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Abstract— Nonverbal communication plays an important role
in coordinating teammates’ actions for collaborative activities.
In this paper, we explore the impact of non-verbal social cues
and behavior on task performance by a human-robot team.
We report our results from an experiment where näıve human
subjects guide a robot to perform a physical task using speech
and gesture. The robot communicates either implicitly through
behavior or explicitly through non-verbal social cues. Both self-
report via questionnaire and behavioral analysis of video offer
evidence to support our hypothesis that implicit non-verbal com-
munication positively impacts human-robot task performance
with respect to understandability of the robot, efficiency of
task performance, and robustness to errors that arise from
miscommunication. Whereas it is already well accepted that
social cues enhance the likeability of robots and animated agents,
our results offer promising evidence that they can also serve
a pragmatic role in improving the effectiveness human-robot
teamwork where the robot serves as a cooperative partner.

Index Terms— Human-Robot Interaction, Non-verbal Com-
munication, Teamwork and Collaboration, Humanoid Robots.

I. I NTRODUCTION

This work is motivated by our desire to develop effective
robot teammates for people. In particular, the issue of how to
design communication strategies to support efficient and ro-
bust teamwork is very important. In human-human teamwork,
sharing information through verbal and non-verbal channels
plays an important role in coordinating joint activity. We
believe this will be the case for human-robot teams as well.

For instance, Collaborative Discourse Theory specifies the
role of dialog in the formulation and execution of shared plans
for a common goal [5]. Joint Intention Theory argues that
efficient and robust collaboration in dynamic, uncertain, and
partially unknowable environments demands an open channel
of communication to coordinate teamwork where diverging
beliefs and fallible actions among team members are the norm
[4]. Much of the existing research has focused on the role of
verbal behavior in coordinating joint activity.

Our own work in mixed-initiative human-robot teamwork
grounds these theoretical ideas for the case where a human
and a humanoid robot work collaboratively to perform a
physical task in a shared workspace [3]. Therefore the use
of non-verbal behavior in coordinating joint activity plays a
very significant, yet relatively understudied role, as compared
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to verbal contributions. The focus this work is to better
understand the role of non-verbal behavior in coordinating
collaborative behavior for physical tasks.

It is important to recognize that non-verbal communication
between teammates can be explicit or implicit. We define
explicit communication as deliberate where the sender has
the goal of sharing specific information with the collocutor.
For instance, explicit communication transpires when a robot
nods its head in response to a human’s query, or points to
an object to share information about it with the human. In
embodied conversational systems, for instance, explicit non-
verbal cues are used by agents to regulate the exchange of
speaking turns, convey propositional information, or direct
the human’s attention through various gestures and discourse-
based facial expressions.

We defineimplicit communication as conveying informa-
tion that inherent in behavior but which is not deliberately
communicated. It is well known that observable behavior can
communicate the internal mental states of the individual. Gaze
direction can communicate attention and visual awareness,
emotive expressions can communicate underlying affective
states, and so forth. For example, implicit communication
of the robot’s attention transpires when the human reads the
robot’s gaze to determine what currently interests the robot.

This paper reports our results from an experiment designed
to explore the role and effect of adding implicit non-verbal
communication in human-robot teamwork. Naı̈ve human sub-
jects were asked to instruct an autonomous humanoid robot
using speech and gesture to perform a simple physical task.
The robot does not speak. Instead it communicates non-
verbally — either implicitly through behavior or explicitly
through gestural social cues. Self-report results via ques-
tionnaire offer supportive evidence that implicit non-verbal
communication improves transparency of the interaction for
the human subject over that of only deliberate non-verbal
communication. Behavioral data coded from video of the
sessions offers support that the robot’s implicit nonverbal
communication improves the efficiency and robustness of the
interaction.

II. B ENEFITS OFIMPLICIT COMMUNICATION

This paper explores the following three hypotheses regard-
ing how the design of a robot’s implicit non-verbal behavior
can benifit the quality of human-robot teamwork.



Transparency and understandability of the robot’s in-
ternal state. We believe that implicit non-verbal communica-
tion is important in human-robot teamwork because it conveys
why the robot behaves as it does. We argue that it makes
the robot’s internal state transparent to the human teammate
and subsequently more understandable and predictable to her
— she intuitively knows how to engage the robot to get the
desired result. Given that humans have strong expectations
for how particular non-verbal cues reflect specific mental
states of another, it is very important that the robot’s implicit
non-verbal cues and the internal states to which they map
adhere to natural human analogs. This is an important design
principle because if they do not, the human is likely to
make incorrect inferences about the robot, thereby making
the robot’s behavior misleading or confusing to the human.

