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Effects of overstory and understory vegetation on the understory 

light environment in mixed boreal forests 

Messier, Christian*, Parent, Sylvain & Bergeron, Yves 
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Montreal, Quebec, Canada H3C 3P8; *Corresponding author: Fax +1 514 987 4648; E-mail messier.christian@uqam.ca 

Abstract. The percentage of above-canopy Photosynthetic 
Photon Flux Density (%PPFD) was measured at 0, 50 and 100 

cm above the forest floor and above the main understory 

vegetation in stands of (1) pure Betula papyrifera (White 

birch), (2) pure Populus tremuloides (Trembling aspen), (3) 
mixed broad-leaf-conifer, (4) shade-tolerant conifer and (5) 

pure Pinus banksiana (Jack pine) occurring on both clay and 

till soil types. %PPFD was measured instantaneously under 

overcast sky conditions (nine locations within each of 29 

stands) and continuously for a full day under clear sky condi- 

tions (five locations within each of eight stands). The percent- 

age cover of the understory layer was estimated at the same 

locations as light measurements. 

Mean %PPFD varied from 2 % at the forest floor under 

Populus forests to 15 % above the understory vegetation cover 

under Betula forests. Percent PPFD above the understory 

vegetation cover was significantly higher under shade intoler- 

ant tree species such as Populus, Betula and Pinus than under 

shade tolerant conifers. No significant differences were found 

in %PPFD above the understory vegetation cover under simi- 

lar tree species between clay and till soil types. The coefficient 

of variation in %PPFD measured in the nine locations within 

each stand was significantly lower under deciduous domi- 

nated forests (mean of 19 %) than under coniferous dominated 

forests (mean of 40 %). %PPFD measured at the forest floor 

was positively correlated with %PPFD measured above the 

understory vegetation and negatively correlated with cumula- 

tive total percent cover of the understory vegetation (R2 = 

0.852). The proportion of sunflecks above 250 and 500 gmol 

m-2 s-1 was much lower and %PPFD in shade much higher 
under Populus and Betula forests than under the other forests. 

Differences in the mean, variability and nature of the light 
environment found among forest and soil types are discussed in 

relation to their possible influences on tree succession. 

Keywords: Abies balsamea; Betula papyrifera; Forest under- 

story; Light environment; Populus tremuloides; Succession; 

Sunfleck; Thuja occidentalis. 

Introduction 

Short-wave radiation intensity between 400 and 700 

nm (i.e. Photosynthetic Photon Flux Density: PPFD) 

plays a major role in the growth, survival, and regenera- 
tion of understory boreal forest species (Johansson 1990; 

Messier et al. 1989; Vales & Bunnell 1988; Ross et al. 

1986). While data on photosynthesis, growth and de- 

mography are still lacking for many boreal plant spe- 

cies, detailed descriptions of some important micro- 

environmental characteristics could provide the - much 

needed - framework for future studies on the ecophysio- 

logy and dynamics of boreal forest understory vegetation. 
In particular, studies of the photosynthetic light environ- 

ment are relevant to a large range of processes such as 

photosynthesis, evapotranspiration, reproduction, germi- 

nation, growth and survivorship (Larcher 1980). 

PPFD beneath forest canopies is influenced by sev- 

eral factors, including tree species composition and 

phenology, stand density and structure, sky conditions 

and solar angle (Constabel & Lieffers 1996; Messier & 

Puttonen 1995; Baldocchi & Collineau, 1994; Morgan 
et al. 1985; Smith 1982; Tasker & Smith 1977; Holmes 

& Smith 1977; Anderson 1964). Some important quan- 
titative descriptions of the distribution of light in the 

understory of boreal forests have already been pub- 
lished (Constabel & Liffers 1996; Messier 1996; Messier 

& Puttonen 1995; Johansson 1987; Ross et al. 1986). 

These studies have emphasized the spatial, temporal 
and successional variability of the understory light envi- 

ronment in boreal forests, yet none have dealt specifi- 

cally with the effects that different tree species, soil 

types and understory vegetation have on the understory 

light dynamics. Understory species composition and 

abundance strongly affect the understory light environ- 

ment (Constabel & Lieffers 1996; Messier et al. 1989). 

Boreal forests are often characterized by a dense understory 

vegetation of herbs and evergreen and deciduous shrubs 

(de Granpre et al. 1993) which is believed to play an 

important role in the establishment, growth and survival 

of shade-tolerant conifer species (Constabel & Lieffers 

1996; Kneeshaw & Bergeron 1996). 

