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Abstract  

Regenerative medicine-based approaches for the repair of damaged cartilage rely 

on the ability to propagate cells while promoting their chondrogenic potential. Thus, 

conditions for cell expansion should be optimized through careful control of 

environmental conditions. In particular, appropriate oxygen tension and cell 

expansion substrates as well as controllable bioreactor systems are likely critical for 

expansion and subsequent tissue formation during chondrogenic differentiation. We, 

therefore, evaluated the effects of oxygen and microcarrier culture on the expansion 

and subsequent differentiation of human osteoarthritic chondrocytes. Freshly 

isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G 

microcarriers under hypoxic (5% pO2) or normoxic (20% pO2) conditions followed by 

cell phenotype analysis using flow cytometry. Cells were redifferentiated in 

micromass pellet cultures over 4 weeks, either under hypoxia or normoxia. 

Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher 

levels of cell surface markers CD44 and CD105 and demonstrated stronger staining 

for proteoglycans and collagen type II in pellet cultures compared to microcarrier-

cultivated cells. Pellet wet weight, GAG content and expression of chondrogenic 

genes were significantly increased in cells differentiated under hypoxia. In addition, 

HIF-3α mRNA was up-regulated in these cultures in response to the low oxygen 

tension. These data confirm the beneficial influence of reduced oxygen on ex vivo 

chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor 

culture did not enhance their intrinsic chondrogenic potential. Therefore, further 

improvements in cell culture conditions are required before chondrocytes from 

osteoarthritic and aged patients can become a useful cell source for cartilage 

regeneration. 
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Introduction 

Articular cartilage exhibits a limited intrinsic capacity to regenerate. Focal cartilage 

defects can lead to the development of osteoarthritis, a painful and debilitating 

disease. Given the limited treatment options that are currently available to treat such 

tissue defects, new therapeutic approaches are being investigated, including tissue-

engineered cartilage, with the aim of restoring function to damaged tissue (Nesic et 

al. 2006, Hutmacher et al. 2003). Although techniques such as autologous 

chondrocyte transplantation are already being applied in the clinic for the treatment 

of acute injuries, they are not yet suitable for patients suffering from osteoarthritis 

(Sittinger and Burmester 2006). Among the clinical challenge of restoring damaged 

cartilage is obtaining sufficiently large cell numbers that are suitable for transplant. 

Osteoarthritic chondrocytes have been tested for their suitability for cartilage 

regeneration with varying success. Some investigators have reported reduced 

synthesis of cartilage matrix (Dorotka et al. 2005) and collagen (Tallheden et al. 

2005) by osteoarthritic cells compared to chondrocytes from non-osteoarthritic tissue 

after in vitro differentiation. Others found comparable levels of cartilage matrix 

proteins secreted by chondrocytes from both sources (Dehne et al. 2009, Stoop et 

al. 2007).  

The regenerative behaviour of chondrocytes is regulated by a complex array of 

biochemical and biophysical factors, including mechanical stimulation and oxygen 

tension (Vinatier et al. 2009). Biomechanical stimulation of chondrocytes in 

bioreactors can enhance matrix synthesis and improve biochemical composition of 

cartilaginous constructs (Martin et al. 2004, Vunjak-Novakovic et al. 1996). Stirred 

bioreactors in combination with microcarriers can also offer flexible and passage-free 

culture systems (Malda and Frondoza 2006). The cultivation of human and bovine 
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chondrocytes on gelatine microcarriers in stirred bioreactors is reported to yield high 

proliferation rates and enhanced chondrogenic potential compared to conventional 

monolayer culture (Malda et al. 2003a, Melero-Martin et al. 2006, Frondoza et al. 

1996). However, using non-osteoarthritic human articular chondrocytes, we found 

similar redifferentiation capacity between microcarrier- and monolayer-propagated 

cells, suggesting the need for further optimization of culture conditions (Schrobback 

et al. 2011).  

Oxygen is also an important factor for chondrocyte homeostasis. The oxygen partial 

pressure (pO2) of articular cartilage in situ is estimated to range between ~7-10% at 

the superficial interface and ~1% near the subchondral bone (Silver 1975, Malda et 

al. 2003b). However, the in vitro effects of oxygen on the proliferation of 

chondroprogenitors is controversial. Bone marrow-derived mesenchymal stem cells 

exhibit higher in vitro proliferative activity under moderate hypoxia (3-8% pO2) 

compared to ambient oxygen (D'Ippolito et al. 2006, Lennon et al. 2001, Ren et al. 

