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Abstract [497]  OBJECTIVES Studies on the effects of aircraft noise on sleep with a large subject 

sample as well as with high methodological expense are lacking, and hence statistically reliable 

recommendations for the protection against aircraft noise can presently not be made. However, 

scientifically based investigations are necessary for providing proper guidelines for authorities and 

users. METHODS DLR studied human reactions to nocturnal aircraft noise in laboratory and field 

experiments: In total, 192 healthy volunteers (m/f), aged 18 to 65 years, underwent 2240 study nights. 

In the isolation facility of the institute, 128 subjects were examined during 13 consecutive nights. 16 

subjects served as control. For 112 subjects, aircraft noise events have been applied between 4 and 128 

times per night (45 ≤ LAS,max ≤ 80 dB(A)). Sleep disturbances were assessed by EEG, EOG, EMG 

and EKG, by respiration, finger-pulse amplitude and position in bed. These signals were 

simultaneously recorded with the acoustic signals for calculating event-correlated reactions. The 

concentrations of cortisol, adrenalin and noradrenalin were determined from all night urine samples. 

At evening and morning, performance tests and questionnaires (fatigue, mood, annoyance) were 

applied. These data and results were examined in two field studies with 64 volunteers during 9 

consecutive nights at their homes near Cologne airport. CONCLUSIONS The investigations will be 

concluded in March 2004. They are very ambitious and unique, even on a world wide standard. DLR 

wants to contribute by profound experimental knowledge to the very controversial disputes about the 

degree of impairing effects on human specific reactions to nocturnal aircraft noise. 

 

1 INTRODUCTION 

The steady increments of air traffic volume in the past are very likely to continue in the future. The 

big aircraft manufacturers estimate a global growth of 5% per year for passenger air traffic and of 

6% per year for cargo within the next 10 to 15 years. The number of starts and landings will 

presumably double. In the past, the noise sensitivity of residents living close to airports has 

increased. It can be expected that with the growth of aircraft operations, the tolerance to such 

increments will further reduce, if the noise emissions cannot be substantially abated.  

Although good knowledge is available on the annoying effects of aircraft noise [1], the impact of 

aircraft noise on human physiology and performance is much less clear. Particularly, investigations 

into human sleep by classic polysomnographical methods are rare and were performed with small 

subject samples and led to divergent results. Studies on human specific influences of aircraft noise 

with large numbers of subjects as well as a high methodological expense are necessary in order 

make statistically reliable recommendations for the protection against aircraft noise, since scientific 
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investigations are the basis to provide proper guidelines for authorities and users, and technical 

advances for noise abatement procedures. Therefore, the DLR-Institute of Aerospace Medicine has 

been investigating the influence of nocturnal aircraft noise on sleep, subjective well-being and 

performance since 1999. These investigations are performed within the frame of the DLR project 

“Quiet Air Traffic” in which a catalogue of different measures is developed to significantly reduce 

aircraft noise. 

2 METHODS 

The human specific reactions to nocturnal aircraft noise were studied in laboratory and field 

experiments (i.e. at the subjects’ homes). In total, 192 healthy volunteers underwent 2240 study 

nights during these studies.  

2.1 Laboratory Studies 

The first group of 32 subjects was studied in 1999, the second in 2000 and the third in 2001, 

followed by the last group of 32 volunteers in 2003. The age of subjects (males and females) was 

between 18 and 65 years (mean 38 years). In the isolation facility of the institute, 128 subjects were 

examined for 13 consecutive nights. 16 subjects served as control, i.e., they did not receive any 

aircraft noise. For the other 112 subjects, aircraft noise events have been played back between 4 and 

128 times per night with maximum sound pressure levels between 45 and 80 dB(A). This 

corresponds to an equivalent sound pressure level between 30 and 53 dB(A) within the interval of 

eight hours of sleep. Occurrences of sleep disturbances (primary effects of aircraft noise) are 

assessed by electrophysiological parameters containing the electro-encephalogram (EEG), electro-

oculogram (EOG), electromyogram (EMG) and electro-cardiogram (EKG), respiration, finger pulse 

amplitude and position in bed. These signals have been recorded together simultaneously with the 

acoustic data in order to calculate event-correlated reactions. 

