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Abstract

Functionally altered myeloid cells play an important role in immune suppression in cancer, in angiogenesis,

and in tumor cells' invasion and metastases. Here, we report that inhibition of Notch signaling in hematopoietic

progenitor cells (HPC), myeloid-derived suppressor cells (MDSC), and dendritic cells is directly involved in

abnormal myeloid cell differentiation in cancer. Inhibition of Notch signaling was caused by the disruption of the

interaction between Notch receptor and transcriptional repressor CSL, which is normally required for efficient

transcription of target genes. This disruptionwas the result of serine phosphorylation of Notch.We demonstrated

that increased activity of casein kinase 2 (CK2) observed in HPC and in MDSC could be responsible for the

phosphorylation of Notch and downregulation of Notch signaling. Inhibition of CK2 by siRNA or by pharma-

cological inhibitor restoredNotch signaling inmyeloid cells and substantially improved their differentiation, both

in vitro and in vivo. This study demonstrates a novel mechanism regulation of Notch signaling in cancer. Thismay

suggest a new perspective for pharmacological regulation of differentiation ofmyeloid cells in cancer. Cancer Res;

74(1); 141–52. �2013 AACR.

Introduction

There is now ample evidence supporting the critical role of

myeloid cells in tumor progression. Themajor changes that are

observed in themyeloid compartment include accumulation of

myeloid-derived suppressor cells (MDSC), defects in differen-

tiation of dendritic cells, and accumulation and polarization of

tumor-associated macrophages (1). Although some specific

proteins factors such as STAT3, CEBP/b, PIR-B, NF-kB, and
COX (2–12) were implicated in abnormal myeloid cell differ-

entiation, this process remains unclear, which limits thera-

peutic targeting of myeloid cells.

Myeloid cell development in bone marrow is regulated by

complex network of cytokines and by the direct physical

interaction between hematopoietic progenitor/stem cells

(HPC) and stromal cells (reviewed in; ref. 13). Signaling through

the Notch family of transcriptional regulators plays a major

role in the direct interaction between HPC and stroma. Each

member of Notch family is a large, single heterodimeric

receptor composed of noncovalently associated extracellular

(ECN), transmembrane (TMN), and intracellular (ICN) sub-

units. The ICN region contains an RBPjk association module

(RAM) domain that binds the transcriptional repressor CSL

(CBF-1, RBP-J), a series of cdc10/ankyrin repeats (ANK

domain) that are involved in protein–protein interactions

with CSL/CBF-1 and other polypeptides, and a C-terminal

PEST sequence responsible for the degradation of the ICN

signal. At present, 2 major Notch ligand families, Delta (Dll,

Dll1-4) and Jagged (Jag, Jag1-4), have been described. Binding of

the ECN domain of Notch by a Notch ligand results in the

cleavage of ICN and its translocation to the nucleus where,

together with number of recruited coactivators, it interacts

with CSL. The binding of ICN with CSL displaces corepressor

complexes, thereby activating transcription from promoters

with CSL binding elements. In mammals, targets of ICN/CSL

signals include genes of the Hairy/Enhancer of Split (HES)

family, HRT/HERP genes, cyclin D1, p21, NF-kB, and many

others (14–17).

Available data provide a consensus view on the critically

important role of Notch signaling in myeloid cell differentia-

tion. However, the exact nature of Notch effects remains con-

troversial. Some existing data demonstrated the critical role of

Notch in maintenance of progenitor cells and blockade of ter-

minal differentiation of myeloid cells, whereas the other data

showed requirements of Notch signaling for differentiation of

mature myeloid cells (reviewed in ref. 18). It seems that the

impact of Notch signaling depends on the stage of myeloid cell

differentiation when Notch activation is triggered, the pres-

ence of specific cytokines, and on whether activation of Notch

signaling was triggered by soluble or immobilized ligands. A

number of studies have demonstrated that Notch signaling is

important for dendritic cell differentiation (19–26). Notch

signaling was shown to be also important for macrophage
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localization and for interactions of endothelial cells during

sprouting angiogenesis (27). Notch was also implicated in

accumulation of immature myeloid cells (IMC) that can be

defined as Gr-1þCD11bþ, in mice. With overexpression of

ADAM10, which is involved in the cleavage of ICN, systemic

expansion of Gr-1þ CD11bþ was observed (28).

In this study, we investigated possible changes in Notch

signaling in myeloid cells in cancer and the consequences of

those changes for differentiation of myeloid cells. We present

evidence indicating that downregulation of Notch signaling

plays a major role in abnormal myeloid cell differentiation in

cancer. Furthermore, this inhibition could be caused by the

disruption of physical interaction between Notch and CSL and

implicated upregulation of casein kinase 2 (CK2) activity in

that disruption.