Efficiency of task performance. We believe that one
important outcome of making the robot’s behavior transparent
to the human is improved efficiency in task performance.
First, by reading these implicit non-verbal cues, the human
is better able to fluidly coordinate her actions with those
of the robot, potentially saving time and additional steps.
These cues can also communicate the robot’s understanding
(or lack thereof) to the human without requiring her to
request explicit confirmations that take additional time. Third,
these cues allow potential sources of misunderstandings to be
immediately detected. The human can then quickly adapt her
behavior topreemptivelyaddress these likely sources of errors
before they become manifest and require additional steps to
correct.

Robustness to errors.Unfortunately, however, errors will
occur in human-robot teamwork just as they do in human-
human teamwork. We argue that not only is transparency of
the robot’s internal state important for improving teamwork
efficiency, it also plays an important role in improving team-
work robustness in the face of errors. Implicit non-verbal
cues can be used to readily convey to the humanwhy an
error occurred for the robot, often due to miscommunication.
This allows her to quickly address thecorrect source of
the misunderstanding to get the interaction quickly back
on track. Otherwise misunderstandings shall persist until
correctly identified and could continue to adversely impact
the interaction.

III. R ELATED WORK

Whereas past research has shown that non-verbal social
cues improve the likeability of robots and interactive char-
acters, demonstrating their ability to effect improved task
performance has been elusive. In past work, the embodied
agent (often virtual) usually acts as an assistant or advisor to
a human in solving an information task. In our scenario, the
human leads the interaction but she is dependent on the robot
to do the actual work. This level of interdependence between
human and robot may make communication between them
sufficiently important to be able to see the effects of implicit
non-verbal behavior on task performance, and particularly its
role in coordinating joint action.

In addition, this study investigates the impact of the robot’s
physical and non-verbal behavior on the human’s mental
model for the robot, in contrast to prior works that have
explored how this mental model is influenced by what the
robot looks like (i.e., its morphology) or its use of language
(e.g., [9]).

We are not aware of Human-Robot Interaction (HRI) stud-
ies that have systematically explored the issue of teamwork
robustness in the face of errors where the robot is completely
autonomous (e.g., rather than teleoperated as in USAR work).
For instance, many HRI experiments adhere to a Wizard of
Oz methodology to bypass the physical and cognitive limits
of what robots can do today (e.g., [6]). This is done for
good reasons, but it misses the opportunity to investigate
how to design autonomous robots that successfully mitigate
errors that inevitably do arise in human-robot teamwork to
do common performance limitations.

In contrast, our robot runs completely autonomously, and
therefore is subject to making typical errors due to limitations
in existing speech recognition and visual perception technolo-
gies. For instance, the human subjects in our study speak
with different accents and at different speeds. They wear
clothes or stand at interpersonal distances from the robot that
can adversely affect the performance our gesture recognition
system. This gives us the opportunity to systematically inves-
tigate how to design communication cues to support robust
human-robot teamwork in the face of these typical sources of
miscommunication.

Finally, in HRI studies where the robot operates com-
pletely autonomously, the interaction is typically robot-lead
(e.g., [14]). This allows researchers to design tasks, such
as information sharing tasks or hosting activities, where the
human’s participation can be restricted to stay within the
robot’s performance limitations (such as only being able to
give ”yes” or ”no” responses to a robot’s queries). In contrast,
this work explores a human-lead task.

Consequently, our human subjects have significant flexibil-
ity and show substantial variability in how they interact with
the robot to perform the task. For instance, as mentioned
above, people speak differently, wear different clothes, and
choose to stand different distances from the robot. The style of
their gestures also varies widely, and they each accomplish the
task using a different series of utterances. This places higher
demands on the robot to respond dynamically to the human’s
initiatives. However, our task is structured sufficiently (in
contrast to more freeform interaction studies as in [8]) to be
able to compare task performance across subjects for different
conditions. This allows us to investigate how human behavior
varies along important dimensions that impact teamwork
performance.