As possible further effects of aircraft noise on sleep, the concentration of electrolytes (potassium, 

sodium, magnesium, and calcium) and stress hormones (cortisol, adrenalin and noradrenalin) were 

determined from all night urine samples. Aliquots were if required acidified, immediately deep 

frozen for their respective determination of the concentrations of these hormones. Potassium and 

sodium were analyzed by ion-selective electrodes, calcium and magnesium by measuring their 

complexes photometrically. Catecholamines were analyzed by standard high performance liquid 

chromatography (HPLC) and electrochemical detector. Free cortisol analysis was done by a radio 

immuno assay (RIA) for laboratory studies I, III & IV, whereas a linked enzyme immuno assay 

(LEIA) cortisol kit was used in study II. From concentrations and collection periods mean flux rates 

(absolute and relative) for the appropriate stress hormones resulted. Statistical analysis was done by 

SPSS version 10.0.7 using tests for non-parametric pairs, and independent samples. We compared 

flux rates and respectively, equivalent sound pressure levels, maximum sound pressure levels and 

frequencies of aircraft noise events. 

To investigate secondary effects of aircraft noise on human sleep, 24-h recordings of subjects´ 

activity, several computerized performance tests in the evening and in the morning were conducted, 

as well as questionnaires were applied with respect to fatigue, well-being, mood and annoyance. 

The four performance tests consisted of a “Single Reaction Task (SRT)” [2], two “Memory Search 

Tasks” (MST, of 4 and 6 letters, respectively) and an “Unstable Tracking Task” (UTT)” [3] with 

three minutes test time each, with the exception of SRT (10 min, in order to assess vigilance). 

Before subjects entered the facility, they intensively trained these four tests (at least 32 training 

sessions). In the SRT, a three digit running stopwatch (time in ms) suddenly appears on the blank 

screen of the test computer at random intervals. As soon as the subject hits the response key, the 

stopwatch shows the achieved reaction time for three seconds before the screen turns blank again 
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for the next trial. During the MST, a single letter appears on the monitor and the subject has to 

decide as quickly as possible if this is one out of the set of letters (4 or 6) which the subject had to 

memorize at the beginning of the test. The time of response and its correctness are recorded. The 

UTT is used to examine the dexterity by means of testing hand eye coordination. The task within 

this test is to keep a bar, which is unsteadily moving on the monitor to the left or to the right, in the 

center of the monitor controlled by a joystick. During this test the mean of deviation of the moving 

bar from the center of the monitor is recorded. All tests were performed in the same order at the 

same time in the morning (after getting up) and in the evening. In the morning each subject filled in 

questionnaires on individual’s night sleep and subjective noise sensations as well as on fatigue, 

well-being, mood and annoyance [4-6]. Annoyance due to nocturnal aircraft noise was evaluated 

using a 5-point rating scale ranging from “1 = not annoyed” to “5 = very annoyed”. 

Moderators like age, sex, and degree of annoyance by nocturnal aircraft noise prior to the studies 

were considered in the statistical analyses of the data. 

2.2 Field Studies 

In the field studies, 64 volunteers aged 19-61 (mean age: 38) were investigated between September 

2001 and November 2002 in the vicinity of Cologne Airport, which is one of Germany's airports 

with the highest number of nocturnal starts and landings. Each subject underwent a period of 9 

consecutive nights.  

Principally, all methods used in the laboratory, were also employed in the field. However, 

acoustical monitoring was performed outside (in 2 m distance from the window of the sleeping 

room), and inside the sleeping room near the sleepers ear: One meter (outside) recorded actual 

sound files when the external sound pressure level exceeded the external background noise by 4 

dB(A) and triggered one meter inside; another inside meter recorded actual sound files when the 

internal sound pressure level exceeded the internal background noise by 4 dB(A). 

 

3 RESULTS 

Since the results of the acoustical recordings [7] and the findings with respect to sleep and sleep 

disturbances [8] will be reported elsewhere in the proceedings of this congress, this paper 

concentrates on the outcome of the investigations concerning stress hormones, performance and 

subjective ratings. 