Materials and Methods

Mice and tumor models

Six- to eight-week-old female BALB/c, C57BL/6, and

CD45.1þ mice were purchased from the National Cancer

Institute. All animal experiments were approved by the Uni-

versity of South Florida Institutional Animal Care and Use

Committee. EL4 lymphoma, CT26 colon carcinoma, and

MethA sarcoma were established by subcutaneously injection

of 5 � 105 cells into C57BL/6 (EL-4) or BALB/c (CT26, MethA)

mice. In most experiments, cells were analyzed 3 weeks after

tumor injection when tumor reached 1.2 cm in diameter.

Human subjects and isolation of cells

Six patients with renal cell carcinoma were enrolled to the

study after signing informed consent form approved by the

University of South Florida Internal Review Board. Samples of

peripheral blood from 5 healthy volunteers were obtained from

blood bank. Mononuclear cells were isolated using a Ficoll

gradient density centrifugation. Monocytes (healthy donors)

andMDSC (cancer patients) were collected frommononuclear

fraction and CD14�CD11bþCD15þ and CD14�CD11bþCD15�

cells were sorted by FACSAria cell sorter (BD Biosciences).

PMNs were collected after centrifugation on 63 of 72% Percoll

gradient above 72% layer and CD14�CD11bþCD15þ cells were

sorted. The list of reagents is provided in supplementary data.

Isolation of mouse cells

Bone marrow cells were enriched for HPCs by depletion of

lineage-specific cells with lineage depletion kit (Miltenyi Bio-

tec). Isolation of the populations of myeloid cells was per-

formed using biotinylated CD11c, Gr-1, or PE-conjugated

CD34-specific antibodies followed by MiniMACS microbeads

(Miltenyi Biotec). The purity of the cells was consistently more

than 92% in all samples. In some experiments, Gr-1þCD11bþ

cells were sorted using FACSAria cell sorter (BD Biosciences).

CK2a and Notch 1 constructs and transfection

CK2a plasmid pZW6 was obtained from Addgene.

pcDNA3.1-ICN1-Myc plasmid was kindly provided by Dr. B.

Osborne, University of Massachusetts, Amherst, MA. Prepara-

tion of retroviruses expressing CK2, ICN1-Myc, and mutant

constructs is described in supplementary data. All retroviruses

were generated by cotransfection of the constructs with pCL-

Eco into the packaging cell line 293T using Geneporter-2

(Genlantis). The retroviral supernatants were harvested 48-hour

posttransfection and used for infection of cells for 4 hours at

32�C in the presence of 4 mg/mL Polybrene (Sigma). After that

time, viral supernatants were removed and complete culture

medium supplemented with GM-CSF was added. Cells were

cultured for 20 hours at 37�C, and then infection was repeated.

Cell cultures on Notch ligands and differentiation of

dendritic cell

Fibroblast cell line expressing Jag1 was described previously

(29). HPCs were cultured on the monolayer of irradiated (25

Gy) fibroblasts in the presence of 20 ng/mL GM-CSF. CD45þ

hematopoietic cells were isolated using microbeads and Mini-

MACS columns with more than 93% purity. Culture of HPC on

Dll1 immobilization on plastic was performed as described

previously (29). Dendritic cells were generated from enriched

bone marrow HPCs for 7 days with 20 ng/mL GM-CSF and

tumor-conditioned media (TCM; 30%, v/v). For dendritic cell

activation, LPS 1 mg/mL was added 24 hours before cell

analysis. For human cell cultures, CD34þ cells were cultured

in medium supplemented with 20 ng/mL of GM-CSF and 20

ng/mL of IL-4. TCM from human breast carcinoma MCF7 and

small lung cancer 81M1 cell lines were added at 30% (v/v).

Dendritic cell differentiation in vivo

Bone marrow cells obtained from na€�ve C57BL/6 mice

(CD45.2) were depleted from lineage-positive cells using line-

age cell depletion kit (Miltenyi Biotec) followed by sorting of

lineage negative and c-kit positive cells using a FACSAria.

Lin�c-Kitþ progenitor cells were cultured in myeloid long-

term culture medium for primitive mouse hematopoietic cells,

supplemented with 20 ng/mL of SCF, FLT3L, IL-6, and IL-11 as

previously described (30). On days 1 and 2, cells were infected

with retroviruses expressing ICN1-GFP. On day 4, 106 cells were

injected intravenously into lethally irradiated (9.5 Gy) na€�ve or

EL4 tumor-bearing (TB) CD45.1 congenic mice with 0.5 � 106

host whole bone marrow cells. Analysis was performed on day

12 after the cell transfer with CD45.2 and GFP double positive

cell used for the analysis.

