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ACCORDING TO THE DEPARTMENT OF HOMELAND 
SECURITY (DHS), MORE THAN 700 MILLION PIECES 
OF BAGGAGE OF PEOPLE TRAVELING ON COMMER-
CIAL aircraft are being screened for potential threats in the 
U.S. every year.1 At the same time, the spectrum of possible 
threats has widened, liquid explosives being the most recent 
example. Therefore, high levels of threat detection performance 
by trained personnel are crucial for air traffic safety. The con-
tinuous requirement for detecting weak and infrequent signals 
among high levels of background clutter requires high and sus-
tained levels of vigilance.

Fatigue may be caused by a variety of factors, including in-
trinsic and extrinsic sleep disorders, as well as work and life-

style related changes in sleep schedules. Research has shown 
that fatigue from night work and sleep loss impairs vigilance 
performance sooner and more dramatically than most other 
cognitive functions. These deficits in attention appear to result 
from “wake state instability” manifesting as increased variabil-
ity in endogenous alertness and compensatory effort as a result 
of increases in both errors of omission (i.e., lapses) and errors 
of commission (i.e., incorrect responses).2-4

Although the effects of sleep loss have been studied on a 
wide variety of vigilance and attention tasks,4-6 there are no 
published experimental reports documenting the effects of 
night work and sleep loss on accuracy and speed of simu-
lated threat detection performance. Thus, the major goals of 
this study were to determine the effects of fatigue induced 
by night work, sleep loss, repeated performance shifts, and 
time-on-task on speed and accuracy of object recognition and 
target search in nonprofessional subjects during a simulated 
luggage screening task in which threat detection was the pri-
mary performance. We hypothesized that night work and sleep 
loss would increase both errors of omission (missed threats) 
and errors of commission (false alarms) in threat detection 
performance.

Methods

We systematically evaluated threat detection performance 
on a simulated luggage screening task (SLST). Data of N = 24 
subjects (mean age ± SD = 29.9 ± 6.5 years, range 22-40 years, 
13 female) were obtained and analyzed. Participating subjects 
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were not shift workers. Their sleep-wake behavior was moni-
tored with sleep diaries and actigraphs in the week prior to the 
start of the experiment. During this period, subjects were in-
structed to adhere to their normal bedtimes. According to the 
Morningness-Eveningness Scale,7 15 subjects were evening 
types and 9 subjects were neither morning nor evening type. 
Participants were informed about potential risks of the study, 
and a written informed consent and HIPAA consent were ob-
tained prior to the start of the study. The study was approved by 
the University of Pennsylvania IRB.

For the SLST, we developed an electronic luggage database 
that included a large number of x-ray source images of bags, 
clothing, etc., and threats (guns and knives only), provided by 
the Transportation Security Laboratory (TSA), Department of 
Homeland Security. These images were used by us to produce 
more than 5,800 unique simulated x-ray images of luggage, 
organized into 31 stimulus sets of 200 bags each, with 50 bags 
of each 200-bag set containing single threats that varied in 
type (gun or knife) and target difficulty (high or low). Thus, 
the a priori probability of a threat in any unique 200-bag set of 
stimuli was 0.25. Four typical examples are shown in Figure 
1 A‑D.

Subjects were oriented to the task and trained on 2 separate 
days. On both days, examples of separate clutter and threat im-
ages as well as complete bags with and without threats were 
shown to them. Subjects were informed that bags never con-
tained multiple threats, and that threats were either knives or 
guns. They were also informed about the appearance of organic 
(orange) and metallic (blue/black) materials on the screen. An 
SLST with 30 bags (orientation day 1) and 200 bags (orien-
tation day 2) was simulated and discussed with the subjects. 
Subjects were asked to identify a possible threat on the screen, 
and cases of misses or false alarms were discussed. Study par-
ticipation did not depend on threat detection performance levels 
on orientation days.

Study participants stayed in the research lab for 5 consecu-
tive days, which included a 35 h period of wakefulness (i.e., 
performance testing during the daytime, followed by perfor-
mance testing at night, followed by performance testing during 
the day after a night without sleep). The study started at 08:00 
on day one and ended at 08:00 on day 5. During 1 of every 2 
h awake on all days, subjects performed a computerized neu-
robehavioral test battery (NTB) that lasted approximately 25-
30 min, followed by an SLST performance bout (i.e., a unique 
set of 200 bags to screen).

