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We investigate the Mott transition in infinite dimensions in the orbitally degenerate Hubbard model. The
qualitative features of the Mott transition found in the one-band model are also present in the orbitally
degenerate case. We show that the quantitative aspects of the low-energy behavior near the Mott insulating
state with one electron per site are not very sensitive to orbital degeneracy, justifying the quantitative success
of the one-band model which had been previously applied to orbitally degenerate systems. We contrast this
with quantities that have a sizable dependence on the orbital degeneracy and comment on the role of the
intra-atomic exchangeJ. @S0163-1829~96!51740-6#

The Mott transition in transition metal oxides has received
renewed theoretical and experimental attention. On the ex-
perimental side, new compounds have been synthesized1 and
older compounds such as V2O3 and NixSe12xS have been
studied with higher resolution2. From the theoretical point of
view new insights have been obtained from studying the one
band Hubbard model in the limit of large lattice
coordination.3,4 These studies allowed quantitative compari-
sons of this model against three-dimensional transition-metal
oxides. The doping dependence of the electronic specific
heat in LaxSr12xTiO3 can be described by the one-band Hub-
bard model without adjustable parameters after the values of
U and D have been determined from the photoemission
data.5 The single band Hubbard model can describe the tem-
perature dependence of the optical and the dc conductivity of
V2O3

2 and Sr12xCaxVO3.
6

The degree of quantitative agreement between the mean-
field theory and the experimental data is surprisingly good, if
one considers the fact that in three-dimensional materials
such as La12xSrxTiO3 the d

1 electron has a quasithreefold
degenerate level while the simplest description of V2O3 in-
volves one electron in a twofold degenerate level.7

In this publication we report the main conclusions of our
study of thedegenerateHubbard model in the limit of infi-
nite dimensions:~a! All the qualitativefeatures found in ear-
lier studies of the Mott transition in the single-band Hubbard
model persist in the degenerate case.~b! The quantitative

values of certain low-energy quantities such as the effective
mass and the optical gap, near the Mott insulating state with
one electron per sitedepend rather weakly on the band de-
generacy. This justifies,a posteriori, the quantitative success
of the one-band Hubbard model when applied to orbitally
degenerate systems with carrier density between 0 and 1.~c!
We contrast the previous point with the high-energy behav-
ior of the spectral functions that have a sizable dependence
on the band degeneracy and comment on the role of the
exchange parameterJ, which only appears in the orbitally
degenerate case.

We studied the Hubbard Hamiltonian forl b52 bands
given by
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wherem51,2 (s561) denotes the band~spin! index. A
bar over m or s means the complementary value, i.e.,
m̄52 if m51 and m̄51 if m52 (s̄521 if s51 and
s̄51 if s521).

We introduced three interaction parametersUi , which we
parametrize in terms ofU and J, U15U, U25U122J,
U35U22J.8 We study the model on a Bethe lattice with
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coordinationd in the limit of infinite d. When not stated
explicitly we measure energies in units where the half band-
width D 52t51.

The lattice model in infinite dimensions~in the paramag-
netic phase! is mapped onto an impurity model describing an
orbital f ms with band indexm and spins coupled to a bath
of conduction electrons (ckms):
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where the hybridization functionD(v):5(kVk
2/v2ek2 ih

fulfills the self-consistency condition:9 D(v)5t2G(v).
To analyze the qualitative behavior of these equations we

apply the projective self-consistent method.10,11 This tech-
nique exploits the separation of scales between the quantities
describing high-energy features of the spectral function~la-
beled by the superscriptH! and the quantities describing
low-energy features~labeled byL!. We restrict ourselves to
the J50, Su(2l b) symmetric case. The local description of
the Mott insulating state with a given integer occupancy is a
degenerate Anderson impurity model in an insulating bath:
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Ha hasd degenerate ground states carrying a representation
of SU(2l b) @d52l b for ntot51 and d5 l b(2l b21) for
ntot52] . We label the ground states ofHa ~for a given value
of chemical potential corresponding to integer occupancy
ntot) asu l & and define Hubbard operatorsXll 85u l &^ l 8u acting
on this low energy impurity manifold.

From Hamiltonian~3! describing the insulator and its
ground states one extracts the matrixJll 8

ma

Jll 8
ma

5 K lU f m
† 1

H2Egs
f aU l 8L 2 K lU f a

† 1

H2Egs
f mU l 8L . ~4!

For ntot51 the indicesm, m8, and a in Eq. ~4! denote
the 2l b spin-orbital combinations (ms). For ntot52 and
l b52, however, the indicesl , l 8, p, andp8 are double indi-
ces, e.g.,l5( l 1 ,l 2), describing one of six possible pairs
(ms,m8s8), which denote the quantum numbers of the
ground states of Eq.~3!.

Because of SU(2l b) invariance this matrix is character-
ized by two independent coupling constants. Ifntot51
( l b51 or l b52), the Jll 8

ma are of the formJll 8
ma

5a1d l l 8dma

1b1d l 8ad lm , while for ntot52 (l b52) one has Jll 8
ma

5a2d l1l18d l2l28dma2b2e
ra l1l2erm l18 l28. We shall express the co-

efficientsa andb in terms of a potential scattering interaction
Jp and a spin spin interactionJs below.