Allogeneic mixed leukocyte reaction

Splenocytes from na€�ve or TB Balb/cmice were irradiated at

20 Gy and mixed in triplicates with 2 � 105 T cells from na€�ve

C57BL/6 mice at different ratios. [3H]-thymidine (1 mCi) was
added 18 hours before cell harvesting. Radioactivity was

counted on a liquid scintillation counter (Packard Instrument).

TBCA treatment in vivo and in vitro

CT26 TB mice were treated with tetrabromocinnamic acid

[(E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid, TBCA; 1.7 mg in

200 mL dimethyl sulfoxide (DMSO)/water (1:4), i.p. daily for 6

days] or vehicle alone. Next day after the last treatment, mice

were sacrificed and analyzed. For in vitro treatment, HPCs from

na€�ve bone marrow were cultured in the presence TCM. TBCA

(0.6–2.5 mmol/L) was added and medium was changed every

day.
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Western blot assay, immunoprecipitation, and

electrophoretic mobility shift assay

Nuclear extracts were prepared and Western blotting was

performed as described previously (29). Immunoprecipitation

was carried out using 800 mg to 1.2 mg of whole cell lysates.

Electrophoretic mobility shift assay (EMSA) was performed as

previously described (31) and details are provided in supple-

mentary data.

siRNA transfection

The cells were mixed with 100 nmol/L Silencer Select Pre-

Designed siRNA (Csnk2a1) specific to sequences encoding

CK2a exon 8, and another siRNA for exon 9 for confirmation

and scrambled siRNA (Invitrogen) for control. The transfection

was carried out using anAmaxaNucleofactor Kit (Lonza). After

24 to 48 hours, the cells were collected and Hes 1 expression

was analyzed by quantitative real-time PCR.

Real-time quantitative PCR

PCRwas performedwith TaqManUniversal PCRMasterMix

(Applied Biosystems), and target gene assay mix containing

sequence-specific primers for hes1, hes5, notch 1, notch 2, and

6-carboxyfluorescein (6-FAM) dye-labeled TaqMan minor

groove binder (MGB) probe (Applied Biosystems). Amplifica-

tion with 18S endogenous control assay mix was used for

controls. Data quantitation was performed using the relative

standard curve method or DCT. Expression levels of the genes

were normalized by 18S rRNA.

Luciferase reporter assay

For the analysis of CSL luciferase activity, we used Notch

reporter retroviral construct containing CSL responsive ele-

ment (31). Activity was measured 18 hours after infection in

duplicates on a Lumat LB 9501 luminometer (Berthold) and

normalized to protein concentration.

CK2 activity

CK2 activity of whole cell lysates was measured using

Millipore Assay Kit after precipitation of 750 mg of protein

with CK2a antibody.

Statistical analysis

Statistical analysis was performed using a 2-tailed Student t

test and GraphPad Prism 5 software (GraphPad Software Inc.),

with significance determined at P < 0.05.

Results

Downregulation of Notch signaling in HPC and myeloid

cells in tumor-bearing hosts

Impairment of differentiation of myeloid cells from HPC in

the presence of TCM manifests in decreased proportion of

CD11cþIAdþ dendritic cells and accumulation of Gr-

1þCD11bþ MDSC (Fig. S1A). In TB mice, the proportion of

CD11cþIAdþ dendritic cells in spleens was substantially

reduced, whereas the proportion of Gr-1þCD11bþ MDSC was

dramatically increased (Supplementary Fig. S1B).

To evaluate the role of Notch signaling in myeloid cell

differentiation in cancer, we studied 3 populations of cells,

which represent sequential stages of myeloid cell differentia-

tion: (1) bone marrow CD34þ HPC; (2) spleen Gr-1þCD11bþ

cells, which in na€�ve mice represent mixed population of

precursors of myeloid cells, IMC; and in TB mice are charac-

terized as MDSC (32); and (3) spleen CD11cþ MHC class IIþ

dendritic cells.

Expression of Notch target genes hes1 and hes5 was dra-

matically reduced in all 3 populations of cells isolated from TB

mice as compared with the cells from na€�ve mice (Fig. 1A and

B). In recent years, 2 subsets of MDSC were identified (1):

CD11bþLy6ChiLy6G� monocytic MDSC (M-MDSC) represent-

ing�10% of all MDSC and CD11bþLy6CloLy6Gþ polymorpho-

nuclear MDSC (PMN-MDSC) representing�90% of these cells

(Supplementary Fig. S1C). We compared the expression of

Notch target genes in these populations sorted from bone

marrow of TB mice with monocytes and PMN with the same

phenotype sorted from bone marrow of control mice. PMN-

MDSC but not M-MDSC had significantly lower expression of

hes1 and hes5 than their control counterparts (Fig. 1C).