IV. EXPERIMENTAL PLATFORM

Our research platform is Leonardo (“Leo,” See Fig. 1), a
65 degree of freedom expressive humanoid robot designed for
social interaction and communication to support teamwork
[7] and social learning [11]. The robot has both speech-based



Fig. 1. Leo and his workspace with three buttons and a human partner.

and visual inputs. Several camera systems are used to parse
people and objects from the visual scene [2].

In the task scenario for this experiment, the human stands
across the workspace facing the robot. A room-facing stereo-
vision system segments the person from the background, and
a Viola-Jones face detector is used to locate her face. A down-
ward facing stereo-vision system locates three colored buttons
(red, green and blue) in the workspace. It is also used to
recognize the human’s pointing gestures. A spatial reasoning
system is used to determine to which button the human is
pointing. The speech understanding system, implemented us-
ing Sphinx-4 [10], uses a limited grammar to parse incoming
phrases. These include simple greetings, labeling the buttons
in the workspace, requesting or commanding the robot to
press or point to the labeled buttons, and acknowledging that
the task is complete.

These speech-related and visual features are sent to the
cognitive system (an extension of theC5Marchitecture [1]
that models cognitive processes such as visual attention,
working memory, and behavior arbitration) where they are
bundled into coherent beliefs about objects in the world
and communicated human intentions, which are then used
to decide what action to perform next. These actions include
responding with explicit non-verbal social cues (e.g., gestures
and communicative expressions as shown in Table I), as
well as task-oriented behaviors with implicit communicative
value — such as directing attention to the relevant stimuli, or
pressing the buttons ON or OFF. The cognitive system also
supports simple associative learning, such as attaching a label
to an object belief, allowing the human to teach the robot the
names of objects in its workspace.

V. EXPERIMENT

Our experiment is designed to test the effects of Leo’s
nonverbal expressions in cooperative interactions with naı̈ve
human subjects. Each subject was asked to guide the robot
through a simple button task where the subjects first taught
the robot the names of the buttons, and then had the robot
turn them all on. Although simple, this scenario is sufficiently
rich in that it provides opportunities for errors to occur.
Specifically, there are two potential sources of errors in
communication:

• The gesture recognition system occasionally fails to
recognize a pointing gesture. Or,

• The speech understanding system occasionally misclas-
sifies an utterance.

Furthermore, errors that occur in the first part of the task
(the labeling phase) will cause problems in the second part
of the task (the button activation phase) if allowed to go
undetected or uncorrected. In addition, the robot also suffers
occasional glitches in its behavior if a software process
crashes unexpectedly. If this malfunctioning prevented the
human subject from completing the task, their data was
discarded.

A. Manipulations

Two cases are considered in this experiment. In the
IMP+EXP case, the robot pro-actively communicates internal
states implicitly through non-verbal behavior as well as ex-
plicitly using expressive social cues. In theEXPLICIT case,
the robot only explicitly communicates these internal states
when prompted by the human. This manipulation allows us
to investigate the added benefit of implicit non-verbal com-
munication over above explicit non-verbal communication
which as been more widely investigated (e.g., in embodied
conversational agents).

For instance, in the IMP+EXP case (Table I), nonverbal
cues communicate the robot’s attentional state to the buttons
and to the human through changes in gaze direction in
response to pointing gestures, tracking the human’s head,
or looking to a particular button before pressing or pointing
to it. In addition, the robot conveys liveliness and general
awareness through eye blinks, shifts in gaze, and shifts in
body posture between specific actions. Its shrugging gestures
and questioning facial expression conveys confusion (i.e.,
when a label command does not co-occur with a pointing
gesture, when a request is made for an unknown object, or
when speech is unrecognized). Finally, the robot replies with
head nods or shakes in response to direct yes/no questions,
followed by demonstration if appropriate.

The EXPLICIT case, in contrast, removes the implicit
cues that reveal the robot’s internal state. Eye gaze does not
convey the robot’s ongoing attentional focus in response to
the human. Instead, the robot looks straight ahead, but will
still look at a specific button preceding a press or point action.
There are no behaviors that convey liveliness. The robot does
not pro-actively express confusion, and only responds with
head nods and shakes to direct questions.

B. Procedure

A total of 21 subjects were drawn from the local campus
population via e-mail announcements. Subjects were nearly
evenly mixed in gender (10 males, 11 females) and ranged
in age from approximately 20 to 40 years. None of the
participants had interacted with the robot before.