On the first day of the study, all subjects performed 7 train-
ing bouts of the SLST (see below), followed by an 8-h sleep 
period. As a time in study (learning) effect was anticipated, the 
same protocol was repeated for half of the group, followed by 
a 35-h period of sleep deprivation, while the other half of the 
group underwent the sleep deprivation condition first (see Table 
1). With this crossover design, the time in study effect was re-
duced for certain comparisons. Altogether, subjects performed 
31 SLST performance bouts (7 training, 24 work) during the 
study. As the composition of each SLST differed according to 
type and target difficulty of threats, the 24 unique SLST test 
bouts were block randomized in a Latin square design (i.e., 
each SLST 200-bag stimulus set appeared once in each position 
of the 24 test bouts).

The 200-bag stimuli sets for each SLST test bout were run on 
software that simulates an x-ray screening system. Subjects had 
to press the space bar (colored green) for safe bags and the letter 
“D” (colored red) for threat bags. Except for the first training ses-
sion, the threat-detection task timed out after 7 s, in which case 
threat bags were considered a miss, while safe bags were consid-
ered a correct rejection. A blank screen was shown for 1 s between 
presentations of 2 consecutive bags. During 3 of the 7 training 
sessions, detailed feedback was given to incorrect answers—that 
is the display presented when subjects missed a threat was “ER-
ROR: weapon was present,” and when they wrongly classified a 
safe bag as a threat bag it was “ERROR: NO weapon present.” 
During all 24 test bouts during the experimental conditions (i.e., 
during the day following sleep, during night work, and during 
the day following no sleep), subjects were only informed about 
their overall percentage of hits and false alarms at the end of each 
200-bag trial—no other details about their performance were 
provided. A text message also reminded them that the main goal 
of the task was to keep the threat detection rate high, while the 
secondary goal was to keep the rate of false alarms low, and that 
they should keep trying to attain a perfect score.

Hit rate (HR, true positive rate) and false alarm rate (FAR, 
false positive rate) were used to compute A’ and B”D, nonpara-
metric signal detection theory measures of sensitivity and re-
sponse bias.8,9 Sensitivity A’ reflects detection accuracy and 
reveals the extent to which subjects are able to differentiate 
signal (threat bags) from noise (safe bags). A’ varies between 
0.5 (signals cannot be distinguished from noise, performance at 
chance level) to 1.0 (complete separation of signal and noise, 
perfect accuracy). A’ can also be interpreted as the proportion 
of times subjects would correctly identify the signal if signal 
and noise stimuli were presented simultaneously.8 A’ is unaf-
fected by response bias (i.e., a subject’s general willingness for 
responding “threat bag” versus “safe bag”). B”D is a measure of 
this response bias and ranges from −1 (liberal bias, yes to all) to 

A B

C D

Figure 1—Examples of simulated x-ray images of threat bags 
with typical hit rates. A: gun with low target difficulty in the cen-
ter (HR was 75%), B: knife with low target difficulty in upper 
right corner (HR was 56.5%), C: gun with high target difficulty in 
lower right corner (HR was 50%), D: knife with high target dif-
ficulty in lower left corner (HR was 32.5%)
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+1 (conservative bias, no to all), with 0 indicating no response 
bias in either direction.

Statistical Analyses

For each of the 24 subjects, HR, FAR, A’, B”D, and trial dura-
tion were calculated for each of the 24 work bouts. Subsets of 
the 24 work bouts were used for the comparison of each of 2 
conditions (see Table 1):

(1)	 Night work effects: Day work (D1: W18‑W23, D2: 
W8‑W13) was compared to night work (D1: W7‑W12, D2: 
W14‑W19).

(2)	 Sleep loss effects: Day work after at least 8 h time in bed 
(D1: W18‑W22, D2: W8‑W12) was compared to day 
work after a night without sleep (D1: W13‑W17, D2: 
W20‑W24).

(3)	 Time in study effects: Day work at the beginning of the 
study (D1 and D2: W1‑W7) was compared to day work at 
the end of the study (D1: W18‑W24, D2: W8‑W14).