The activity of Notch signaling was further analyzed by

measurement of the binding of transcriptional factor CSL/

CBF1 to its DNA consensus sequence using EMSA. The CSL/

CBF1-specific binding in HPCs from TBmice was substantially

lower than the binding in HPCs from control mice (Fig. 1D).

The CSL/CBF1 DNA binding activity was also evaluated in

luciferase reporter assay. Notch activity in HPCs from TBmice

was significantly (P < 0.01) lower than in HPCs from na€�ve

mice. This effect was observed also when Notch signaling was

activated by culturing HPCs on a monolayer of fibroblasts

expressing Jag1 (Fig. 1E). Similar experiments were performed

with Gr-1þCD11bþ cells isolated from spleens of TB and na€�ve

mice. MDSC from TB mice had significantly (P < 0.001) lower

Notch activity than was observed in the IMC from the control

mice (Fig. 1F).

Notch activity (HES1 expression) was evaluated in CD14�

CD11bþCD15þ granulocytes isolated from peripheral blood of

healthy donors and PMN-MDSC with the same phenotype

isolated from patients with renal cell carcinoma. Expression

ofHES1 in the cells from patients with cancer was significantly

lower than in those from the healthy donors (Fig. 1G). A similar

effect, albeit less pronounced, was observed in testing the

population of CD14�CD11bþCD15� monocytic cells (Fig.

1G). Three-day culture of human CD34þ HPC with TCM from

breast carcinoma MCF7 and small cell lung cancer cell line

81M1 caused significant (P< 0.01) decrease in the expression of
HES1 (Fig. 1H). These data indicate that Notch activity was

strongly decreased in HPC andmyeloid cells in TBmice, and in

myeloid cells obtained from patients with kidney cancer.

The role of ligands and receptors in causing decreased

Notch signaling in HPC and in myeloid cells in cancer

We evaluated the major components of ternary complex

responsible for Notch signaling. The amounts of ICN1, ICN2 (2

major Notch receptors in HPC), and CSL in nuclear extracts

from bone marrow HPCs were similar in control and TB mice

(Fig. 2A). For both control and TB mice, similar levels of

expression of notch1 and notch2 mRNA were observed in

the bone marrow HPC and spleen-derived dendritic cells.

Notch and Myeloid Cells in Cancer
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Expression of notch1 in MDSC from TB mice was even higher

than in IMC from control mice (Fig. 2B and C). Similar results

were obtained in experiments in vitrowhere bonemarrowHPC

were cultured in the presence of TCM. Significant reduction in

the expression of hes1 was observed, whereas no differences

were seen in the expression of notch1 and notch2 (Fig. 2D).

Thus, these data indicated that decrease inNotch signalingwas

not the result of downregulation of the receptors, their cleav-

age and nuclear translocation, or the amount of CSL.

We next addressed whether downregulation of Notch

ligands could contribute to a reduced Notch signaling in HPCs.

Dramatic downregulation of all studied Notch ligands (Jag1,

Jag2, Dll1, 3, and 4) was found in bone marrow from CT26 TB

mice as compared with na€�ve tumor-free mice (Fig. 2E).

We hypothesized that if decreased expression of Notch

ligands was responsible for downregulation of signaling, then

Notch signaling and dendritic cell differentiation should be

restored by incubating cells with immobilized ligand. To test

this hypothesis, HPCs were cultured overnight with Dll1

immobilized on plastic. In the absence of TCM, Dll1 caused

6-fold increase in hes1 expression. However, this upregulation

was completely abrogated in the presence of TCM (Fig. 2F).

Similar results were obtained in CSL luciferase reporter assay

(Fig. 2G). Thus, Notch ligand could not restore the blockade of

the Notch signaling caused by TCM, which indicated that this

block was downstream of the receptor.

We next tested the effect of activation of Notch signaling on

dendritic cell differentiation. HPCwere cultured for 6 dayswith

GM-CSF on immobilized Dll1 in the presence of TCM. In the

absence of TCM, Dll1 promoted dendritic cell differentiation.