Subjects were first introduced to Leo by the experimenter.
The experimenter pointed out some of the capabilities of the
robot (such as pointing and pressing the buttons) and indicated



TABLE I

IMPLICIT CASE: WITH BEHAVIORAL AND NONVERBAL CUES

Context Leo’s Expression Intention
Human points to object Looks at object Shows object of attention
Human present in workspace Gaze follows human Shows social engagement
Human asks yes/no question Nod/Shake Communicates knowledge or ability
Humman greets robot Nod Issues greeting
End of task Nod Communicates task is complete
Label command has no pointing gestureConfusion gesture Communicates problem to human
Request is made for an unknown objectConfusion gesture Communicates problem to human
Speech did not parse Confusion gesture Communicates problem to human
Between requested actions Idle body motion Creates aliveness
Intermittent Eye blinks Creates aliveness
Intermittent Shifts in gaze Conveys awareness

a list of example phrases that the robot understands. These
phrases were listed on a series of signs mounted behind the
robot. The subject was instructed to complete the following
button task with the robot.

• Teach Leo the names and locations of the buttons.
• Check to see that the robot knows them.
• Have Leo turn on all of the buttons. And,
• Tell Leo that the ”all the buttons on task” is done.

After the task, a questionnaire was administered to the
subject. After completion, the subject could choose whether
or not to interact with the robot again. If the subject decided
to continue, they were asked to try to teach the robot a new
task, and example phrases were given for how this could be
done.

C. Hypotheses and Measures

The questionnaire covered several topics such as the read-
ability and transparency of Leo’s actions and expressions; the
subject’s mental model of the interaction; and the perceived
effectiveness of the interaction. On these topics we have three
hypotheses (H1-H3):

H1: Subjects are better able to understand the
robot’s current state and abilities in the
IMP+EXP case.

H2: Subjects have a better mental model of the
robot in the IMP+EXP case.

H3: The interaction is viewed as more effec-
tive from the subject’s point of view in the
IMP+EXP case.

In addition to the questionnaire data, each session was video
recorded. We have three more hypotheses (H4-H6) related to
the behavioral observations from this data. From the video
we had the following measures coded: the total number of
errors during the interaction; the time from when an error
occurred to being detected by the human; the length of
the interaction as measured by time and by the number of
utterances required to complete the task. These measures test
the following hypotheses:

H4: The total length of the interaction will be
shorter in the IMP+EXP case.

H5: Errors will be more quickly detected in the
IMP+EXP case.

H6: The occurrence of errors will be better
mitigated in the IMP+EXP case.

VI. RESULTS

A. Questionnaire Results

In the questionnaire, two of our hypotheses were con-
firmed. There was a significant difference between the two
manipulations on answers to questions about subject’s ability
to understand the robot’s current state and abilities. Thus
Hypothesis 1 is confirmed and people perceived that the robot
was more understandable in the IMP+EXP case: t(11) = -1.88,
p < 0.05.

There was also a significant difference from the questions
concerning the subject’s mental model of the robot (e.g. “Was
it clear when the robot was confused?”, “Was it clear when
it understood what I had referred to?”, etc.). This confirms
Hypothesis 2, that the subjects perceived they had a better
mental model of the robot in the IMP+EXP case: t(11) =
-1.77, p = 0.05.

The implicit non-verbal communication had no effect on
whether or not subjects reported the interaction to have been
effective (Hypothesis 3). We do, however, have indications
that the behavioral data supports this claim.

B. Behavioral Results

Our video analysis offers very encouraging support for
Hypotheses 4 through 6. Of the 21 subjects, video of 3
subjects was discarded. In two of these discarded cases, the
robot was malfunctioning to the point where the subjects
could not complete the task. In the remaining case, the
subject lost track of the task and spent an unusually long
time playing with the robot before she resumed the task.
Therefore, the video was analyzed for a total of 18 subjects, 9
for the IMP+EXP case and 9 for the EXPLICIT case. Table II
summarizes the timing and error results of the video coding.



TABLE II

TIME TO COMPLETE THE TASK FOR EACH CASE AS A FUNCTION OF THE

NUMBER OF ERRORS(e).