This choice assured that (a) circadian phase did not differ 
between conditions for sleep loss and time in study effects, and 
(b) that the experimental condition was preceded by the control 
condition in one group while it was followed by the control con-
dition in the other group for night work and sleep loss effects, 
and therefore partially adjusting for possible time in study ef-
fects. Each subject contributed 10 (sleep loss), 12 (night work), 
or 14 (time in study) data points to the analysis.

Mixed effects regression models with random intercepts 
and random slopes for bout number within each condition with 
unstructured covariance were used for comparisons between 
conditions (Proc Mixed, SAS version 9.1, SAS Institute Inc.). 
An indicator variable was used to differentiate between experi-
mental (night work, day work after a night without sleep, day 
work at the end of the study) and control conditions. A vari-
able indicating work bout number was included in the model, 
adjusting for any residual differences in time in study between 
conditions. Finally, a group indicator variable adjusted for any 
differences between groups D1 and D2. Models were checked 
for interactions between bout number (the repeated measure) 
and condition (experimental vs. control). The interaction term 
was kept in the model if P < 0.05. Mixed model least square 
means and their differences are reported in the text and shown 
in Table 2 and Figure 2.

All 24 work bouts of the 24 subjects contributed to the analy-
sis of a “time-on-task” effect. Here, each SLST 200-bag set was 
divided into 10 sets of 20 consecutive bags (i.e., 1-20, 21-40, 
…, 181-200). Thus, each subject contributed 10 data points to 
each analysis, each data point consisting of 24*5 = 120 threat 
bags and 24*15 = 360 safe bags. A mixed model with random 
intercepts and random slopes for centered bag set number with 
unstructured covariance was used to analyze the data for the 
dependent variables HR, FAR, A’, B”D, and response latency. 
Additionally, it was tested whether night work, sleep loss, or 
time in study interacted significantly with time-on-task. For the 
latter analysis, the restricted data set that was described in detail 
above was used.

Facilitating data from all 24 work bouts, average HR, FAR, 
A’, and B”D were calculated for each subject depending on type 
(gun or knife) and difficulty (low or high) of threats. Average 
response latencies were calculated for threat bags and safe bags 
for each subject. For the threat bags, response latency was cal-
culated for all threats, hits, and misses, depending on type and 
difficulty of threats. Mixed models with random subject effects 
were used to analyze the data. Degrees of freedom were ad-
justed according to Satterthwaite method. Tukey-Kramer ad-
justment was used for post hoc tests.

Table 1—Study Design

Time of Day	 Group D1	 Group D2
Day 1
	 09:30	 T1	 T1
	 11:30	 T2	 T2
	 13:30	 T3	 T3
	 15:30	 T4	 T4
	 17:30	 T5	 T5
	 19:30	 T6	 T6
	 21:30	 T7	 T7
	 00:00	 Sleep 0:00 - 8:00	 Sleep 0:00 - 8:00
Day 2
	 09:30	 W1	 W1
	 11:30	 W2	 W2
	 13:30	 W3	 W3
	 15:30	 W4	 W4
	 17:30	 W5	 W5
	 19:30	 W6	 W6
	 21:30	 W7	 W7
	 23:30	 W8	 Sleep 0:00 - 8:00
	 01:30	 W9	 Sleep 0:00 - 8:00
	 03:30	 W10	 Sleep 0:00 - 8:00
	 05:30	 W11	 Sleep 0:00 - 8:00
	 07:30	 W12	 Sleep 0:00 - 8:00
Day 3
	 09:30	 W13	 W8
	 11:30	 W14	 W9
	 13:30	 W15	 W10
	 15:30	 W16	 W11
	 17:30	 W17	 W12
	 19:30	 Sleep 20:00 - 8:00	 W13
	 21:30	 Sleep 20:00 - 8:00	 W14
	 23:30	 Sleep 20:00 - 8:00	 W15
	 01:30	 Sleep 20:00 - 8:00	 W16
	 03:30	 Sleep 20:00 - 8:00	 W17
	 05:30	 Sleep 20:00 - 8:00	 W18
	 07:30	 Sleep 20:00 - 8:00	 W19
Day 4
	 09:30	 W18	 W20
	 11:30	 W19	 W21
	 13:30	 W20	 W22
	 15:30	 W21	 W23
	 17:30	 W22	 W24
	 19:30	 W23	 Sleep 21:00 - 8:00
	 21:30	 W24	 Sleep 21:00 - 8:00
	 23:00	 Sleep 23:00 - 8:00	 Sleep 21:00 - 8:00