We wished to answer the following questions: 
1. Is there an intrinsic difference in the quantity and 

spatial and temporal variability of light penetrating 

through the canopy among different boreal forest types, 

notably Populus tremuloides, Betula papyrifera, shade- 

tolerant conifer, mixed broad-leaf conifer and Pinus 

banksiana forest? 
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2. Do the two major soil types found in the northwestern 

section of the boreal forest of Quebec (clay vs till soil 

types) affect the availability of light reaching the 

understory vegetation independently of the type of 

overstory tree composition? 
3. What is the effect of understory vegetation on light 

availability and variability? We did not consider the 

influence of canopy openings caused by the last spruce 
budworm outbreak and selected closed (cover at least 

85 %) and undisturbed stands of each forest type. 
An additional objective was to collect data on the 

understory light environment for a new plant level model 

(LIGNUM, described in Perttunen et al. 1996). 

Material and Methods 

Study area 

The study sites were situated in virgin forests on the 

mainland surrounding lake Duparquet, Quebec (48? 
30' N; 79? 20' W; elevation 300 m). This region is part 
of the Abies balsamea (Balsam fir)-Betula papyrifera 

(Paper birch) climax vegetation domain as defined by 
Grandtner (1966). Physiographically it forms part of the 

northern clay belt, a large region characterized by 
lacustrine clay deposit left by the proglacial lakes 

Barlow and Ojibway (Vincent & Hardy 1977). The 

vegetation composition and its variation along a suc- 

cessional gradient were described by Bergeron & Dubuc 

(1989). Early successional forests are dominated by 
Betula papyrifera, Populus tremuloides and Pinus 

banksiana (Jack pine); in the absence of fire Abies 

balsamea and Thuja occidentalis (Eastern white ce- 

dar) take over dominance. However, even the oldest 

forest communities have not reached a steady state as 

directional succession still occurs more than 200 yr 
after the last wild fire. 

The mean annual temperature is 0.6 ?C, the mean 

annual precipitation is 822.7 mm, and the annual frost- 

free period is 64 days (Bergeron et al. 1983). The soil is 

a Grey luvisol (Anon. 1978) with a moderate to good 

drainage; for comparison, stands ofPopulus, Betula and 

Pinus were also chosen on adjacent till deposits. 
Forest age since fire disturbance has been deter- 

mined in previous studies by dendrochronological 

techniques (Bergeron 1991). 29 stands, 20 on clay 
and nine on till soil, were selected in forests that 

varied in age since fire from 50 to 230 yr; they repre- 
sent a wide variety of stand structure and composition 

types (Table 1). These forests provide a good repre- 
sentation of the range of understory environments 

found in the unmanaged closed boreal forests of north- 

western Quebec. 

Overstory and understory stand structure 

Stand structure in each stand was assessed in plots 
with a radius of 17 m. DBH (diameter at breast height) 
and identity were determined for all trees greater than 5 

cm in diameter. Percentage cover of the understory 

vegetation was estimated visually in each of nine 1-m2 

subplots centered around points where light measure- 

ments took place (i.e. plot center, and at 2 m and 5 m 

from the plot center in each cardinal direction). The 

cover was estimated for three strata at each subplot: 
between 0 and 50 cm, 50 and 100 cm, and between 100 

cm and the top of the main understory vegetation. 

Light measurements 

PPFD was measured in July and August 1994 at 9 

systematic points inside a 17 m wide radius plot in each 

of the 29 stands: at plot centre and at 2 and 5 m in each 

cardinal direction. The exact center of the plot was 

determined at random by throwing a stick within a 

larger area where the overstory canopy was completely 
closed. The measurements were carried out at 0, 50 and 

100 cm above the forest floor, and above the main 

understory vegetation cover under overcast sky condi- 

tions following the method proposed by Messier & 

Puttonen (1995) and validated by Parent & Messier 

(1996). This method is based on the findings that one 

instantaneous measure made under completely overcast 

conditions is representative of the main daily %PPFD 

on both clear and overcast sky conditions. Light meas- 

urements in the forest understory were carried out with 

a hand-held LI-190 point quantum sensor (LI-COR, 

Inc., Lincoln, NE). Continuous measurements were car- 

ried out in an adjacent opening to record the above 

canopy PPFD using a LI-1000 datalogger. 
A subsample of one Populus, one Betula, three mixed 

Broad-leaf-conifer, two mixed coniferous and one Pinus 

stand was selected at random within each of these cat- 

egories to measure light continuously under clear sky 
conditions; in each stand five sensors were placed above 

the main understory vegetation. For each of these sen- 

sors, the mean of 5-second measures was recorded every 
minute over one full sunny day on July 15, 1994 using 
LI-1000 dataloggers. 

