignificant (p= 0.36). Smokers

and non-smokers did not significantly differ in 5-HI (p

= 0.66) or QUIN (p= 0.31) levels, nor were the inter-

actions of smoking with diagnosis (p= 0.37 and 0.15,

respectively). Age was significantly correlated with

KYNA (r= 0.13, p= 0.03) and QUIN (r= 0.18, p=

0.001) concentrations, but not with 5-HI (p= 0.06). We

examined systolic and diastolic blood pressure, and

heart rate in relation to KYNA, 5-HI, and QUIN, and

found that there were insignificant correlations in

either patients or HCs (all p’s > 0.05).

Discussion
This study examined the effects of 5-HI, KYNA, and

QUIN on working memory and cortical structures, based

on preclinical evidence of their effects on α7nAChR and

NMDAR. In patients with schizophrenia, KYNA and

QUIN, but not 5-HI, were lower than in HCs. Working

memory was significantly influenced by 5-HI and KYNA

but in opposite direction in the patients. Patients exhi-

biting high 5-HI and low KYNA concentrations had better

working memory performance than the other subgroups.

Finally, 5-HI level was positively associated with cortical

thickness of the left orbitofrontal cortex, which was sig-

nificantly associated with working memory performance

in the patients.

5-HI is a relatively potent tryptophan metabolite that

increases glutamate release and the function of GABA

interneurons21, and in high dose can cause convulsion49.

5-HI precursor indole is transformed from tryptophan by

tryptophanase in indole-producing bacteria of human

gut50,51. Diverse oxygenase could degrade indole to indole

derivatives52,53 such as 5-HI. The formation of 5-HI can

be observed by incubating rat liver homogenates with its

direct precursor indole, supporting an endogenous pro-

duction of 5-HI21. In rats with hepatic encephalopathy,

indole produced by gut bacteria is absorbed and meta-

bolized into several metabolites including 5-HI, which

may accumulate in the blood and brain17,21,54. Earlier

clinical research has suggested that blood 5-HI may pro-

vide treatment effect monitoring for hyperactive beha-

viors, provided some initial support for its potential

clinical utility55. Previous rodent studies indicated that 5-

HI activates both presynaptic and postsynaptic α7nAChR

Fig. 4 The relationship of serum levels of 5-HI with cortical thickness in patients with schizophrenia. The left and right frontal poles, left insula,

right caudal-middle frontal, left and right lateral orbitofrontal, and right lingual areas were positively and significantly associated with 5-HI at p=

0.03–0.0003, and the right lateral occipital region was inversely associated with 5-HI at p= 0.05, but only the lateral orbitofrontal cortex (arrow) was

significant after correction for multiple comparisons. A Cortical regions were colored according to t-scores by multiple linear regression. The color bar

represents t-scores. B Scatter plot between 5-HI and the left lateral orbitofrontal cortex (arrow in A) in patients with schizophrenia.
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to mediate glutamate release18,19,22, which may facilitate

working memory. In addition, 5-HI increases acetylcho-

line (ACh) efficacy though Ca2+ currents, indicating that

5-HI and ACh may cooperate to influence α7nAChR18.

Regardless of whether our finding here is related to

α7nAChR, the data provided the first evidence in humans,

supporting the hypothesis that 5-HI may facilitate work-

ing memory performance in patients with schizophrenia.

Reduced serum KYNA concentration in schizophrenia

was highly replicable in several recent reports56–58, which

were not consistent with several earlier studies59,60. Our

results are also inconsistent with studies showing elevated

KYNA in the post-mortem brains of patients with schi-

zophrenia4,45,61. As KYNA normally does not pass the

BBB62, it is unclear whether the observed inverse corre-

lation between serum KYNA levels and working memory

is due to these brain mechanisms; as such, the KYNA-

related results should be viewed with caution. However,

impaired BBB has been proposed in patients with schi-

zophrenia63,64, which may explain this significant corre-

lation only in patients but not in controls. Moreover,

evidences showed peripheral kynurenine can pass through

BBB62,65 and may influence brain functions2,66. Preclinical

studies have demonstrated that KYNA negatively affects

α7nAChR-dependent presynaptic mechanisms in the

prefrontal cortex and disrupts local GABAergic synaptic

signaling67. Knocking out kynurenine aminotransferase II

that decreases endogenous brain KYNA can increase

working memory performance68,69. At high concentra-

tions, KYNA is a competitive antagonist of NMDAR70,71;

however, at low concentrations, KYNA has a more potent

inhibitory effect on α7nAChR activation than on

NMDAR4. Furthermore, reducing KYNA increases 5-HI-

dependent activation of α7nAChR19. Therefore, our data

appear as corroborating these preclinical data on the

opposing 5-HI vs. KYNA effects, showing that patients

having high 5-HI and low KYNA was associated with the

best working memory.