However, Dll1 was not able to overcome the inhibitory effect of

TCM on dendritic cell differentiation (Fig. 3A and Supplemen-

tary Fig. S2). The presence of dendritic cells was tested func-

tionally using allogeneic mixed leukocyte reaction (MLR), the
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Figure 1. Downregulation of Notch signaling in myeloid cells. A and B, expression of hes1 (A) and hes5 (B) in CD34
þ
bone marrow cells, Gr-1

þ
, or CD11c

þ

splenocytes isolated from naïve or TB mice by quantitative PCR. Cumulative results of four experiments are shown. �, statistically significant

differences between groups (P < 0.05). C, expression of hes1 and hes5 in bone marrow M-MDSC and PMN-MDSC from EL-4 TB mice and bone

marrow Mon and PMN from naïve mice (n ¼ 3; �, statistically significant differences between groups (P < 0.05)). D, CSL EMSA of nuclear proteins from

enriched HPCs (naïve and indicated TB mice). Two experiments with the same results were performed. E, CSL/CBF1 reporter activity in HPCs from bone

marrow of naïve or CT26 TB mice. Cells were infected with CSL-IL-2-Luc or control KA9 viruses, and cultured on monolayer of 3T3-Jag1–expressing

fibroblasts or control MSCV fibroblasts. Three experiments (each in duplicates) were performed. Significant differences between groups: �, P < 0.05;
��, P < 0.001. F, CSL reporter assay in Gr-1

þ
cells isolated from spleen of naive or CT26 TB mice. Three experiments were performed. ��, P < 0.01 between

groups. G, expression of HES1 in human cells isolated from patients with renal cell carcinoma and healthy donors. Four samples were analyzed by

quantitative PCR. Statistically significant differences between groups: �,P < 0.05; ��,P < 0.01. H, effect of indicated TCMon the expression ofHES1 in CD34
þ

cells isolated from blood of healthy donors. Cells were analyzed after 3 days of culture. Three experiments were performed. ��, P < 0.01 from control.
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hallmark of dendritic cell activity. TCM dramatically reduced

allogeneic MLR in the cells generated from HPCs and abro-

gated stimulatory effect of Dll1 (Fig. 3B). These data indicated

that the Notch ligand Dll1 was not able to rescue inhibited

dendritic cell differentiation and MDSC expansion caused by

TCM.

To bypass receptor–ligand interaction, we induced Notch

signaling by overexpressing ICN1 using a retroviral construct

containing ICN1 and GFP. The GFP served to track cells with

ICN1 expression. In the absence of TCM, expression of ICN1

significantly increased the proportion of dendritic cells (Fig.

3C). However, the overexpression of ICN1 was not able to

overcome the defect in dendritic cell differentiation or accu-

mulation of IMC caused by TCM (Fig. 3C).

We also tested possible effect of ICN1 overexpression on

HPCdifferentiation in vivo. Lin�c-kitþmyeloid progenitor cells

were sorted frombonemarrow of na€�ve CD45.2þmice, infected

with retrovirus expressing ICN1, and then injected intrave-

nously into lethally irradiated na€�ve or EL4 TBCD45.1 congenic

mice (Fig. 3D). Two weeks after the transfer, the donor cells

(CD45.2þ) transfected with ICN1 (GFPþ) cells were evaluated

in spleens of recipientmice.We observed that HPC transfected

with control virus and transferred to TB mice produced

significantly smaller proportion of dendritic cells but higher

proportion of MDSC than HPC transferred to control mice

(Fig. 3D and E). Expression of ICN1 in HPC transferred to na€�ve

recipients resulted in upregulation of dendritic cells and

of macrophages' differentiation. However, in TB mice no
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(B) andNotch2 (C) in indicated cells isolated from naïve or CT26 TBmice and assessed by quantitative PCR. Each experiment was performed in triplicate and

includes threemice. �, statistically significant difference from control (P < 0.05). D, expression of notch1, notch2, and hes1 in indicated cells generated in vitro

from HPCs. Each experiment was performed in triplicate and includes three mice. E, notch ligands in bone marrow of naïve and CT26 TB mice. Two

experimentswith thesame resultswereperformed. F, expressionofhes1evaluatedbyquantitativePCR inHPCsculturedon immobilizedDll1with andwithout

TCM. Each experiment was performed in triplicate. Cumulative results of three experiments are shown. G, luciferase reporter assay in HPC cultured on Dll1

with andwithout TCM. pKA9, control luciferase virus; pKA9-CBF1, virus containingCSLbinding site. Each experiment was performed in duplicate. Combined

results of three experiments are shown. In all experiments: �, statistically significant difference from control (P < 0.05).
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improvement in dendritic cell differentiation was seen and

changes in the proportion of MDSC were not statistically

significant (Fig. 3E). Thus, activation of Notch signaling either

by triggering the receptors or by overexpressing ICN1 did not

overcome the defect in dendritic cell differentiation observed

in TB mice.