3.1 Stress Hormones 

It is impossible to present all results of the stress hormones analyses in detail here. We restrict 

ourselves to the most relevant aspects and refer to the final report [9]. The stress model accepted in 

general assumes a reaction chain. The stressor “noise” is perceived and processed cerebrally, 

followed eventually by a secretion of hormones like catecholamines (adrenalin, noradrenalin) or 

cortisol. These hormones may lead to electrolyte shifts on the sub cellular level especially changing 

magnesium and calcium concentrations. Until recently, urine samples from all night collections 

were taken for the analyses of stress hormones, and this method was adopted for the current study 

[11]. 

Electrolytes: The nocturnal excretion rates of potassium, sodium, magnesium, and calcium were 

determined. A balanced food control, however, was not ensured in the evenings. A statistical 

significant relation with nocturnal aircraft noise is not detectable. There is a difference between 

excretion rates obtained in the laboratory and in the field. All mean excretion rates of electrolytes 

are increased under laboratory conditions. 
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Adrenalin:  Adrenalin excretion rates in all night urines are unchanged with night aircraft noise. 

They remain on extremely low levels. Under laboratory conditions, the adrenalin concentrations are 

below detection limit (1 ng/ml) in more than 2/3 of all collected urines, under field conditions in 

roughly ½ of all samples. There are no statistically relevant secretion rates that differ from those 

without aircraft noise.  

Noradrenalin: Noradrenalin excretion in all night urine samples is statistically analysed constant and 

not influenced by nocturnal aircraft noise. There are no changes depending on the equivalent noise 

level LAS,eq, nor the maximum noise pressure LAS,max, nor the number of events. No difference is 

observed between results taken from the laboratory and the field (see figure 1). Also the elapsed 

number of investigated nights does not depend on a potential influence of noise on the excretion of 

noradrenalin.   

 

Comparison LAB vs. FIELD Mean noradrenalin excretion in all 

night urine samples

0

5

10

15

20

25

<= 30 30-33 33-36 36-39 39-42 >42 45-48 48-51 51-54 > 54

Leq-3 (night, total, indoors) dB(A)

n
g
/m

in

LABORATORY

FIELD

112

140

223

135

207

111

128

76

111

55

119

23

lab nights

field nights

94 69 32 16

Figure 1: Mean noradrenalin excretion (± SD) in urine collected all night under laboratory conditions (n = 

112, no control groups, experimental groups only, bold line) and under field conditions (n = 64, bars) 

separated by equivalent noise levels classes of 3 dB(A). 

 

Cortisol: During the laboratory studies a change of determination methods occurred. Thus, absolute 

results from this single study phase are not immediately comparable. Under laboratory conditions 

the excretion rates of cortisol are influenced by noise. There is a significant trend (Jonckheere test) 

depending on maximum noise pressure LAS,max and the number of noise events. Also with 

increasing equivalent noise levels LAS,eq a significant trend is shown (figure 2). At the same time, 

however, a trend of increasing cortisol excretion is detectable with the time of investigation in the 

laboratory without any noise. These trends are not observed in the field. Since cortisol excretion 

shows a pronounced circadian rhythm, this property has to be taken into account, especially during 
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the field studies. On the weekends, cortisol excretions are considerably higher: this is not a matter 

of increased stress by aircraft noise (since air traffic was low during weekends) but rather of much 

longer mean sleeping times (mean waking-up times on Saturday/Sunday: 07:48 h; on all other days: 

06:11 h). Therefore, for the comparison of cortisol excretion under laboratory vs. field conditions 

only those nights are included when latest wake-up times are 07:00 h; this pattern corresponds with 

the laboratory study design. However, the mean wake-up time in the field is approximately 50 min 

earlier than in the laboratory. From this fact alone a difference between lab and field results is 

predictable, due to the circadian rhythm of the cortisol excretion, which is highest in the early 

morning. The figure 2 shows the mean excretion rates of cortisol from laboratory and field studies 

obtained by identical determination method and exclusion of nights, when subjects slept longer than 

07:00 h. Results show a significant difference between laboratory and field conditions, where 

results from the laboratory are elevated.  
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Figure 2: Mean cortisol excretion (± SD) in urine collected all night under laboratory conditions (n = 88, 

only experimental groups with identical determination method, no control groups, bold line) und under field 

conditions (n = 64, wake-up time before 07:00h, bars) separated by equivalent noise levels classes of 3 

dB(A).   
 