Simulated luggage screening task training bouts (T1-T7) and work 
bouts (W1–W24) are shown for the group that received the sleep 
deprivation condition first (D1) and for the group that received the 
condition after a second night of eight hours sleep (D2). The 35-
hour sleep deprivation period is in bold type.
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(P < 0.001) —subjects were more willing to classify both safe 
and threat bags as threats towards the end of the study. Signal 
detection performance increased nonsignificantly from 0.805 at 
the beginning of the study to 0.808 at the end of the study (P = 
0.510). Average bout duration decreased significantly from 16 
min 36 s at the beginning of the study to 15 min 35 s at the end 
of the study (P < 0.001), i.e., subjects completed the task on 
average 1 min earlier at the end of the study.

Time-On-Task Effects

Time on task effects on HR, FAR, A’, and B”D are shown 
in Figure 3. Both HR (Plinear and Pquadratic < 0.001) and FAR (P < 
0.001) decreased significantly with time-on-task. The decline 
in HR was more prominent at the beginning of the task. It de-
creased from 60.2% at the beginning to 52.2% at the end of 
the task. FAR decreased in a linear fashion from 18.8% at the 
beginning to 13.5% at the end of the task. SLST performance 
A’ remained unchanged (P = 0.198) during time-on-task. There-
fore, the simultaneous decrease in HR and FAR was caused by 
a significant (Plinear < 0.001, Pquadratic = 0.002) shift in response 
bias B”D towards more conservative criteria. Like HR, the in-
crease in B”D was more prominent at the beginning of the task. 
Response latency decreased significantly (Plinear < 0.001, Pquadratic 
= 0.004) with time-on-task. In contrast to HR and B”D, the de-
cline in response latency was more prominent toward the end 
of the task. Average response latency decreased from 3.53 s per 
bag at the beginning to 3.32 s per bag at the end of the task. 
There were no significant interactions between time-on-task 
and night work, sleep loss, and time in study for HR, FAR, A’, 
B”D or response latency at alpha = 0.05.

Effects of Type and Difficulty of Threat

We sought to determine whether the effects of night work 
and sleep loss on threat detection were associated with varia-

Results

The effects of night work, sleep loss, and time in study on 
SLST performance are shown in Figure 2 and summarized in 
Table 2.

Night Work Effects

Average HR decreased from 56.9% to 55.2% during night 
work (P = 0.151), while average FAR increased significantly 
from 15.4% to 17.9% (P < 0.001), leading to a significant de-
crease in average A’ from 0.808 to 0.785 (P < 0.001). Response 
bias B”D decreased nonsignificantly from 0.562 to 0.513 (P = 
0.053). Average bout duration decreased significantly from 15 
min 49 s to 14 min 54 s during night work (P < 0.001). Averag-
ing over all subjects and all work bouts, subjects needed 15 min 
35 s to complete the task (range: 6 min 43 s to 24 min 25 s).

Sleep Loss Effects

Average HR decreased significantly from 57.3% to 53.8% 
under the influence of sleep loss (P = 0.008), while average FAR 
increased from 15.6% to 16.5% (P = 0.318), leading to a signifi-
cant decrease in average A’ from 0.808 to 0.789 (P = 0.001). Re-
sponse bias B”D decreased nonsignificantly from 0.561 to 0.556 
(P = 0.877). Average bout duration decreased from 15 min 28 s 
to 15 min 8 s during sleep loss (P = 0.053).

Time in Study Effects

Both average HR and FAR increased with simultaneously 
increasing study duration; average HR increased significantly 
from 50.4% at the beginning of the study to 58.1% at the end 
of the study (P < 0.001), and average FAR increased signifi-
cantly from 11.9% to 16.3% (P < 0.001). This was caused by a 
significant decrease in response bias B”D from 0.707 to 0.529 
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Time out rate (response latencies >7 s) was generally low 
and paralleled response latency. For example, time out rate in-
creased in the following order: guns with low target difficulty 
(3.2%), knives with low target difficulty (4.3%), guns with high 
target difficulty (5.4%), and knives with high target difficulty 
(6.4%). Time out rate for safe bags was identical to bags with 
high target difficulty knives (6.4%).