Disruption of interaction between CSL and Notch in HPC

and myeloid cells in cancer

Formation of Notch/CSL complex is necessary for the

activation of the transcription of target genes. To assess

physical interaction between Notch and CSL, HPCs were

transduced with a retroviral ICN1-myc construct. Myc-specific

antibody was used to pull-down ICN1 and membranes were

probed with anti-CSL antibody. In HPC, cultured in control

medium, the association between ICN and CSL was readily

detectable. In contrast, in HPC, cultured in the presence of

TCM, it was substantially reduced (Fig. 4A). Culture of HPC

with TCM resulted in an increase in serine phosphorylation of

ICN1 (Fig. 4A), whereas no tyrosine phosphorylation was

detected (data not shown).

Analysis of the structure of Notch suggested a number of

serine residues in RAM domain, phosphorylation of which

could affect binding of ICN1 with CSL. For instance, phos-

phorylation of serine 1901 and threonine 1898 were impli-

cated in decreased formation of a Notch–Maml1–CSL tern-

ary complex on DNA (33). To clarify the possible role of the

specific serine residues in ICN/CSL interaction, we made

ICN1 several constructs with mutations in serine residues in

RAM domain of ICN1. Mutations in S1779 and S1856 were not

sufficient to abrogate interaction between ICN1 and CSL

(Fig. 4B). However, after mutations in S1901 and T1898, ICN1

construct lost binding to CSL in MDSC (Fig. 4C) and was

associated with substantially reduced level of serine phos-

phorylation in the presence of TCM (Fig. 4C). These data

suggested that serine phosphorylation of ICN1 in cancer may

block its binding to CSL and thus prevents the transcription

of target genes.
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Figure3. ActivationofNotch signalingwasnot able to rescue inhibiteddendritic cell differentiation in TBmice. A andB, differentiation ofmyeloid cells fromHPC

in the presence of immobilized Dll1 and TCM. Cells were cultured for 7 days and then phenotype (A) and function (B; allogeneic MLR) was evaluated.

Three experiments were performed. C, differentiation of myeloid cells from HPC after transduction with ICN1. HPCs were infected with control (GFP)

or ICN1-IRES-GFP (ICN) viruses and cultured with GM-CSF with (TCM) or without (Con) TCM for 7 days. Three experiments were performed. D and E,

differentiation of myeloid cells in vivo. Lin
�
c-kit

þ
HPCs from CD45.2 naïve bone marrow were infected with control (GFP) or ICN1-IRES-GFP (ICN)

viruses and injected intravenously to lethally irradiated CD45.1 naïve (N) or EL4 TB (TB) mice together with CD45.1
þ
bone marrow cells. On day 14,

cell phenotype was analyzed within population of GFP
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þ
-transduced donors cells. D, typical example of the analysis. E, cumulative results of three

experiments. In all experiments: �, statistically significant difference from control (P < 0.05).
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CK2 regulated Notch activity in myeloid cells in cancer

What could induce Notch phosphorylation in myeloid

cells in cancer? Serine/threonine CK2 previously was impli-

cated in regulation of Notch activity under physiological

conditions (33). We evaluated the presence of CK2 protein in

Gr-1þCD11bþ myeloid cells and found that the amount of

catalytica domain of CK2 protein was similar between control

and TB mice (Fig. 4D). However, when kinase activity of CK2

was measured, it was significantly higher in HPC (Fig. 4E) or

MDSC (Fig. 4F) than in cells from control mice. Gr-1þCD11bþ

myeloid cells generated from HPC in the presence of TCM had

higher CK2 activity than Gr-1þCD11bþ cells generated in the

control medium (Fig. 4G). In humans, we observed similarly

that CD14�CD11bþCD15þ MDSC isolated from blood of

patients with renal cancer had significantly higher levels of

CK2 activity than neutrophils with the same phenotype from

healthy donors (Fig. 4H).

These results suggest that upregulation of CK2 activity

may play a role in regulation of Notch activity in cancer. To

test this possibility directly, 293T cells were transfected with

the plasmid encoding catalytica subunit of CK2 gene (csnk2a1;

Fig. 5A). Cotransfection of CK2 plasmid with ICN1-myc plas-

mid caused phosphorylation of ICN1 and inhibited interaction

of ICN1 with CSL (Fig. 5B). Csnk2a1 expression vector was

cloned to a retroviral construct expressing GFP. Enriched

bone marrow HPC were infected with control and CK2 retro-

viruses and cultured for 5 days with GM-CSF. Overexpression

of CK2 in HPC reduced dendritic cell differentiation by half,

whereas the proportion of Gr-1þCD11bþ cells increased more

than 2-fold (Fig. 5C). Thus, upregulation of CK2 inHPC blocked

Notch signaling, inhibited dendritic cell differentiation, and

caused accumulation of IMC.