The study of the stress hormones and electrolytes does not exhibit unambiguous results. Especially, 

the excretion rates of electrolytes and catecholamines did neither show changes with various noise 

conditions (neither equivalent noise level LAS,eq, nor maximum noise pressure LAS,max, nor  

number of events), nor are there any differences between laboratory and field conditions. Possibly a 

single measure for the entire night is too insensitive to shed light on minute and short time 

excretions of catecholamines during the complete nocturnal phase. From the literature contradictory 

results are reported [12]. Electrolyte determinations from all night urine samples are futile, unless a 

controlled and balanced intake of food and beverages is ensured. Any possible mobilisation of 



6/10 

electrolytes by stress hormones under noise are covered by renal regulation of the electrolytes after 

food and beverage intake during dinner and the evening. Cortisol is a parameter that correlates by 

trend with noise, but only under laboratory conditions. The influence of cortisol’s endogenous 

circadian rhythm aggravates a final conclusion. If subjects wake-up on weekdays much earlier, as 

they do in the field, lower excretion levels of cortisol are detected and a correlation with nocturnal 

noise is not observed. The significant difference between laboratory and field results is partly 

founded on this fact. Additionally, high noise events, as applied in the laboratory, were not recorded 

under field conditions. They simply did not occur in the field. The trend of increasing cortisol levels 

with time of investigation in absence of any noise (as observed in the laboratory control group) has 

to be taken into account as well. An explanation might be a prolonged sleeping time in the 

laboratory in contrary to the subjects’ homes and usual sleeping habits, and the consecutively earlier 

onset of endogenous secretion (and excretion) in the morning. To obtain more reliable data several 

samples taken during the night are indicated. For the current study, however, special attention was 

focused on sleep without additional intrusions by investigators, and exclusively on sleep which may 

be disturbed by noise events.  

3.2 Performance 

All monitored performance parameters show a substantial difference between morning and evening 

sessions due to a distinct circadian variation. The results of the four test were usually better in the 

evening than in the morning. Since an influence of noise events on sleep could be mainly expected 

on the morning data, they are subject of this report. Like for cortisol excretion rates, the morning 

sessions during weekends of the field data were not considered in the analysis, because of long 

sleep durations and late wake-up times a strong circadian influence existed. 
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Figure 3: Reaction time of SRT (median, 95% confidence interval) separated by equivalent noise levels 

classes of 3 dB(A): N=112 (laboratory), N=64 (field).  
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The single reaction task (SRT) [2] enables a basal estimation of performance capability. In this test, 

a running stopwatch (in ms) is presented on a computer screen at irregular intervals and the subject 

has to react as fast as possible; the reaction time is counted and presented. This simple task 

primarily requires alertness and vigilance. Prolonged reactions reflect reduced concentration and 

elevated sleepiness. One result of the SRT is presented in figure 3. Generally, averaged reaction 

times were between 230 and 245 ms. Deviations from the median were high due to the 

inhomogeneous subject sample (with respect to age and gender). A relation between nocturnal noise 

strain and prolonged reaction times is not observable and statistically not found. 

The memory and search task (MST) examines mental capabilities by comparing symbols in a 

choice and reaction test. In contrast to SRT a decision has to be made before using different reaction 

keys. With respect to the Sternberg paradigm a group of letters is presented in the preparation 

phase, these letters have to be recalled during the test. In this study, a group of either 4 or 6 letters 

was used. After start of the test, a letter is presented which can be “true” or “false” with respect to 

the 4 (or 6) previously learned letters. The next letter is shown immediately after a response 

(whether correct or not). With increasing numbers, the reaction time increases simultaneously. The 

task is directed to the functioning of the work- and short time memory. The mean reaction times in 

the morning sessions of this study were about 500 ms (4-letter MST) and 560 ms (6-letter MST), 

respectively. The variation was 20 – 30 ms. The results of this study did not show any prolongation 

of reaction times as a response to nocturnal aircraft noise. 