Data analysis 

For each plot, we calculated the mean value, stand- 

ard deviation and coefficient of variation of the nine 

instantaneous measures of %PPFD made at 0, 50, and 

100 cm above the forest floor and above the main 

understory vegetation cover under completely overcast 

sky conditions. Similarly, we calculated the average of 

512 



- Understory light environment in mixed boreal forests 

the total percent cover of the understory vegetation 

made between 0 and 50 cm, 50 and 100 cm, and 100 cm 

and the top of the main understory vegetation of the nine 

subplots. The 29 stands were grouped into two different 

soil types (clay vs till) and five different forest types: 

(1) pure Betula papyrifera; 

(2) pure Populus tremuloides; 

(3) mixed broad-leaf conifer (stands with between 25 % 

and 75 % broad-leaf species based on total basal area); 

(4) shade-tolerant conifer (stands with more than 75 % 

conifers); 

(5) pure Pinus banksiana (Table 1). 

One-way or two-way ANOVA were used to test for 

significant differences in light environment among for- 

est and soil types. The Tukey HSD multiple compari- 

son test was used to compare means. Simple and/or 

multiple linear regressions were used to test for rela- 

tionships between light, understory vegetation and stand 

characteristics. 

Results 

Effects offorest and soil types on understory vegeta- 
tion and mean daily %PPFD 

The 29 stands selected for this study varied in time 

since fire, density, soil type, height, average DBH, per- 
cent broad-leaf composition, mean basal area, mean 

understory vegetation percent cover and mean percent 

understory light (Table 1). In order to be able to isolate 

the effects of forest and soil types, we separated the 

analyses of the five different forest types on clay soil 

(i.e. 20 stands) with those made on the three forest types 
that were found on both clay and till soils (i.e. nine 

stands on till and 10 stands on clay). See Table 1. 

According to a multiple regression applied to the 20 

stands growing on clay soil, height of the overstory trees 

was positively related and total basal area was nega- 

tively related to mean daily %PPFD measured above the 

understory vegetation (R2 = 0.335; Table 2). 

Table 1. Stand characteristics. 

Stand type Age Soil Density Height Average Basal area Broadleaf UnderstoryUnderstory PPFD PPFD 

(yr) types (#/ha) (m) DBH (cm) (m2/ha) (%) cover (%)lheight (cm) (%)2 (CV%) 

