PHYSICAL REVIEW B

CONDENSED MATTER

THIRD SERIES, VOLUME 54, NUMBER 20 15 NOVEMBER 1996-I1

RAPID COMMUNICATIONS

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority treat-
ment both in the editorial office and in production. A Rapid CommunicatioRhysical Review Bmay be no longer than four printed
pages and must be accompanied by an abstract. Page proofs are sent to authors.

Effects of orbital degeneracy on the Mott transition in infinite dimensions

Gabriel Kotliar and Henrik Kajueter
Department of Physics, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 1 July 1996

We investigate the Mott transition in infinite dimensions in the orbitally degenerate Hubbard model. The
qualitative features of the Mott transition found in the one-band model are also present in the orbitally
degenerate case. We show that the quantitative aspects of the low-energy behavior near the Mott insulating
state with one electron per site are not very sensitive to orbital degeneracy, justifying the quantitative success
of the one-band model which had been previously applied to orbitally degenerate systems. We contrast this
with quantities that have a sizable dependence on the orbital degeneracy and comment on the role of the
intra-atomic exchangé. [S0163-18206)51740-§

The Mott transition in transition metal oxides has receivedvalues of certain low-energy quantities such as the effective
renewed theoretical and experimental attention. On the exmass and the optical gap, near the Mott insulating state with
perimental side, new compounds have been synthésizetl  one electron per sitelepend rather weakly on the band de-
older compounds such as,®; and NiSe_,S have been generacy. This justifies posteriorj the quantitative success
studied with higher resolutiShFrom the theoretical point of of the one-band Hubbard model when applied to orbitally
view new insights have been obtained from studying the onelegenerate systems with carrier density between 0 afaj 1.
band Hubbard model in the Ilimit of large lattice We contrast the previous point with the high-energy behav-
coordinatior™* These studies allowed quantitative compari-ior of the spectral functions that have a sizable dependence
sons of this model against three-dimensional transition-metain the band degeneracy and comment on the role of the
oxides. The doping dependence of the electronic specifiexchange paramete), which only appears in the orbitally
heat in LgSr, _,TiO5 can be described by the one-band Hub-degenerate case.
bard model without adjustable parameters after the values of We studied the Hubbard Hamiltonian fég=2 bands
U and D have been determined from the photoemissiorgiven by
data® The single band Hubbard model can describe the tem-

perature dependence of the optical and the dc conductivity of _ L t & o
V2032 and SE,XCE!(VO;;.G H= \/a(ij)E,mo Cim(erm(r+ i%o NimeNimo
The degree of quantitative agreement between the mean-
field theory and the experimental data is surprisingly good, if U, o U, B
one considers the fact that in three-dimensional materials +7i%‘z{r NimoNima 7%:0 NimoNime » Y

such as La ,Sr,TiO; the d* electron has a quasithreefold
degenerate level while the simplest description g0Yyin-  wherem=1,2 (¢=*1) denotes the bantspin) index. A
volves one electron in a twofold degenerate I€vel. bar overm or o means the complementary value, i.e.,
In this publication we report the main conclusions of ourm=2 if m=1 andm=1 if m=2 (¢=-1 if =1 and
study of thedegenerateHubbard model in the limit of infi- o=1 if o=—1).
nite dimensionsfa) All the qualitativefeatures found in ear- We introduced three interaction parametefs which we
lier studies of the Mott transition in the single-band Hubbardparametrize in terms ol andJ, U,=U, U,=U;—2J,
model persist in the degenerate caé®. The quantitative U,;=U,—J.2 We study the model on a Bethe lattice with
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coordinationd in the limit of infinite d. When not stated The equations which determine the critical value of
explicitly we measure energies in units where the half bandehemical potential and interaction strength at which the me-
widthD =2t=1. tallic solution disappears can be written in a physically trans-
The lattice model in infinite dimensiorig the paramag- parent fashion if one introduces an operator describing the
netic phasgis mapped onto an impurity model describing annormalized operators of the local low-energy bath electrons
orbital f,,, with band indexm and spino coupled to a bath at the impurity sitec,:= 1/\/W2keLV{;cka, the low-energy
of conduction electronsc,,): part of the operators, given byFL"=JwX.Ji7c,, and a
low-energy impurity Hamiltonian describing the interaction
of the degenerate ground-state manifdld and the low-

H.; :sz fT fo. + 2 GkCT Ck
e ey MM (R ¢ kmokme energy bath electrons:

U
T i -1 () 4(F)
+ 2, Vil F i) + 25 Ninalim He=WD?(J;05+ 3,0+ 3 el uCia-  (5)
Uz f) L (f Us f) A (F
5> nﬁm)f”—im)r -2 ”ﬁm);”(ﬂ)f ) Here O, and O, are the SU(B,) generalizations of the
2 mo 2 mo p

spin-spin interaction and the potential scattering between the
where the hybridization functiod (w): =2, V2/w—e,—in  iMmpurity states and the low-energy part of the bath of con-

fulfills the self-consistency conditiohA () =t?G(w). duction electrons, respectively.  Forng=1 apd
To analyze the qualitative behavior of these equations weU(N=2lp), Os has the form Og=(X,./c.C,
apply the projective self-consistent methi8d! This tech- _(1/N)XMMCM'CL’)' which forl,=1 (i.e., N=2) reduces to

nique exploits the separation of scales between the quantiti(=(§sz4 &l ,C,r. Forl,=2 andng=2, O, is given by
describing high-energy features of the spectral functlan s AR T )
beled by the superscrigt) and the quantities describing Os= (2XppCC, — €”P1P2eP# P1P2X ¢ c /). The potential
low-energy featureglabeled byL). We restrict ourselves to Scattering term i©,=nX;|:CLC,.
the J=0, Su(d,) symmetric case. The local description of ~The parametersVy €l solve the low-energy self-
the Mott insulating state with a given integer occupancy is aconsistency  condition t2G'‘(w) =3, (Vk)%/(w— )
degenerate Anderson impurity model in an insulating bath: whereG-t(t—t") = —<TFZL(t)[F'&L(t’)]T>Hgﬂ-
The condition for the destruction of the metallic solution
Ho=— >, NmoNmror+ > VE(FICH +H.c) is obtained by expanding the previous equation to lowest
a,keH order inw (Refs. 10 and 1)1to obtain

(mo)#(m'a’)

+ kEH (e el 3

|

=[i(Not,15) = (05} 135+ 3. (6)

N

t

‘H, hasd degenerate ground states carrying a representation , . ,
of SU(2l,) [d=2l, for ng=1 and d=I,(2l,—1) for As shown in Ref. 11 the conditions for the destruction of the

ne=2] . We label the ground states &, (for a given value insulating solution is given by an equation similar to Egj.

of chemical potential corresponding to integer occupancyUt With (Og)=0:

Ny as|l)y and define Hubbard operatoXg . =|1)(l’| acting

on this low energy impurity manifold. i_. 1324 32 7
From Hamiltonian(3) describing the insulator and its 2 =1 (Mo, Ip) Is+ Jy, @)

ground states one extracts the maffix
JiT= <| |’> - <| |'> . (4  eracy is varied. Heré . . .) indicates the expectation value
with respect to the effective low-energy Hamiltoniark
For n=1 the indicesu, ', and a in Eq. (4) denote andi(ny,l,) are rational numbers which depend only on the
the 2, spin-orbital combinations nie). For n,,=2 and group, i.e, on the band degeneralgy, and on the group
l,=2, however, the indicek |, p, andp’ are double indi- representation which is determined by the number of elec-
ces, e.g.l=(l1,1,), describing one of six possible pairs trons per site.
(mo,m’¢’), which denote the quantum numbers of the We notice that, as in the one band c&¥ehe interaction
ground states of Ed23). Hamiltonian favors the formation of an SU(J singlet be-
Because of SU(RR) invariance this matrix is character- tween the conduction electrons and the degenerate I§)J(2
ized by two independent coupling constants. nif,=1 manifold of degenerate ground stafés. This implies that
(Ipb=1 orly=2), the Ji7 are of the formd}’=a,8): 8,4 _(OS><O_. Since the_ _spin exchange constant decreas_es with
+by8)/48,, while for ng=2 (I,=2) one has J{ffy mcreas[ngU, the cr|t|'cal yalue of the |nteract|onl gt which a
B il e metal disappeard ., is strictly larger than the critical value
= 801,11 01,11 60— bo€? " 12€”# 172, We shall express the co- of the interaction at which the insulator breaks dolpg,.
efficientsa andb in terms of a potential scattering interaction There is a region in the —U plane where a metallic and an
Jp and a spin spin interactiody below. insulating solution coexist. The metallic solution is lowest in