Next, we tested the possibility that downregulation of CK2

might improve Notch signaling in myeloid cells from TB mice.
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MDSCs were isolated from EL4 TB mice, transfected with

either control or CK2a2 siRNA, and cultured for 24 hours in

either complete medium or with TCM. Two different sets of

siRNA, targeting different parts of the sequence were used (Fig.

5D). We observed that MDSC transfected with control siRNA

cultured with TCM had significantly (P < 0.01) lower hes1

expression than cells cultured in complete medium. The

treatment with the CK2 siRNA did not affect hes1 expression

in cells cultured in completemediumbut substantially reduced

negative effect of TCM of hes1 expression (Fig. 5E). Thus, these

data indicated that CK2 negatively regulated Notch activity in

myeloid cells in cancer.

Inhibition of CK2 improves Notch signaling and

differentiation of myeloid cells in cancer

We asked whether pharmacological inhibition of CK2 may

increase Notch signaling in myeloid cells and consequently

restore their differentiation in cancer. We used the selective

CK2 inhibitor, tetrabromocinnamic acid [(E)-3-(2,3,4,5-tetra-

bromophenyl)acrylic acid, TBCA; ref. 34). Treatment with

TBCA did not affect CK2 activity in myeloid cells cultured

without TCM, but at concentrations 1.2 to 2.5 mmol/L it

abrogated increased activity of CK2 in MDSC (Fig. 6A). At

those concentrations, no effect on cell viability was seen (data

not shown). Inhibition of CK2 abrogated serine phosphoryla-

tion of ICN caused by TCM and restored interaction between

ICN and CSL (Fig. 6B).

To test the effect of CK2 inhibitor on dendritic cell differ-

entiation, TBCA was added to the culture of HPC with TCM.

Addition of TBCA to the cultures abolished negative effect of

TCM on dendritic cell differentiation (Fig. 6C). TCM caused

expansion of PMN-MDSC from HPC, which was not corrected

by Dll1 (Fig. 6D). However, TBCA in combination with Dll1

substantially reduced the effect of TCM on PMN-MDSC expan-

sion (Fig. 6D).

We tested the possible effect of in vivo treatment with the

CK2 inhibitor on 2 experimental models: CT26 and EG-7 (EL-4

tumor cells expressing chicken ovalbumin). In vitro testing in

MTT assay revealed lack of TBCA toxicity in both cell lines at

concentration as high as 10 mmol/L (data not shown). First, we

tested mice with established, large CT-26 tumors (>1 cm in

diameter) with short (6 days) treatment protocol. Mice were

treated with intraperitoneal (i.p.) injections of TBCA and cells

were evaluated 2 days after the finish of the treatment. One

week of TBCA treatment did not significantly affect the size of

established large tumors (Fig. 7A). Mice did not display any

gross signs of toxicity (changes in body weight, posture, or

behavior). TBCA caused significant decrease in CK2 activity in

myeloid cells, both in bone marrow and spleens (Fig. 7B). This

was associated with significant increase in the expression of
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hes1 in these cells (Fig. 7C). Treatment of mice with TBCA

resulted in significant increase in the proportion and absolute

number of dendritic cells in spleens (Fig. 7D and E) or LN

(Fig. 7D and F). Splenocytes from TBCA-treated mice demon-

strated substantially higher stimulatory activity in allogeneic

MLR, reflecting the presence of higher proportion of dendritic

cells (Fig. 7G). Thus, inhibition of CK2 activity resulted in

improved Notch signaling and dendritic cell differentiation

in TB mice. To assess whether these changes in myeloid cells

can result in antitumor effect, we used immunogenic EG-7

tumor and longer treatment. Mice with palpable tumors were

treated for 2 weeks with TBCA. No signs of toxicity were

evident. TBCA caused significant decrease in the tumor growth

(P ¼ 0.01; Fig. 7H).

Discussion

In this study, we observed dramatic reduction of Notch

signaling in HPC and myeloid cells from TB mice and patients

with cancer as compared with their control counterparts.

Because PMN-MDSC decreased expression of Notch ligands

in TB hosts was previously described (35), this could explain

the observed defect in Notch signaling. We have confirmed

substantial downregulation of all Notch ligands in bone mar-

row of TBmice. However, to our surprise, this decrease was not

responsible for the downregulation of Notch signaling. Neither

Dll1, a potent activator of Notch signaling, nor overexpression

of ICN1 were able to restore Notch signaling or myeloid cell

differentiation in HPC isolated from TBmice or cultured in the

presence of tumor-derived factors. This observation, together

with the fact that the amount of cleaved ICN1 translocated to

the nuclei was not changed, indicated that the defect in Notch

signaling in cancer was downstream of the receptor.