The equations which determine the critical value of
chemical potential and interaction strength at which the me-
tallic solution disappears can be written in a physically trans-
parent fashion if one introduces an operator describing the
normalized operators of the local low-energy bath electrons
at the impurity site,ca :51/Aw(kPLVk

Lcka
L , the low-energy

part of the operatorsf a given byFa
LL5AwXll 8Jll 8

macm , and a
low-energy impurity Hamiltonian describing the interaction
of the degenerate ground-state manifoldu l & and the low-
energy bath electrons:
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HereOs andOp are the SU(2l b) generalizations of the
spin-spin interaction and the potential scattering between the
impurity states and the low-energy part of the bath of con-
duction electrons, respectively. Forntot51 and
SU(N52l b), Os has the form Os5(Xmm8cmcm8

†

2(1/N)Xmmcm8cm8
† ), which for l b51 ~i.e.,N52) reduces to
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The condition for the destruction of the metallic solution
is obtained by expanding the previous equation to lowest
order inw ~Refs. 10 and 11! to obtain

1

t2
5@ i ~ntot ,l b!2^Os&#Js

21Jp
2 . ~6!

As shown in Ref. 11 the conditions for the destruction of the
insulating solution is given by an equation similar to Eq.~6!
but with ^Os&50:

1

t2
5 i ~ntot ,l b!Js

21Jp
2 . ~7!

Equations~6! and ~7! allow us to discuss the trends in the
values of critical couplings as the filling and band degen-
eracy is varied. Herê . . . & indicates the expectation value
with respect to the effective low-energy HamiltonianHeff

L

andi (ntot ,l b) are rational numbers which depend only on the
group, i.e, on the band degeneracyl b , and on the group
representation which is determined by the number of elec-
trons per site.

We notice that, as in the one band case,10 the interaction
Hamiltonian favors the formation of an SU(2l b) singlet be-
tween the conduction electrons and the degenerate SU(2l b)
manifold of degenerate ground statesu l &. This implies that
^Os&,0. Since the spin exchange constant decreases with
increasingU, the critical value of the interaction at which a
metal disappearsUc2 is strictly larger than the critical value
of the interaction at which the insulator breaks downUc1.
There is a region in them2U plane where a metallic and an
insulating solution coexist. The metallic solution is lowest in
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energy. Therefore thequalitative structureof the Mott tran-
sition in infinite dimensions is unaffected by the band degen-
eracy.

To calculate the phase diagram in the paramagnetic phase,
one needs to solve a system of functional equations for the
parametersek ,Vk which is necessary for the exact determi-
nation of^Os&, a task which is left for future work. Here we
focus on the trends as degeneracy and occupation is
changed, to illuminate the qualitative aspects of the problem.
For this purpose it is sufficient to estimate^Os& by half of its
strong coupling value~denoted by a subscript sc! , which
was shown to be a good approximation in the one band case.
Their values are: ^Os&sc52 3

2 for ntot51 and l b51,
^Os&sc525/4 for ntot51 and l b51 and ^Os&sc525 for
ntot52 and l b52. We have evaluated some of the corre-
sponding values ofi (ntot ,l b), in Eqs.~6! and~7! using group
theoretical methods and foundi (ntot51,l b51)5 3

4,
i (ntot51,l b52)5 15

16, and i (ntot52,l b52)5 5
4.

From Eqs.~6! and ~7! it is clear that̂ Os&/ i (ntot ,l b) is a
measure of the separation betweenUc1 andUc2, which also
determines the width of the coexistence region and the
strength of the first-order transition. Thentot52, l b52 tran-
sition has a much larger coexistence region than the
ntot51, l b51, which is slightly larger than thentot51,
l b52 transition.

To estimate the trends in the critical values of the
interactions, the insulating gaps, and the jump in the chemi-
cal potential we need also estimates of the exchange con-
stants. It turns out that the qualitative behavior of the ratios
of critical interactions already appear if we evaluate Eq.~4!
to lowest order int/U. We have forntot51 and l b51 or
2, Js5b1, and Jp5a11b1/2l b with a15(1/m2U) and
b151/m11/(U2m). For ntot52 and l b52, Js5b2 and
Jp5a22b2/2 with a251/(m2U) and b251/(m2U)
11/(2U2m). Inserting these results in Eq.~7! we can
estimateUc1, the critical value of the interaction when the
insulator ceases to exist, as well as the Mott insulating gap.
In the particle hole symmetric situationsm5U/2 for l b51
and U5 3

2 for l b52 the result is very simple sinceUc1

} i @ntot5( l b/2),l b#, so Uc1
( l b52,ntot52)/Uc1

( l b51,ntot
51)51.4. Contrast this with the weak dependence ofUc1

on the degeneracy forn51 where Uc1
( l b52,ntot51)/

Uc1
( l b51,ntot51)'1.0 to lowest order int/U.