Response latencies were also calculated separately for bags 
classified as threat bags and bags classified as safe bags. Fig-
ure 4B shows that response latencies were markedly shorter for 
bags classified as threat bags compared to those classified as 
safe bags. For correctly identified threats (hits), response laten-
cy increased in the same order that was observed for all threats 
(i.e., response latency was shorter for guns [P < 0.001] and low 
difficulty targets [P < 0.001] without significant interaction [P = 
0.958]). Post hoc tests showed that all 4 categories differed sig-
nificantly from each other and from safe bags wrongly classi-
fied as threat bags (i.e., false alarms, all adjusted P < 0.001). Re-
sponse latency for incorrectly rejected threats (i.e., misses) was 
significantly higher for guns compared to knives (P < 0.001), 
but did not differ for threats with low and high target difficulty 
(P = 0.231), and there was no significant interaction (P = 0.123). 
Additionally, response latencies were significantly higher for 
misses in all 4 threat categories compared to correctly rejected 
safe bags (all adjusted P < 0.001).

Discussion

This is the first study investigating the effects of night work 
and sleep loss on threat detection performance with a simulated 
luggage screening task.

We could find only 2 studies that addressed sleep deprivation 
effects on signal detection performance, and both used auditory 
vigilance tasks.10,11 Each study reported significant decreases 
in HR and detection accuracy, while FAR and response bias 
were either nonsignificantly increased or remained unchanged. 
Our results for a visual threat detection task following a night 
of sleep deprivation are consistent with these earlier auditory 
detection studies. A few recent studies addressed the effect of 
sleep loss on object recognition memory. In these studies, spe-
cific objects were learned during a learning phase. After a night 

tion in threat type (i.e., guns versus knives), or with threat 
difficulty (high versus low difficulty), or with a combination 
of these 2 factors. Based on a survey in our own lab, threats 
were classified into 4 categories: guns or knives with high or 
low target difficulty. An analysis based on pooled data of all 
24 work bouts showed that HR was higher for guns than for 
knives (P < 0.001), and for threats with low target difficulty (P 
< 0.001) than those with high target difficulty, but there was 
no significant interaction between type and target difficulty of 
threat (P = 0.751). Average HR declined in the following order: 
HR = 75.3% for guns with low target difficulty, HR = 56.9% 
for knives with low target difficulty, HR = 51.6% for guns with 
high target difficulty, and HR = 32.5% for knives with high 
target difficulty. Post hoc tests with Tukey-Kraemer adjustment 
showed that all categories differed significantly from each other 
(P < 0.05). Further analyses showed that there were no signifi-
cant 2- or 3-way interactions between type of threat, threat dif-
ficulty, and sleep loss, night work, or time in study (i.e., HR 
was non-differentially influenced by sleep loss, night work, and 
time in study for all types of threat).

As the estimation of FAR, which was 15.5% on average, is 
based on safe bags only, the effects of type and difficulty of 
threat on A’ and B”D depend on changes in HR only, and A’ and 
B”D were therefore not calculated.

The effects of type and difficulty of threat on response la-
tency are shown in Figure 4. If hits and misses were not differ-
entiated, the order observed for HR was reversed for response 
latency (Figure 4A). Average time used to scan each threat bag 
increased in the order of guns with low target difficulty (M = 
2.52 s), then knives with low target difficulty (M = 2.99 s), then 
guns with high target difficulty (M = 3.27 s), and knives with 
high target difficulty (M = 3.51 s). Response latency for safe 
bags (M = 3.61 s) was higher compared to all threat bags. Re-
sponse latency was lower for guns (P < 0.001) and for low diffi-
culty threats (P < 0.001), with a significant interaction between 
type and target difficulty of threat (P = 0.019). There were no 
other significant 2- or 3-way interactions between type of threat, 
threat difficulty, and sleep loss, night work, or time in study. 
Post hoc tests with Tukey-Kraemer adjustment showed that all 
categories differed significantly from each other (P < 0.05) ex-
cept for safe bags and knives with high target difficulty.