Deciduous 
Betula papyrifera 1 70 Clay 919 18.0 14.4 

2 70 Clay 1315 18.5 15.6 

3 70 Clay 1542 17.5 13.8 

4 70 Till 863 16.5 19.5 

5 70 Till 594 16.0 20.1 

Populus tremuloides 1 50 Till 2065 17.5 15.3 

2 50 Till 2566 18.0 14.4 

3 50 Till 2008 18.5 14.6 

4 50 Clay 1414 22.0 17.5 

5 50 Clay 1528 19.5 17.1 

6 50 Clay 1966 20.0 18.0 

7 70 Till 1103 22 22.3 

8 70 Clay 948 24.5 23.9 

Mixed coniferous-deciduous 
Mixed 1 70 Clay 1556 16.0 16.6 

2 70 Clay 1499 17.0 16.3 

3 70 Clay 1556 17.0 16.8 

4 70 Clay 780 16.5 17.1 

5 108 Clay 1400 22.0 16.9 

Coniferous 
Abies-Picea glauca 70 Clay 1924 17.0 12.9 

Picea glauca 70 Clay 863 14.5 21.1 

Picea mariana 70 Clay 1938 18.5 14.6 

Thuja occidentalis 1 230 Clay 799 18.0 26.2 

2 230 Clay 654 18.5 25.6 

Pinus banksiana 1 70 Clay 746 24.5 20.1 

2 70 Clay 1245 23.5 19.4 

3 70 Clay 1174 24.0 20.3 

4 70 Till 1754 18 15.1 

5 70 Till 2065 19.5 14.3 

6 70 Till 3041 18.5 14.1 

21.2 88.4 

18.0 97.7 

22.7 84.0 

23.3 96.5 

19.6 93.5 

24.6 100.0 

25.9 100.0 

17.4 100.0 

34.5 89.0 

34.8 97.7 

46.5 99.1 

49.7 96.0 

34.6 97.4 

33.9 73.1 

31.1 48.4 

33.8 33.6 

17.8 45.1 

31.4 68.1 

25.0 13.5 

30.1 16.7 

32.4 3.4 

41.0 9.6 

38.6 5.6 

29.1 25.9 

33.8 13.3 

30.8 7.8 

35.5 0.1 

36.8 6.3 

38.5 6.0 

75.5 147.2 14.4 23.9 

78.0 105.5 12.9 17.0 

77.5 175.2 12.1 20.3 

106.0 264.4 18.5 20.7 

133.5 206.1 12.7 6.4 

114.5 358.3 11.1 22.3 

113.0 186.1 10.9 16.5 

107.0 200.0 8.7 22.7 

70.0 351.7 8.2 25.1 

81.0 294.4 8.9 16.5 

277.8 11.9 21.0 

114.0 303.9 13.4 18.2 

136.0 384.6 10.5 19.0 

63.0 126.7 6.0 37.5 

56.5 177.8 5.9 45.3 

57.0 122.2 4.6 29.6 

62.5 115.0 10.2 20.7 

48.0 141.6 9.5 37.6 

52.5 111.1 8.9 47.4 

35.5 88.9 12.8 21.5 

55.6 6.4 28.5 

69.0 140.0 4.4 30.8 

73.0 204.4 5.7 40.1 

109.0 350.2 14.6 16.7 

99.5 355.6 11.6 25.3 

117.5 422.2 10.2 29.5 

77.5 197.2 10.8 56.4 

69.5 179.4 11.3 39.1 

29.5 150.0 14.7 36.3 

Note: lCumulative total percent cover of all understory layers;2 Mean daily percent PPFD measured above the understory vegetation;3Coefficient of variation 

among nine subplots. 
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Fig. 1. A. Comparison of the mean daily %PPFD, at different 

heights; B. Percentage understory cover for different layers 

among closed forests of Populus tremuloides (Aspen), Betula 

papyrifera (Birch), Shade-tolerant conifers (Conifer), Mixed 

coniferous/broad-leaf (Mixed), and Pinus banksiana (Pine) 

growing on clay soil. One repetition is the mean of nine meas- 

urements made in a 17-m radius plot. N varies from 3 to 5. 

Intolerant broad-leaf (Populus, Betula) and conif- 

erous (Pinus) species transmitted significantly (P < 

0.10) more %PPFD as measured above the understory 

vegetation than shade tolerant conifer and mixed broad- 

leaf conifer forest types (Fig. 1A). The cumulative total 

cover (Fig. 1B) and maximum height of the understory 

vegetation (Table 1) were significantly (P < 0.05) higher 
under Pinus and Populus than under Betula, shade- 

tolerant conifer and mixed forest types. A multiple re- 

gression found both %PPFD measured above the 

understoy vegetation (P = 0.040) and height of the tree 

canopy (P < 0.001) to be positively related to the cumu- 

lative total understory cover (R2 = 0.802; Table 2). 
The coefficient of variation of %PPFD measured 

above the understory vegetation also varied greatly among 
stands (Table 1). It was significantly (P < 0.05) higher 
under Pinus, Shade-tolerant conifer and Mixed forest 

types than under Populus forest types (Fig. 2), and was 

also significantly higher under Pinus than Betula forest 

types. Multiple regressions showed that it was positively 
related to the percentage of conifers in the stand (R2 = 

0.361; Table 2). 

A two-way ANOVA between the three forest types 

(Populus, Betula and Pinus) and two soil types showed 

no effect of soil type, but a small effect of forest type on 

%PPFD measured above the understory vegetation (Ta- 
ble 3): %PPFD was significantly (P = 0.028) higher 
under Betula stands (Table 4). A strong interaction was 

found between forest and soil types for the cumulative 

total understory cover (Table 3). This interaction indi- 

cated that cumulative total understory plant cover did 

not change for Populus between the two soil types, 
whereas on till it increased for Betula and decreased for 

Pinus (data not shown). 

Effects of understory vegetation on light environment 

Vertical distribution of both understory vegetation 
and %PPFD in stands growing on clay was highly vari- 

able among forest types (Fig. 1A, B). Both Pinus and 

Populus had important understory plant cover between 5 

and 50 cm and above 100 cm in height, whereas Betula, 

shade tolerant conifer and mixed types had an important 

plant cover only between 5 and 50 cm (Fig. 1B). %PPFD 

decreased as one approached the forest floor for all 

forest types, but the intensity of the decrease was vari- 

able (Fig. 1A). Multiple linear regressions showed that 

%PPFD measured at the forest floor was related to 

cumulative percent understory plant cover, total tree 

Table 2. Selected multiple linear regressions to predict the effects of various stand structural attributes for stands growing on clay 
soil type on various attributes of the understory light and vegetation. 

R2 P 

PPFD-above 

COVER-total 

CV-above 

PPFD-ff 

8.43 + 0.47HEIGHT - 0.24 BA 
- 45.43 + 5.28 HEIGHT + 2.20 PPFD-above 

18.25 - 0.21 CONIFER-percent 
7.675 + 0.469 PPFD-above - 0.097BA - 0.068COVER-total 

0.335 

0.802 

0.361 

0.852 

0.031 

< 0.001 

0.005 

< 0.001 

PPFD-above: %PPFD as measured above the understory vegetation; COVER-total: Cumulative total understory plant cover; HEIGHT; Average 

height of the overstory tree canopy; BA: Total basal area of trees > 5 cm DBH; CV-above: Coefficient of variation in percent of PPFD-above; 

CONIFER-percent: Percentage of conifers within a stand based on BA; PPFD-ff: %PPFD as measured at the forest floor. 
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Table 3. ANOVA table showing mean-square and P-values for % PPFD measured above the understory vegetation, cumulative 

understory plant cover and % PPFD measured at the forest floor among three forest types (Populus, Betula and Pinus) and two soil 

types (clay vs till). 