—

Equations(6) and (7) allow us to discuss the trends in the

; values of critical couplings as the filling and band degen-
f f

f1 f
“H—Egs *

“H—Eg ©
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energy. Therefore thqualitative structureof the Mott tran- LI
sition in infinite dimensions is unaffected by the band degen- 4 ! ]

eracy. - 2 bands

To calculate the phase diagram in the paramagnetic phase, — 1band / i
one needs to solve a system of functional equations for the '
parameters, V|, which is necessary for the exact determi- - / .
nation of(Og), a task which is left for future work. Here we 2
focus on thetrends as degeneracy and occupation is | |
changed, to illuminate the qualitative aspects of the problem.
For this purpose it is sufficient to estimd®,) by half of its 1 /

w

strong coupling valug¢denoted by a subscript ¢ which
was shown to be a good approximation in the one band case. ok i
Their values are:(Ogs=—3 for ng=1 and l,=1, 0 3 10
(Og)sc=—5/4 for =1 andl,=1 and (Og)s=—5 for H
n=2 andl,=2. We have evaluated some of the corre-
sponding values df(n,l,), in Egs.(6) and(7) using group
theoretical methods and foundi(ng=1l,=1)=3%,
i(Nor=11p=2)=1%, andi(n=2J,=2)=3%.

From Egs.(6) and(7) it is clear that{Og)/i (Nyy,lp) is @
measure of the separation betwedén andU.,, which also

determines the width of the coexistence region and th&yStems withd® andd* configurations and because in this
strength of the first-order transition. The,=2, I, =2 tran-  '€gime the reliability of the IPT has been tested extensively.

sition has a much larger coexistence region than the Figure 1 displays the total particle density per lattice site
ne=1, l,=1, which is slightly larger than the,=1 as a function of the chemical potential for=4. There is a
(0] ) ’ () ’

|, =2 transition. Mott transition atn,,=1, 2, and 3. The gap around the

To estimate the trends in the critical values of theMot=1 transition is larger than the gap around tg=2

interactions, the insulating gaps, and the jump in the chemitransition. The transitions at,=1 andni=3 are equiva-

cal potential we need also estimates of the exchange cornt be;:atljsg 1°f r:jalrti:lg-hole symrretry.f N((j)tlce_t_that t?e
stants. It turns out that the qualitative behavior of the ratios\clu:vefS rofrr br; ri? tlj\l_ i ar(tahverymc ﬁsre volr en? t'ﬁs no
of critical interactions already appear if we evaluate &j. ery 1ar from unity. Notice thé smaller vajue of the gap
to lowest order int/U. We have forng=1 andl,=1 or around then,,=2 transition, which reflects the larger value

- _ . e of Ugy(l,=2).
2’_J5_ b;, and Jp_al+b1/2l_b with a= (L _U) and The Mott transition as a function of filling is driven by
by =1/p+1(U=u). For ng=2 andlp=2, J=b, and . collapse of an energy scale, the renormalized Fermi en-
Jp=a,—by/2 with a,=1/(u—U) and b,=1/(u—U) !

) . , d th t di f th ffecti
+1/(2U— ). Inserting these results in Eq7) we can ergy, -an © consequent divergence O e crective

imateU... th itical val f the int i hen th mass. The control parameter is either the interactioor
estimatél/c,, the critical value ot the Interaction when e .o cpemica potentiak.. We calculated the quasiparticle
insulator ceases to exist, as well as the Mott insulating ga

) R Residue vs interaction strength curves at fixed doping and the
In the pe;rtlcle hole symmetric situations=U/2 for [,=1 4 aqiparticle residue vs doping curves at fixed interaction
and U= for 1,=2 the result is very simple sinc®c;  gyrength for densities between zero and onelferl and
“i[no=(1/2).lp], 80 Uc (I0=2,n=2)/Uc (Ib=1.N0t 2 the IPT scheme. Our conclusions are that the band degen-
=1)=1.4. Contrast this with the weak dependencelhfy  eracy introduces changes which are at most of the order of
on the degeneracy fon=1 where Ucl(lb=2,nmt= 1)/
Ucl(lb: 1n,=1)~1.0 to lowest order in/U.

Similar trends are found in the valuesldf, using half of
the strong coupling value as an estimatg(©f) in Eq. (6)
yielding Uc2(| b= 2 Not= 2)/UC2(I b=1N=1)~1.6. and
Ue,(Ib=2n=1)/U¢,(Ip=1nx=1)~1.0 Notice once
again a very similar trend while the critical interaction for
l,=2 andn,,=2 is clearly larger than fon,,,= 1.