Table 2—Effects of Night Work, Sleep Loss, and Time in Study on Threat Detection Performance in a Simulated Luggage Screening Task

	 Night Work	 Sleep Loss	 Time in Study
	 (Night Work–Day Work)	 (Deprived–Rested)	 (Last Bouts-First Bouts)
Hit Rate	 −0.017	 −0.035**	 +0.076***
	 (−0.040, +0.006)	 (−0.061, −0.009)	 (+0.058, +0.094)
False Alarm Rate	 +0.025***	 +0.009	 +0.043***
	 (+0.010, +0.039)	 (−0.009, +0.026)	 (+0.030, +0.057)
Accuracy A’	 −0.023***	 −0.019**	 +0.003
	 (−0.034, −0.012)	 (−0.030, −0.008)	 (−0.006, +0.012)
Response Bias B”D	 −0.049	 −0.005	 −0.179***
	 (−0.100, +0.001)	 (−0.067, +0.057)	 (−0.223, −0.135)
Bout Duration [s]	 −54.8***	 −19.1	 −60.3***
	 (−73.2, −36.4)	 (−38.4, +0.2)	 (−78.6, −42.1)

Point estimates of absolute changes (95% confidence limits) are given.
*P < 0.05, **P < 0.01, ***P < 0.001 (H0: no difference between groups)
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Thus, it was impossible for them to learn from previous suc-
cesses or mistakes.

However, response latency decreased significantly towards 
the end of the study, which in itself could be interpreted as an 
improvement, especially since threat detection accuracy did 
not decrease simultaneously. On the one hand, decreases in re-
sponse latency without relevant improvements in detection ac-
curacy could be explained by improving visual scanning without 
improving object recognition. This hypothesis is corroborated 
by findings of McCarley et al., who tracked eye movements 
during a simulated threat detection task.17 Their subjects were 
quicker to localize and fixate targets with increasing practice, 
but were not more likely to do so. On the other hand, both HR 
and FAR were shown to increase significantly towards the end 
of the study. As hits and false alarms were shown to be associ-
ated with shorter response latencies compared to misses and 
correct rejections, the use of more liberal criteria (i.e., indicat-
ing a threat was present more frequently) alone could suffice to 
explain the overall decrease in bout duration towards the end of 
the study. The reminder after the completion of each 200-bag 
set that the primary goal was to achieve high detection rates 
and the secondary goal was to keep false alarm rate low may 
have contributed to the significant shift in response bias to more 
liberal criteria towards the end of the study.

The well known “vigilance decrement” was replicated for 
HR in our study.18 In accordance with classical findings,19 HR 
decreased prominently during the first minutes of the task, but 
deteriorated no further during the last third of the task. This 
decrease in HR was accompanied by a prominent time-on-task 
effect on response bias. With increasing time-on-task subjects 
applied more conservative decision criteria (i.e., they were less 
likely to say “threat” to both threat bags and safe bags). The 
same result was reported by Deaton et al.10 Again, the change 
in response bias was strongest during the first half of the work 
bout, which may reflect subjects’ increasing awareness of low 
threat prevalence, which was 25% in our study.20,21 If the above 
findings were reproduced for professional luggage screeners, 
higher miss rates would become more and more likely with in-
creasing time-on-task.

Additionally, time used to scan bags decreased with increas-
ing time-on-task, especially toward the end of the bout. This 
could have been caused by the shift in response bias, as more 
conservative decision criteria may not only influence the ten-
dency to say “no threat,” but also the time needed to come to 
this decision. However, this is unlikely, as the greatest shift in 
response bias was observed during the first half of the task, 
while the greatest shift in response latency was observed dur-
ing the second half of the task. Alternatively, improving target 
recognition or visual scanning towards the end of the task may 
have caused the decline in response latency.17 This is a more 
likely explanation than declining motivation or increasing fa-
tigue, as threat detection accuracy A’ did not deteriorate with 
time-on-task in the whole data set.

Threat detection performance decreased in the expected or-
der, with guns being detected more often and faster than knives, 
and with threats with low target difficulty being detected more 
often and faster than threats with high target difficulty. Night 
work and sleep loss decreased performance in the same degree 
for all types of threats.

with or without sleep, the previously learned objects had to be 
recalled and differentiated from objects that did not belong to 
the learning set. In this way, it was shown in both mice12 and in 
man13 that sleep deprivation negatively affects memory consoli-
dation for object recognition.