PPFDabove COVERtotal PPFDff 

Factors DF Mean-Square P Mean-Square P Mean-Square P 

Forest type 2 22.77 0.028 673.09 0.202 13.52 0.002 

Soil type 1 3.14 0.433 42.38 0.740 0.33 0.626 

Forest type x soil type 2 3.01 0.549 3175.40 0.005 19.30 0.001 

Error 13 4.79 367.53 1.34 

basal area and %PPFD measured above the understory 

vegetation (R2 = 0.852; Table 2). When comparing Fig. 
1A with Fig. 1B, it is clear that light attenuation within 

the understory plant cover relates well to its abundance. 

The proportion of PPFD transmitted by the understory 

vegetation was negatively related to the cumulative total 

percent cover (Fig. 3). Overall, %PPFD at the forest 

floor was significantly (P < 0.01) lower under Populus 

and Pinus (ca. 2 %), where the largest amount of 

understory vegetation was found (see Fig. 1B), com- 

pared to the other forest types - ca. 5% (Fig. 1A). The 

coefficient of variation of %PPFD was higher on the 

forest floor than above the understory vegetation, espe- 

cially for the Populus and Betula types (Fig. 2), but 

there were no significant differences among forest types. 
The vertical distribution of both understory vegeta- 

tion and %PPFD differed significantly between clay and 

till soil types (Table 4). Differences in vertical light 
distribution among forest and soil types were related to 

differences in the vertical understory plant cover. A 

strong interaction was found between forest and soil 

L. 

U 

0 

-) 

. I 

E 

0 

L. 

c. 
0 o 

CD 
.- 

.-. 

O 
Q) 

Forest types 

Fig. 2. Comparison of the coefficient of variation of % PPFD 

measured at the forest floor and above the understory vegeta- 
tion among the five forest types (see Fig. 1) growing on clay 
soil. One repetition is the mean of nine measurements made in 

a 17-m radius plot. N varies from 3 to 5. 

types for %PPFD measured at the forest floor (Tables 3 

and 4). This interaction indicated that %PPFD at the 

forest floor did not change for Populus between the two 

soil types, whereas it increased from clay to till for pine 
and decreased for Betula. 

Effects offorest type on light dynamics under clear 

sky conditions 

Table 5 presents the mean daily %PPFD measured 

above the understory vegetation from both instantane- 

ous measures under overcast sky conditions and con- 

tinuous measurements under sunny sky conditions, and 

the proportion, frequency and duration of sunflecks 

higher then 100, 250 and 500 gmol m-2 s-1, respectively, 
for eight different stands. Both the mean daily %PPFD 

calculated from instantaneous measures made under 

overcast sky conditions and continuous measures made 

under clear sky conditions were in fairly close agree- 
ment (R2 = 0.841). The average number of sunfleck 

events at the 100 gmol m-2 s-1 level during a full sunny 

I 2U 
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Fig. 3. Relationship between cumulative total percent cover of 

understory vegetation and percent of above understory veg- 
etation PPFD reaching the forest floor; Y= 126.93 - 1.163X; 
R2 = 0.663; P < 0.001. One repetition is the mean of nine 

measurements made within a 17-m radius plot. N = 29. 
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day varied from 11.4 for fir-white spruce to 30.4 for 

Betula (Table 5), lasting on average 5.4 min for Picea 

and 9 min for Pinus. Sunflecks at the 100 pmol m-2 s-1 

level contributed from 59.1 % (Populus) to 86 % (Pinus) 

of the total light received during a sunny day (Table 5). 
No clear trend in the proportion, frequency and duration 

of 100 and 250 pmol m-2 s-1 sunflecks was observed 

among the forest types. The average number of sunflecks 

at the 500 pmol m-2 s-1 level events varied from 2 for 

Populus to 12 for Pinus (Table 5). Sunfleck proportion 
at the 500 pmol m-2 s-1 level was much lower in the 

deciduous forest types, especially Populus (17.9 %), as 

compared to Pinus, shade-tolerant conifer and mixed 

forest types (32.1 to 56 %) (Table 5). 

Fig. 4 shows the diurnal variation of PPFD meas- 

ured at one location above the understory vegetation 
for each of four forest types. The one location was 

selected to be representative of the five locations meas- 

ured in each stand. Intensity of the diffuse shade light 

(i.e. not influenced by any direct light) was much 

higher under Populus and Betula forest types (ca. 100 

pmol m-2 s-1) compared to the fir-white spruce and 

pine types (ca. 30 mmol m-2 s-1). Sunfleck events were 

concentrated at midday in all eight stands investigated. 