Formation of ternary complex is required for activation of

canonical Notch signaling. Although this complex includes

several different components, the central element of that

complex is the interaction between ICN and CSL. We found

that this physical interaction between ICN1 and CSL was

disrupted in myeloid cells from TB mice. This disruption was

associated with serine phosphorylation of ICN1. Consistent

with recent observation made under physiological conditions
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(33), mutations in S1901 and T1898 completely abrogated phys-

ical interaction between ICN1 and CSL in MDSC. Taken

together, these data suggested that inhibition of Notch signal-

ing in HPC and myeloid cells in cancer could be the result of

increased serine phosphorylation of RAM domain of Notch

and disruption of formation of ternary complex. Our data

implicated CK2 as the kinase possibly responsible for this

phenomenon.

Serine/threonine kinase CK2 is ubiquitously expressed in a

variety of cell types and tissues, and is considered to be

constitutively active. CK2 is involved in every stage of cell

cycle, by phosphorylating proteins required for G0–G1, G1–S,

and G2–M transitions. CK2may act as a general regulator of all

cellular transcription and apoptosis (36). The function of CK2

in normal hematopoiesis is largely unknown. However, there

are some indications that CK2 may play an important role in

this process. For instance, it has been shown that CK2 activate

Wnt and hedgehog signaling pathways (37, 38). However, CK2

negatively regulate PTEN activity (39) and activate Akt (40). In

addition, CK2 stimulates activity of several transcription fac-

tors involved in hematopoiesis: c-Myb (41), PU.1 (42), and Ets-

family transcription factors Sp1 and Sp3 (43). Although CK2 is

constitutively active, its overexpressionwas documented in the

number of solid and hematologic malignancies (44, 45). Our

data indicate that although the amount of this enzymewas not

changed in myeloid cells from TB mice, its activity was

substantially higher than in the corresponding control leuko-

cytes. Our experiments demonstrated CK2 upregulation was

caused by tumor-derived factors, although the nature of these

factors needs to be elucidated. Overexpression of catalytic

domain of CK2 was sufficient to disrupt interaction between

Notch and CSL and, most importantly, to block dendritic cell

differentiation, which mimics the conditions observed in TB

hosts. Downregulation of CK2 in MDSC improved Notch

signaling. These data support the role of CK2 in negative

regulation of Notch signaling and myeloid cell differentiation
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in cancer. From this perspective, pharmacologic inhibition of

CK2 may have value in an immunotherapeutic anticancer

approach.

Our initial data supported this possibility. We used selective

CK2 inhibitor TBCA. It was described to inhibit CK2 at IC50

values 0.11 mmol/L, without having any comparable effect on a

panel of 28 protein kinases (34). In our experiments, TBCA had

little effect of CK2 activity in control myeloid cells but at

concentration 0.6 mmol/L, TBCA significantly attenuated the

increased activity in myeloid cells from TB mice. Similarly,

TBCAdid not have effect onNotch signaling in controlmyeloid

cells, but restored inhibited Notch signaling in the cells from

TB hosts. These results may suggest that TBCA could target

only elevated levels of CK2 activity.

We observed interesting dichotomy in changes in Notch

signaling between PMN-MDSC and M-MDSC. Notch signaling

was substantially reduced in PMN-MDSC as compared with

PMN and CK2 inhibition markedly reduced TCM inducible

expansion of these cells. In contrast, no differences in Notch

signaling were observed between M-MDSC and Mon and CK2

inhibition had no effect on the presence of M-MDSC during

incubation with TCM. These results are consistent with our

observations made in the total population of Gr-1þCD11bþ

MDSC because PMN-MDSC represented more than 90% of

these cells. The exact mechanism of this phenomenon is not

clear. However, given recent findings suggesting that M-MDSC

could be a major precursors of PMN-MDSC in tumor-bearing

hosts (46), this may suggest that M-MDSC in TB mice are

transition cells where changes in Notch signaling are difficult

to detect. As we demonstrated earlier, the population of M-

MDSC is heterogenic and consist of the cells with high poten-

tial to differentiate toward PMN-MDSC and cells that are not

able to progress toward PMN-MDSC (46).

Experiments in vivo demonstrated that CK2 inhibitor sig-

nificantly increased differentiation of dendritic cells and inhib-

ited MDSC expansion in TB mice without displaying signs of

toxicity. Thus, this study is a first report describing the

mechanism that negatively regulates Notch signaling in mye-

loid cells in cancer and functional consequences of that down-

regulation. We implicated upregulation of CK2 in this process.

In the future, a more detailed analysis of toxicity and the effect

of the CK2 inhibitor on other immune cells will be necessary to

establish its potential therapeutic utility. However, ourfindings

here suggest that this approach can be of interest to improve

regulation of myeloid cell function in cancer.
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