Figure 4: Deviation (RMS) of the UTT (median, 95% confidence interval) separated by equivalent noise 

levels classes of 3 dB(A): N=112 (laboratory), N=64 (field). 
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in figure 4. Median values (RMS) are in a range between 7.5 mm and 8.5 mm and are located in the 
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deviation interval of about 0.5 mm. As for the other performance tests, a significant change with 

increasing aircraft noise during the preceding night was not detected.  

 

The described results do not indicate relevant effects of nocturnal aircraft noise events on the 

performance as investigated in this study. Since the results from sleep research of this study show a 

non-significant reduction of total sleep time under the noise condition [8], a significant influence on 

performance in the next morning could be not expected. Since the presented data are average values 

of all subjects, a separated analysis of data from those volunteers who were especially sensitive to 

noise events may be useful. Furthermore, an analysis of data from this subject sample with respect 

to the number of noise induced awakenings may elucidate a subtle elevated vulnerability on 

performance. 

3.3 Psychology 

Psychological effects of nocturnal aircraft noise were investigated by the different questionnaires 

concerning subjective sleep quality, fatigue, mood, stress and recuperation as well as annoyance [5, 

6]. These parameters were analyzed in relation to the exposition to nightly aircraft noise (in terms of 

maximum noise pressure LAS,max, equivalent noise levels LAS,eq, and number of events). 

Significant dose-effect curves were not found for following psychological parameters: sleep quality, 

fatigue, mood, and stress and recuperation. However, annoyance – the main psychological variable 

for noise effects – a significant relation between dose and effect was detected under laboratory as 

well as under field conditions by using the method of logistic regression with random effects 

(EGRET software, version 2.0.31). For the generation of a dichotomized dependent variable of 

annoyance, the categories 3 to 5 of the 5-scale questionnaire of annoyance were condensed 

(“annoyed”), and the categories 1 and 2 (“not annoyed”). Since only 20% of the responses of the 

laboratory study and 4% of the field study fell in the categories 4 and 5 (figure 5), a further analysis 

of the “highly annoyed” [10] was not performed. 
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Figure 5: Distribution of annoyance responses (Question: “How strong were you annoyed by aircraft noise 

during the last night?”) in the laboratory (N=112) and the field (N=64). Categories are “not at all” (nicht), 

“little” (wenig),”moderate” (mittelmäßig), “strong” (ziemlich) and “extreme” (sehr). 
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The dose-effect curves of annoyance are shown in figure 6, separately for the laboratory and field 

investigations. In these curves personal moderators (e.g. age, gender, noise sensitivity) and those 

which were related to aircraft noise specific aspects (e.g. ratings concerning health effects, attitude 

towards air traffic), were considered and examined with respect to their significance. The curves 

indicate that annoyance increases with elevated noise load. Furthermore, the dose-effect curve from 

the laboratory specific investigations lies substantially (and significantly) above that from the field 

specific investigations. At the lower end of the presented scale, the predicted amount of annoyed 

people is nearly the same (12% to 15%). At the far end, 30% of the field population are annoyed, 

whereas in the laboratory population this proportion is 70%. Thus, the subjects in the laboratory 

were significantly more annoyed than those in the field.  
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Figure 6: Predicted proportion of by aircraft noise annoyed people under field and laboratory conditions, 

depending upon equivalent noise levels LAS,eq  (“at sleeper´s ear”). 

 

Subjects living and sleeping in their own familiar environment is one reason which may explain the 

differences found between the laboratory and the field conditions. The findings of the sleep research 

of this investigation which showed similar results [8] support the conclusion that the nocturnal 

aircraft noise scenarios encountered in the field have much lesser effects than those experienced in 

the laboratory. 

4 SUMMARY 

The DLR-Institute of Aerospace Medicine investigated various physiological and psychological 

effects of night aircraft noise on a large population. This investigation was conducted with 192 

subjects in 2240 nights. Laboratory and field studies were performed using the same extensive and 

expensive methods, including acoustical, polysomnographical, biochemical, and psychological 

methods as well as performance tests. This and complementary [7, 8] papers give an overview of 

the study design and methods and summarize the main findings.  
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