Jack pine 13.1% PPFD 

Table 4. Comparison of % PPFD and percentage understory 
vegetation cover between clay and till deposits at four heights 
in the understory of Populus, Betula and Pinus stands. 

Forest floor 50 cm 100 cm Above 

understory 

vegetation 

%PPFD 

Populus Till 1.7 (0.3) 4.1 (0.7) 5.6 (1.3) 10.3 (0.5) 

Clay 2.3 (0.3) 3.1 (0.1) 4.1 (0.4) 10.6 (1.2) 

Betula Till 2.7 (0.6) 3.4 (0.7) 4.2 (0.9) 15.6 (2.9) 

Clay 6.6 (0.7) 10.7 (0.2) 12.5 (0.6) 13.1 (0.7) 

Pinus Till 6.1 (1.4) 8.4 (1.0) 9.7 (1.3) 12.1 (1.3) 

Clay 2.4(0.2) 4.0(0.1) 4.9(0.4) 11.8 (1.4) 

% understory Forest floor 5-50 cm 50-100 cm 100 cm -Top of 

vegetation cover vegetation 

Populus Till 0.2 (0.2) 54.8 (6.1) 20.5 (7.5) 36.5 (11.1) 

Clay 1.5(0.1) 39.1(11.3) 7.9 (1.8) 44.3 (7.8) 

Betula Till 0.6 (0.4) 45.7 (3.2) 14.3 (8.9) 59.3 (8.5) 

Clay 3.4 (1.3) 57.5 (4.3) 11.9 (1.6) 4.3 (2.2) 

Pinus Till 5.9 (2.6) 34.5 (12.1) 6.6 (3.7) 11.9 (5.0) 

Clay 1.7 (0.7) 43.2 (4.6) 6.6 (1.4) 57.1(0.3) 

Note: Standard error of the mean is in parentheses. 

White birch 10.0% PPFD 
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Fig. 4. Comparison of the diurnal variation of PPFD measured at one location above the understory vegetation among Populus 
tremuloides (Aspen 5), Betula papyrifera (White birch 2), tolerant conifer (Fir-White spruce), and Pinus banksiana (Jack pine 1) 
forests. The one location selected was representative of the five locations given in Table 5. Y-axis terminated at 1000 pmol m-2 s1. 
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Discussion 

Effects of overstory and understory vegetation on light 
environment 

Few data are available for detailed comparisons of the 

light environment found among the forests investigated 
in this study with those of other boreal forests. Messier 

(1996) compiled most of the data available on understory 

light in the mixed coniferous-deciduous forest ecosystem 
of the world. %PPFD above the understory vegetation 
varies from 2 % in a dense 38-yr-old Picea abies stand in 

Sweden (Johansson 1987) to 60.4 % in an open 70-yr-old 
Picea mariana stand in Alberta (Ross et al. 1986). Values 

reported in this study generally conformed with those 

recorded in similar type of closed boreal forests (Constabel 

& Lieffers 1996; Lieffers & Stadt 1994; Messier & 

Puttonen 1995; Johansson 1987; Ross et al. 1986), but 

were much higher than those measured in the heavily 
shaded understory of coastal conifer forests of the pa- 
cific northwest (Canham et al. 1990; Messier et al. 

1989), tropical pine forests in Australia (Morgan et al. 

1985), temperate deciduous of north America (Canham 

et al. 1994; Brown & Parker 1994; Canham et al. 1990; 

Messier & Bellefleur 1988) and tropical forests (Turnbull 

& Yates 1993; Lawton 1990; Canham et al. 1990; Lee 

1989; Morgan et al. 1985; Chazdon & Fetcher 1984; 

Pearcy 1983). 

%PPFD values found under Populus forest types in 

this study were much lower than those reported by Lieffers 

& Stadt (1994) and Constabel & Lieffers (1996) under 

similar Populus stands (i.e. similar basal area, density 
and height) in northern Alberta (14 to 40 % PPFD). One 

possible explanation for the higher %PPFD values found 

in northern Alberta is that precipitation is both low (500 

mm: Anon. 1969) and much lower than in Abitibi (823 

mm); this presumably led to Populus stands with a lower 

leaf area index (LAI). 