Condition Category Errors Avg Task Time (sec)
IMP+EXP all samples avg=3 101

A: e ≤ 1 max=1 64
B: 2 ≤ e ≤ 4 max=3 119
C: e > 4 max=6 118

EXPLICIT all samples avg=6 175
A: e ≤ 1 max=1 82
B: 2 ≤ e ≤ 4 max=4 184
C: e > 4 max=11 401

On average, the total time to complete the button task was
shorter for the IMP+EXP case, offering support for Hypothe-
sis 4. The average time for the subjects to complete the task in
the IMP+EXP case is 101 seconds, verses 175 seconds in the
EXPLICIT case. By breaking each case into three categories,
based on the number of errors that transpired during the
interaction (category A : e ≤ 1, category B : 2 ≤ e ≤
4, and category C : e > 4), we see that the IMP+EXP
case took less time to complete in each category, with a
more dramatic difference in time for each category as the
number of errors increased —category A : IMP+EXP=64
vs. EXPLICIT=82; category B : IMP+EXP=119 vs.
EXPLICIT=184; category C : IMP+EXP=118 vs. EX-
PLICIT=401. Analyzing only those trials where at least one
error occurred, the average task time for the IMP+EXP
case was 107 seconds with a standard deviation of 53.8. In
contrast, the average task time for the EXPLICIT case where
at least one error occurred was 246 seconds (over twice as
long), with a standard deviation of 159.6 (over twice as large).

From video analysis, errors were more quickly detected
in the IMP+EXP case, supporting Hypothesis 5. As stated
earlier, there were two common sources of error in communi-
cation. First, the gesture recognition system occasionally fails
to recognize a point gesture. This could be due to several
factors, such as the clothes the subject was wearing (long
sleeves interfered with skin-tone segmentation), standing far
from the robot so that their hand was far from the buttons
when pointing to them, standing very close to the robot so
that the pointing gesture was cramped, or making the pointing
gesture too quickly for the system to reliably register it. This
is readily apparent to the subjects in the IMP+EXP case
because the robot fails to look at the intended button. Because
the robot’s gaze does not reflect its attentional state in the
EXPLICIT condition, the subject do not find out that the
robot failed to acquire the correct label for a particular button
until explicitly asked to do something with that button (e.g.,
point to it or press it). It is important to note that all subjects
naturally wanted to rely on the robot’s gaze behavior as a cue
to the robot’s attentional state. Subjects in the EXPLICIT case
often looked a bit confused when the robot did not visually
track their pointing gesture, and often made a concerted
effort to look into the robot’s eyes to see if it was visually
responsive.

The second common source of error arose when the speech
understanding system misclassifies an utterance. This error
was immediately detected in the IMP+EXP case because
the robot pro-actively displays an expression of confusion
when a speech-related error occurs. In the EXPLICIT case,
the robot does not express it’s internal state of “confusion,”
and therefore the subjects could not tell whether the robot
understood them and was taking an unusually long time to
respond, it simply missed its turn, or it failed to understand
their utterance. As a result, the EXPLICIT case had varying
numbers of awkward pauses in the interaction depending on
how well the speech recognition system could handle the
subject’s speaking style.

Finally, the occurrence of errors appears to be better miti-
gated in the IMP+EXP case. On average, it took less time to
complete the task and fewer errors occurred in the IMP+EXP
case. For the EXPLICIT case, the standard deviation over the
number errors (excluding the error-free trials) is over twice
as large as that of the IMP+EXP case, indicating less ability
to mitigate them in the EXPLICIT case. As can be seen in
category C , almost twice as many errors occurred in the
EXPLICIT case than in the IMP+EXP case. Video analysis of
behavior suggests that the primary reason for this difference
is that the subjects had a much better mental model of the
robot in the IMP+EXP case due to the non-verbal cues used
to communicate the robot’s attentional state and when it was
“confused.” As a result, the subjects could quickly see when
a potential error wasabout to occurand they quickly acted
to address it.

For instance, in the IMP+EXP case, if the subject wanted
to label the blue button and saw the robot fix its gaze on
the red button not shift it over to the blue one, she would
quickly point to and label the red button instead. This made
it much more likely for the robot to assign the correct label
to each button if the perception system was not immediately
responsive. In addition, in the IMP+EXP case, the subjects
tightly coordinated their pointing gesture with the robot’s
visual gaze behavior. They would tend to hold their gesture
until the robot looked at the desired button, and then would
drop the gesture when the robot initiated eye contact with
them, signaling that it read the gesture, acquired the label, and
was relinquishing its turn. It is interesting to note that even
in IMP+EXP category C where a number of errors were
made, the time to complete the button task was very similar
to IMP+EXP category B . This offers support that errors
that occurred in the IMP+EXP case were quickly detected
and repaired so that the overall task time was not dramatically
adversely affected.