Ours was the first study using a visual search task to investi-
gate the effects of sleep loss on signal detection performance. In 
contrast to the object recognition studies, only a few typical ex-
amples of threats were shown to the subjects prior to the experi-
ment in this study, and subjects had to detect never before seen 
threats among high levels of background clutter in situations 
with varying degrees of sleep deprivation. This may explain the 
relatively low hit rates found in this study; but in combination 
with the high fidelity of the simulated luggage screening task, 
it guaranteed a high ecologic validity of the study results. Low 
motivation could be another reason for low hit rates, but we 
found no evidence for this. In fact, increasing response laten-
cies with simultaneously increasing target difficulty, as well as 
increased response latencies for bags judged to be safe (i.e., no 
threat) suggests that subjects took a longer time to find threats. 
A reduced motivation argument would predict that they would 
hurry to end the task and in so doing have reduced response 
latencies for all bag types.

Both night work and sleep loss showed detrimental effects 
on signal detection performance using SLST threat detection 
stimuli. HR decreased and FAR increased during both night 
work and sleep loss, leading to a significant decrease in detec-
tion accuracy. A’ remained more or less constant during the first 
16 hours of wakefulness and deteriorated quickly with further 
sleep deprivation (Figure 2). This finding is consistent with a 
considerable amount of research demonstrating that perfor-
mance decrements become evident only after wakefulness is 
extended 16 hours or more,14 or into the circadian nadir. Worst 
SLST performance was found at 07:00 after 23 hours awake, 
which is consistent with the interaction of the homeostatic drive 
for sleep and endogenous circadian phase.6 Studies suggest that 
the highest risk of sleepiness related traffic accidents is ob-
served around this time of the day.15,16

Although the absolute changes in HR and FAR induced by 
sleep loss appear to be relatively modest, these performance 
reductions could have serious consequences in security opera-
tions. Because of the high amounts of luggage screened at U.S. 
airports (700 million per year) even minor changes in HR and 
FAR may cause relevant absolute increments in the number of 
missed threats, especially in the number of bags unnecessarily 
subjected to a thorough investigation. These findings empha-
size the necessity of well-rested and vigilant luggage screeners 
to support and promote high levels of threat detection perfor-
mance and air traffic safety.

It is unknown whether the adverse effects on threat detection 
performance we observed during night work and after sleep 
loss would be mitigated by more experience with the task. Fol-
lowing 2 orientation days and one day of initial training on the 
task, there was no significant further training effect (i.e., SLST 
performance did not improve towards the end of the study). 
One possible reason for the lack of a continued training effect 
is that there was no feedback on actual performance accuracy 
for each individual bag. Instead, subjects were informed about 
their overall performance only at the end of each 200-bag set. 
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what subjects in our experiment experienced when they per-
formed the SLST every 2 h.

Keeping subjects active and performing for longer periods 
of time (i.e., throughout the night and after a night without 
sleep) than occurs with standard airport screener work shifts 
was done to address a concern TSA had about what happens 
to threat detection performance when screeners hold secondary 
jobs that cause them to perform their 8-h work shift for TSA 
following a work shift at another job. This extra long period of 
active work-time was accurately simulated in our study, but we 
also recognize that such prolonged experimental work periods 
do not generalize to the planned work shifts of airport screen-
ers. Thus, we were not attempting to create work-rest schedules 
that precisely mimicked those of TSA workers (which can vary 
among airports), but rather, to answer basic questions of how 
fatigue from night work and sleep loss affected threat detection 
performance on a high-fidelity simulated threat detection task.

Conclusions

The results of this experiment suggest that night work and 
sleep loss adversely affect performance of nonprofessional sub-
jects on a task that simulates threat detection demands of airport 
screeners. Thus, if the results were to be replicated in profes-
sional screeners and real work environments, fatigue in luggage 
screening personnel could potentially pose a threat for air traffic 
safety unless countermeasures for fatigue are deployed. In the 
future, methods should be developed to predict signal detection 
performance based on brief fitness-for-duty tests or objective 
monitoring of screener alertness during the screening task, in 
an effort to assure high levels of vigilance and detection per-
formance.
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