%PPFD measured above the understory vegetation 
for similar tree species did not vary between clay vs. till 

soils, even though stands on till usually had lower height 
and greater density (although with a similar total basal 

area) (Table 1). This suggests that LAI did not vary 
much between soil types for a similar tree species. 
Obvious differences in the type and density of understory 

vegetation were found (Beland & Bergeron 1993; de 

Granpre et al. 1993; pers. obs.) between soil types, 

however, which greatly influenced %PPFD being trans- 

mitted to the forest floor. High understory vegetation 
cover and resulting low %PPFD found on the forest 

floor of clay Pinus stands compared to till could help 

explain the higher density of advanced conifer regenera- 
tion found on till by Beland & Bergeron (1993). How- 

ever, because of the low number of sample plots for 

each soil type this should be interpreted with caution. 

There is no accepted light threshold value that de- 

fines a sunfleck for all forest types (Chazdon 1988), so 

we present results for thresholds of 100, 250 and 500 

gmol m-2 s-1. We calculated that sunflecks contributed 

between 59.1 and 86 %, 28.3 and 74.5 % and 17.9 and 

56 % of the total PPFD amount received during a full sunny 

day for thresholds of 100, 250 and 500 gmol m-2 s-1, 

respectively, above the understory vegetation. These 

values are comparable to those of Messier & Puttonen 

(1995) and Washitani & Tang (1991) who used similar 

methods and thresholds. The importance of sunflecks 

Table 5. Sunfleck characteristics measured above the understory vegetation in eight different stands; values are means for five 

locations within each stand made under completely sunny days. Stands characteristics are given in Table 1. 

Stand type Inst. Cont. Sunflecks 

PPFD (%) PPFD (%) >100pm >250pm >500pm 

Prop' Freq2 Time3 Prop Freq Time Prop. Freq. Time 

(%) (#) (min.) (%) (#) (min.) (%) (#) (min.) 

Deciduous 

Aspen 5 

White birch 2 

Mixed broadleaf-coniferous 
Mixed 2 

Mixed 4 

Mixed 5 

Coniferous 
Fir-White spruce 
Black spruce 
Jack pine 1 

8.7 8.3 

10.8 8.9 

5.3 5.4 

11.2 12.5 

9.9 7.7 

7.1 

5.7 

13.1 

6.2 

6.0 

13.4 

59.1 27.8 7.1 

74.9 30.4 7.1 

70.2 19.0 5.7 

60.4 20.8 8.3 
70.2 18.4 8.2 

78.9 11.4 7.3 

68.5 19.5 5.4 

86.0 26.0 9.0 

28.3 8.0 4.9 

53.0 19.0 5.8 

51.0 8.8 4.9 
51.5 14.8 7.4 

57.2 12.8 5.7 

70.2 6.8 7.5 

49.7 8.5 4.8 

74.5 18.4 6.7 

17.9 2.0 6.4 

26.9 11.6 4.6 

32.9 5.0 3.1 

44.0 11.0 7.9 

34.0 6.8 3.7 

56.0 5.4 6.1 

32.1 3.5 5.0 

48.7 12.2 6.2 

Proportion of total daily PPFD > 100, 250 and 500 umol m-2 s-1; 2Mean number of individual sunflecks events for each threshold during a full sunny day; 
3Mean duration of sunflecks in minutes. 
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was clearly lower under Populus for all three thresh- 

olds, even though mean daily %PPFD under that forest 

type was higher than many of the other forest types 

(Table 5). The higher light intensity found in shade (i.e. 

including diffuse light only) under Populus and Betula 

(Fig. 4) explains why the proportion of sunflecks at the 

level of 500 gmol m-2 s-1 in these stands could be so 

low while at the same time having a mean daily %PPFD 

as high or higher than some mixed or coniferous forest 

types (Table 5). Reasons for these differences were not 

investigated, but they could be due to the even distribu- 

tion of leaves in Populus and Betula canopies compared 
to conifer canopies: conifers tend to have dense crowns 

with well defined holes between adjacent trees. This can 

also explain the much lower coefficient of variation of 

%PPFD measured above understory vegetation in 

Populus and Betula forest types (Fig. 2). 
There may be biologically significant differences in 

the shade cast by different canopy species within particu- 
lar forests, which differences might lead to predictable 

patterns of tree-by-tree replacement (Canham et al. 1994; 
Horn 1971; Fox 1977; and Woods & Whittaker 1981). 
Here we demonstrated that stands dominated by shade 

intolerant (deciduous or coniferous) species transmitted 

more light than those dominated by shade tolerant conifer 

species (Fig. 1). 

Finally, we showed that the understory plant cover 

exerted a strong control on forest floor light conditions, 
and therefore on any further successional development 
of the forest community. This was especially evident 

under Populus and Pinus forest types, on clay soil, 
where we found the lowest forest floor %PPFD even 

though it was relatively high above the understory veg- 
etation. As discussed by Constabel & Lieffers (1996), as 

understory saplings grow in height above the main 

understory cover one can expect a marked improvement 
in growth rates. The height at which this accelerated 

growth occurs will vary among forest types (Table 1). 
The vertical and interspecific differences in the mean, 

variability and nature of %PPFD found in the understory 

among forest and soil types in this study will probably 

greatly influence the recruitment, growth, reproduction, 
and survival of understory plant species of the boreal 

forest, and therefore to strongly regulate stand dynam- 
ics. 