VII. D ISCUSSION

This experiment investigates a cooperative social interac-
tion between a human and a robot. Our results illustrate
the importance and benefit of having a robot’s implicit and
explicit non-verbal cues adhere to fundamental designprinci-
ples of the psychology of design [12], [13]. Specifically, we
observed that the design principles offeedback, affordances,



causality, andnatural mappingsplay a critical role in helping
nave human subjects maintain an accurate mental model
of the robot during a cooperative interaction. This paper
shows the effectiveness of these basic design principles when
adapted to the social interaction domain. People certainly
relied on their mental model to interact with the robot, and
our data indicates that they were better able to cooperate
with Leonardo when they could form a more accurate mental
model of the robot.

For instance, the robot pro-actively provides feedback in
the IMP+EXP case when it shrugs in response to failing to
understand the person’s utterance. This immediately cues the
human that there is a problem that needs to be corrected.
The robot’s eyes afford a “window” to its visual awareness,
and having the robot immediately look to what the human
points to signals to her that her gesture causes the robot to
share attention — confirming that her intent was correctly
communicated to and understood by the robot. Leonardo’s
explicit non-verbal cues adhere to natural mappings of human
non-verbal communication, making them intuitive for the
human to understand. For instance, having Leonardo re-
establish eye contact with the human when it finishes its turn
communicates that it is ready to proceed to the next step in
the task.

We also found that the social cues of a robot should
carefully adhere to these design principles otherwise the
robot’s behavior becomes confusing or even misleading. For
instance, in one trail the robot was accidentally giving false
cues. It nodded after a labeling activity, which was a spurious
action, but led the human to believe that it was acknowledging
the label. As a result, it took the human a longer time than
usual to figure out that the robot had actually not acquired
the label for that button.

When these cues allowed the human to maintain an accu-
rate mental model of the robot, the quality of teamwork was
improved. This transparency allowed the human to better co-
ordinate her activities with those of the robot, either to foster
efficiency or to mitigate errors. As a result, the IMP+EXP case
demonstrated better task efficiency and robustness to errors.
For instance, in viewing the experimental data, the subjects
tend start off making similar mistakes in either condition.
In the IMP+EXP condition, there is immediate feedback
from Leonardo, which allows the user to quickly modify
their behavior, much as people rapidly adapt to one another
in conversation. In the EXPLICIT case, however, subjects
only receive feedback from the robot when attempting to
have him perform an action. If there was an error earlier
in the interaction that becomes manifest at this point, it is
cognitively more difficult to determine what the error is. In
this case, the expressive feedback in the IMP+EXP condition
supports rapid error correction in training the robot.

VIII. C ONCLUSION

The results from this study informs research in human-
robot teamwork [7]. In particular, this study shows how
people read and interpret non-verbal cues from a robot in

order to coordinate their behavior in a way that improves
teamwork efficiency and robustness. We found that people
infer task-relevant “mental” states of Leonardo not only
from explicit social cues that are specifically intended to
communicate information to the human (e.g., nods of the
head, deictic gestures, etc), but also from implicit behavior
(e.g., how the robot moves its eyes: where it looks and when
it makes eye contact with the human). Furthermore, they do
so in a consistent manner with respect to how they read and
interpret the same non-verbal cues from other humans.

Given this, it is important to appreciate that people have
very strong expectations for how implicit and explicit non-
verbal cues map to “mental” states and their subsequent
influence on behavior and understanding. These social ex-
pectations need to be supported when designing human-
compatible teamwork skills for robots. This is important for
anthropomorphic robots such as humanoids or mobile robots
equipped with faces and eyes. However, we believe that in any
social interaction where a robot cooperates with the human
as a partner, people will want these cues from their robot
teammate. If the robot provides them well, the human will
readily use them to improve the quality of teamwork.

In the future, robot teammates should return the favor.
In related work, we are also exploring how a robot could
read these same sorts of cues from a human, to better
coordinate its behavior with that of the human to improve
teamwork. This shall be particularly important for performing
cooperative tasks with humans in dynamic and uncertain
environments, where communication play a very important
role in coordinating cooperative activity.
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