However, why patients have reduced serum KYNA but

there is an inverse correlation between KYNA and

working memory is difficult to interpret. Similar to our

finding, significantly low peripheral serum kynurenine

and/or KYNA levels have been found in diverse cohorts of

patients56–58,72. Meanwhile, higher KYNA in the brain is

thought to impair cognitive functions2, which appears

consistent with our finding of an inverse correlation

between peripheral KYNA and working memory. We

believe that the difficulty to explain the seemingly con-

tradictory findings is in part due to the lack of a good

explanation on why peripheral kynurenine and/or KYNA

are reduced in schizophrenia, while brain KYNA appears

increased in schizophrenia, compared with that in HCs.

Further complicating the issue is that about 80% of

kynurenine and KYNA in the blood were bound to

albumin or other circulating binding proteins62,73, which

may lead to differential availability of free kynurenine and

KYNA, and our study is limited by not measuring speci-

fically the free serum kynurenine or KYNA. Basic neu-

roscience effort to simultaneously assessing central and

peripheral kynurenine and KYNA, while invasively

studying the potential mechanism underlying the

central–peripheral metabolite relationships may be

needed.

We observed that serum QUIN concentration was sig-

nificantly lower in patients with schizophrenia than in

HCs. Previous studies attempted to identify QUIN-related

abnormalities in schizophrenia but largely failed to show a

significant differences in QUIN levels between patients

and controls in post-mortem brain tissues45, blood57, or

CSF74. However, QUIN normally also does not pass the

BBB62 and our analysis did not show significant rela-

tionship between QUIN and working memory or other

clinical and cognitive measures.

An association between lower 5-HI to thinner cortical

thickness of the LOFC in patients is intriguing. Previous

researches indicated that the orbitofrontal cortex supports

working memory75, specifically encoding gustatory75,

emotional76, and abstract information77. The LOFC is

particularly important for reward learning78, a process

closely related to working memory79. We consider the

finding linking 5-HI to the thickness of the LOFC a fur-

ther supportive evidence of a potential cognition

enhancement effect of this metabolite in patients. Also

some evidences showed relationships between kynurenine

and subcortical volumes in mental disorders that KYNA/

3-hydroxykynurenine were positively correlated to the

hippocampal volume in bipolar disorder80 and negatively

correlated with the left hippocampal activity in major

depressive disorder81. We further explored the associa-

tions between subcortical volumes, and KYNA and

KYNA/QUIN. However, there was no significant results

in patients or in HCs (Supplementary Material 6).

The study has a number of limitations. We did not test

whether the effects of these metabolites occurred through

α7nAChR, NMDAR, or other receptor mechanisms in the

brain, although 5-HI is lipophilic and may be BBB

permeable20. However, KYNA and QUIN do not normally

pass the BBB, making the blood-based finding or the lack

thereof difficult to explain. We also did not measure the

5-HI precursor indole (Fig. 1) to rule out its contributions

to the observations here. However, indole itself was

thought not to interact with GABAergic or ionotropic

glutamate receptors17. Furthermore, we measured 5-

hydroxyoxindole (5-HOI), another metabolite from the

indole and oxindole branch (Fig. 1), to confirm that the 5-

HI results reported here is distinct from 5-HOI (Supple-

mentary Material 7). We also did not measure the gut

flora that possibly influence the concentration of indole

Huang et al. Translational Psychiatry          (2021) 11:198 Page 7 of 10



and further related to 5-HI level. The inflammatory

markers were not tested in the present study, which may

limit the interpretation of relationship between metabo-

lites, as high inflammatory activity can lead to elevations

of kynurenine and KYNA82–84. We also did not measure

diet and physical activities that may have an effect on

peripheral levels of KYNA85,86, cortical thickness87, and

cognition88, which is another limitation. Despite these

limitations, the observed pattern of higher working

memory in patients with high 5-HI and low KYNA

appears consistent with the directions of their mechanism

of action19.

In summary, our findings suggest that there appears

multiple potential mechanisms by which the tryptophan

pathway is relevant to the cognitive performance in

schizophrenia, including the indole branch whose rela-

tionship to schizophrenia has not been previously studied.

Therefore, the finding that 5-HI and KYNA may have

opposing effects on working memory among patients with

schizophrenia is new and is consistent with preclinical

evidences on their counteractive mechanisms. Our data

may provide new insight into potential targets in the

tryptophan pathway in our effort to develop novel ther-

apeutic strategy for treating working memory and other

cognitive impairment in schizophrenia.
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