Implications for regeneration and stands dynamics 

Our study and others (reviewed by Messier 1996) 
show that closed boreal forests cast a lighter shade than 

most other types of closed forests. Such higher %PPFD 

values might be necessary for the understory vegetation 
to grow and survive because of the limited resources and 

short growing season associated with boreal forest eco- 

systems. For the same forest, Parent & Messier (1995, 

1996) found almost no understory vegetation and very 

poor growth of seedlings of Abies balsamea under a 

closed forest of Picea marianathat transmitted less than 

3% PPFD; Kneeshaw et al. (1996) reported a much 

lower density of advanced regeneration under Populus 

compared to conifer or mixed broad-leaf conifer forest 

types; Beland & Bergeron (1993) found a very low 

density of advanced conifer regeneration under Pinus, 
and Simard et al. (subm.) found that shade tolerant 

conifer recruitment occurs on microsites with more than 

5 % PPFD. We hypothesize that the very low %PPFD 

found at the forest floor under Populus on both clay and 

till deposits, Pinus on clay deposit and Betula on till 

deposit (Table 4) in this study (ca. 2 %) could limit the 

establishment and growth of many species, even shade 

tolerant conifer species such as A. balsamea. This could 

be seen as an adaptation by shade intolerant species to 

allow for a dense understory vegetation to inhibit the 

establishment and early growth of the more shade toler- 

ant conifer species that normally replace them. 

This adaptation could further be seen as being advan- 

tageous for a species like trembling Populus that can 

resprout from root suckers and grow as much as 2.5 m the 

first year under favorable conditions (Peterson & Peterson 

1992). Populus regeneration strategy could then be viewed 

in another way: high light transmission and nutritionally 
rich litter produced by Populus overstory trees allows for 

the development of a dense and tall understory vegetation 
cover. This understory vegetation reduces light to such a 

low level that it impedes the establishment and growth of 

shade-tolerant conifers. Populus , because of its ability to 

resprout from below-ground roots and rapidly grow tall 

(Peterson & Peterson 1992), can better profit from any 

opening that might occur than small and slow growing 
shade-tolerant conifers. This strategy could enable Populus 
to grow above the understory vegetation and reach the 

higher light level found in gaps, perhaps explaining the 

recurrence of Populus in older stands in Abitibi (Pare & 

Bergeron 1995). Our hypothesis supports the ideas of 

Chazdon (1986) and Terborgh (1985) who stated there is 

a clear advantage for understory tree species to select life 

history characteristics that enable them to grow in height 

quickly. 
Paliwal et al. (1994), comparing various understory 

species growing in a European beech forest, showed 

that early successional species had slower photosyn- 
thetic induction increases and faster induction losses 

than late successional species: haft time induction in- 

creases went from 2.5 min for early successional species 
to 0.8 min for late successional ones whereas half time 

induction losses went from 5.1 min for early succes- 

sional species to 19.5 min for late successional ones. 

Such differences in the frequency distribution of PPFD 
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values found among forest types in this study (Table 5) 

are presumably important for understory species since 

different species have different abilities to respond to 

short pulses of high and low PPFD (Ktippers et al. 1996; 

Paliwal et al. 1994; Sims et al. 1994; Yanhong et al. 

1994; Pfitsch & Pearcy 1992; Gross 1982). 

Conclusion 

This study has shown that understory light availabil- 

ity and dynamics in closed broad-leaf conifer forests are 

influenced by the interactions of (1) overstory tree spe- 
cies composition, (2) abundance and vertical distribution 

of understory vegetation, and (3) soil type through its 

influences on the type and abundance of understory veg- 
etation. The light environment found in forests domi- 

nated by broad-leaved trees was different in two major 

ways from that found under conifer dominated forests: 

(1) %PPFD was much less variable and (2) the intensity 
of PPFD in diffuse shade light was much higher. This 

study confirms other studies that have shown that shade 

intolerant (deciduous or coniferous) species transmit more 

light than shade tolerant tree species. Finally, our result 

suggest that the low conifer regeneration found under 

Populus and Pinus as reported by several authors (Beland 

& Bergeron 1993; Kneeshaw et al. 1996; Simard et al. 

subm.) is the direct results of the dense understory veg- 
etation that reduces %PPFD at the forest floor to levels 

that inhibit conifer seedling establishment and growth 

(Parent &Messier 1995;; Simard et al. 1996) (i.e. < 3 % 

PPFD). 
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