To obtain quantitative results we use a generalization of
iterative perturbation theor§fPT) to particle-hole asymmet- 0.5
ric problem$2. Our goal here is to demonstrate that the low-
energy behavior between densities zero and one is rather 0.0
insensitive to the value df, and contrast this with the high-
energy features of the photomission and optical spectroscopy
where, in the same density range, band degeneracy intro-
duces changes of order unity. We focus our quantitative F|G. 2. Comparison of the spectral functions in the one- and the
comparison in the density range<O<1 because, on one two-band model forU=4: metallic state for small doping
hand, the most controlled experiments have been done ifh,=0.94).

FIG. 1. Particle density of the two-band Hubbard model as a
function of u for U=4 (thick line) For comparison the thin line
indicates a similar plot for the one-band Hubbard model with the
same interaction strength.
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FIG. 4. Spectral function folU=4 and J=0.5 for density

FIG. 3. Comparison of the optical conductivity for the one- and Nio=0.89.
the two-band model dt) =2 andn;,=1.
nite dimensions one can neglect the effects of quantum fluc-
éuations after an effective spin orbital Hamiltonian is de-
éi_ved. As expected the ground state is ferromagnetic, but the
difference in energy per spin with a Blestate is given by the
energy scalet€J/U?), which is small since) tends to be
much smaller thatd. The small energy differences between

Notice the differences in the weights and widths of the Hub_different configurations of spin pairs which describe the pos-
bard bands which should be readily observed in photoemiss_ible magnetic orderings are the ultimate justification for the
sion experiments. Ah.=1 the weights of both Hubbard stability of the paramagnetic solution in realistic systems.
bands are equdi.e., %)mitn the single-band model, while in This magnetic degeneracy becomes even more pronounced

the two-band problem the weights ay@nd , respectively. when one considers the superexchange via ligand oxygens

Contrast this with the width of the low-energy resonance""mljzzWIII tﬁ(? d;ﬁcusésed else\{vhifebb d del has b .
which is very similar in the one- and two-band model, since ecently the degenerate Hubbard model has been in-

it is given by the quasiparticle residue, which dependsveStigatecj with the Gutzwiller approximatioh, and a

weakly on band degeneracy near the 1 Mott transition novel extension of the slave boson metfid@he qualitative

Figure 3 shows a comparison of tfisite frequencyopti- trends in the Iow—e_nergy gquantities that W(_a_found are in
cal conductivity forU=2 andn=1. The intensity has a good agreement with these works. The critical values of

clear dependence on the band degeneracy since it involv%e finite-temperature Mott transition in the degenerate

ubbard model in infinite dimensions have been eval-
Lhaen:jow—energy resonance, the lower and the upper Hubbal Shted using the quantum Monte Carlo meth@ef. 16.

Jhe trends found are in excellent agreement with our
ork.

10%. This surprising result should be contrasted with th
strong dependence of the high-energy features on orbital d
generacy.

To illustrate this point we displayFig. 2) the spectral
functions in the one-band and two-band model fbe=4.

An important parameter with no analogue in the one-ban
model is the intraorbital exchangé which originates in The prospects of understanding realistic strongly corre-
Hund's rule. This parameter does not affect the low-energ ted mgterigls using dynamical %ean-field metr?o)és look
features significantly but affects the high-energy features o C g dy . ) ) .

o I very promising. In particular, it would be interesting to in-
the photoemission spectra as shown in Fig. 4. The low-

energy feature is very similar to what was found previously.corporate more realistic band structures together with a real

in the one-band model but there is now a splitting of the|stic orbital degeneracythreefold degeneracy for the earlier

upper Hubbard band due to the finite valuelafihich results transition metal oxide t(.) eliminate some Of. the “m't"."tlons

. . : . - of our work. A second important direction is the estimation

i three ~different interaction parameters U(=U, of the corrections due to finite dimensionalit

U,=U-2J, and U3=U-3J), causing a splitting of the Y-

upper Hubbard band. This work was supported by the National Science Foun-
The interatomic exchange has also a profound influencdation under Grant No. DMR 95-29138. We would like to

on the phase diagram. This can be shown analytically in théhank N. Andrei, H. Neuberger, and especially, M. Rozen-

regime of large interaction strength by noticing that in infi- berg for useful discussions.
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