Similar trends are found in the values ofUc2 using half of
the strong coupling value as an estimate of^Os& in Eq. ~6!
yielding Uc2

( l b52,ntot52)/Uc2
( l b51,ntot51)'1.6. and

Uc2
( l b52,ntot51)/Uc2

( l b51,ntot51)'1.0 Notice once

again a very similar trend while the critical interaction for
l b52 andntot52 is clearly larger than forntot51.

To obtain quantitative results we use a generalization of
iterative perturbation theory~IPT! to particle-hole asymmet-
ric problems12. Our goal here is to demonstrate that the low-
energy behavior between densities zero and one is rather
insensitive to the value ofl b and contrast this with the high-
energy features of the photomission and optical spectroscopy
where, in the same density range, band degeneracy intro-
duces changes of order unity. We focus our quantitative
comparison in the density range 0<ntot<1 because, on one
hand, the most controlled experiments have been done in

systems withd0 and d1 configurations and because in this
regime the reliability of the IPT has been tested extensively.

Figure 1 displays the total particle density per lattice site
as a function of the chemical potential forU54. There is a
Mott transition atntot51, 2, and 3. The gap around the
ntot51 transition is larger than the gap around thentot52
transition. The transitions atntot51 andntot53 are equiva-
lent because of particle-hole symmetry. Notice that the
curves forl b51 and l b52 are very close for densities not
very far from unity. Notice the smaller value of the gap
around thentot52 transition, which reflects the larger value
of Uc2( l b52).

The Mott transition as a function of filling is driven by
the collapse of an energy scale, the renormalized Fermi en-
ergy, and the consequent divergence of the effective
mass. The control parameter is either the interactionU or
the chemical potentialm. We calculated the quasiparticle
residue vs interaction strength curves at fixed doping and the
quasiparticle residue vs doping curves at fixed interaction
strength for densities between zero and one forl b51 and
2, the IPT scheme. Our conclusions are that the band degen-
eracy introduces changes which are at most of the order of

FIG. 1. Particle density of the two-band Hubbard model as a
function of m for U54 ~thick line! For comparison the thin line
indicates a similar plot for the one-band Hubbard model with the
same interaction strength.

FIG. 2. Comparison of the spectral functions in the one- and the
two-band model forU54: metallic state for small doping
(ntot50.94).
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10%. This surprising result should be contrasted with the
strong dependence of the high-energy features on orbital de-
generacy.

To illustrate this point we display~Fig. 2! the spectral
functions in the one-band and two-band model forU54.
Notice the differences in the weights and widths of the Hub-
bard bands which should be readily observed in photoemis-
sion experiments. Atntot51 the weights of both Hubbard
bands are equal~i.e., 1

2! in the single-band model, while in
the two-band problem the weights are14 and

3
4, respectively.

Contrast this with the width of the low-energy resonance
which is very similar in the one- and two-band model, since
it is given by the quasiparticle residue, which depends
weakly on band degeneracy near then51 Mott transition.

Figure 3 shows a comparison of thefinite frequencyopti-
cal conductivity forU52 and n51. The intensity has a
clear dependence on the band degeneracy since it involves
the low-energy resonance, the lower and the upper Hubbard
band.

An important parameter with no analogue in the one-band
model is the intraorbital exchangeJ, which originates in
Hund’s rule. This parameter does not affect the low-energy
features significantly but affects the high-energy features of
the photoemission spectra as shown in Fig. 4. The low-
energy feature is very similar to what was found previously
in the one-band model but there is now a splitting of the
upper Hubbard band due to the finite value ofJ which results
in three different interaction parameters (U15U,
U25U22J, and U35U23J), causing a splitting of the
upper Hubbard band.

The interatomic exchange has also a profound influence
on the phase diagram. This can be shown analytically in the
regime of large interaction strength by noticing that in infi-

nite dimensions one can neglect the effects of quantum fluc-
tuations after an effective spin orbital Hamiltonian is de-
rived. As expected the ground state is ferromagnetic, but the
difference in energy per spin with a Ne´el state is given by the
energy scale (t2J/U2), which is small sinceJ tends to be
much smaller thanU. The small energy differences between
different configurations of spin pairs which describe the pos-
sible magnetic orderings are the ultimate justification for the
stability of the paramagnetic solution in realistic systems.
This magnetic degeneracy becomes even more pronounced
when one considers the superexchange via ligand oxygens
and will be discussed elsewhere.13

Recently the degenerate Hubbard model has been in-
vestigated with the Gutzwiller approximation,14 and a
novel extension of the slave boson method.15 The qualitative
trends in the low-energy quantities that we found are in
good agreement with these works. The critical values of
the finite-temperature Mott transition in the degenerate
Hubbard model in infinite dimensions have been eval-
uated using the quantum Monte Carlo method~Ref. 16!.
The trends found are in excellent agreement with our
work.

The prospects of understanding realistic strongly corre-
lated materials using dynamical mean-field methods look
very promising. In particular, it would be interesting to in-
corporate more realistic band structures together with a real-
istic orbital degeneracy~threefold degeneracy for the earlier
transition metal oxide!, to eliminate some of the limitations
of our work. A second important direction is the estimation
of the corrections due to finite dimensionality.
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