2006). In contrast, oxygen tensions of 1.5% and below inhibited the growth of 

chondrocytes from rabbit (Marcus 1973) and bovine cartilage (Egli et al. 2008) while 

moderate hypoxia was observed to have a positive effect on proliferation of animal-

derived articular chondrocytes (Hansen et al. 2001, Henderson et al. 2010). 

Conversely, other investigators have reported that there is no influence on the 

growth rates of bovine chondrocytes (Malda et al. 2004a, Grimshaw and Mason 

2000).  

Less controversial is the influence of low oxygen on the in vitro differentiation of 

chondrocytes. Human articular chondrocytes obtained from healthy (Murphy and 

Polak 2004), as well as osteoarthritic tissues (Yudoh et al. 2005, Katopodi et al. 

2009), increase the expression of chondrogenic markers under low oxygen 
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concentrations. In this respect, the transcription factors of the hypoxia-inducible 

factor (HIF) family have been implicated in regulating the chondrocyte responses to 

oxygen deprivation (Coimbra et al. 2004). Of the three known HIF species, only the 

roles of HIF-1α and HIF-2α have been described in cartilage (Yudoh et al. 2005, 

Gelse et al. 2008, Lafont et al. 2007). Despite experimental evidence supporting the 

beneficial effects of low oxygen for the chondrogenic phenotype, articular 

chondrocytes continue to be cultivated in vitro under ambient oxygen. 

 

We, therefore, hypothesised that reduced oxygen conditions improve the 

proliferation and redifferentiation capacity of human osteoarthritic articular 

chondrocytes cultivated on microcarriers (CultiSpher G) in a stirring bioreactor 

compared to conventional monolayer culture technique at ambient oxygen tension. 

We further evaluated the immunophenotype of ex vivo expanded articular 

chondrocytes and their redifferentiation potential in micromass cultures in normoxic 

(20% pO2) and hypoxic (5% pO2) conditions and investigated whether members of 

the HIF family were regulated by oxygen tension and correlated with chondrogenic 

potential.  

 

Materials and Methods 

Cell isolation  

Articular cartilage was obtained with institutional ethics approval from consenting 

patients (3 female donors, age 65±6 years) undergoing joint arthroplasty. Cartilage 

slices were harvested from visually normal tissue (International Cartilage Repair 

Society anatomical grade 0-1 (Aroen et al. 2004)), minced, washed in phosphate 
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buffered saline (PBS) (Invitrogen, Carlsbad, CA) and digested overnight with 0.15% 

w/v collagenase type 2 (Worthington, Lakewood, NJ) in serum-free, low-D-glucose 

(1 g/L) basal medium (Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 4 mM L-alanyl-L-glutamine, 1 mM sodium pyruvate, 10 mM N-(2-

hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (HEPES), 0.1 mM non-essential 

amino acids, 50 U/mL penicillin, 50 μg/mL streptomycin (all from Invitrogen) and 

0.4 mM L-proline (Sigma, St. Louis, MO). 

 

Cell expansion  

Freshly isolated human chondrocytes were propagated on tissue culture plastic 

(TCP) or on porcine gelatine microcarriers (MC) under ambient (20% pO2) or 

reduced (5% pO2) oxygen concentration. Cells were cultivated in low-glucose basal 

medium supplemented with 0.1 mM L-ascorbic acid (WAKO, Osaka, Japan) and 

10% foetal bovine serum (FBS) (Hyclone, Logan, UT) at 37˚C in a humidified 5% 

CO2/95% air incubator. Medium was refreshed twice per week in a conventional 

Class II biosafety cabinet. Cells cultivated under reduced oxygen tension were 

maintained in a ProOx C-Chamber (Biospherix, Redfield, NY) placed inside a cell 

culture incubator. The ProOx chamber was dynamically adjusted to 5% pO2 via an 

automatic gas-exchange regulator connected to a reservoir containing 5% CO2/95% 

N2. 

For monolayer expansion, chondrocytes were seeded at 3,000 cells per cm2 in 

tissue culture flasks (Nunc, Roskilde, Denmark) and cultured up to passage 3 over a 

total of four weeks. Subconfluent cells were released from TCP by washing twice 

with PBS and incubating in 0.25% trypsin with 1 mM ethylenediamine tetraacetic 

acid (trypsin/EDTA) (Invitrogen) at 37˚C for 5 min.  
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For microcarrier expansion, macroporous CultiSpher G microcarrier beads (Percell, 

Åstorp, Sweden) with a nominal size range of 130-380 µm were used Due to the 

highly tortuous nature of these microcarriers, reliable determination of available 

surface area is not feasible (Schrobback et al. 2011, Borg et al. 2009). Chondrocytes 

were seeded at a density of 104 cells per mg per mL, as described elsewhere (Malda 

et al. 2003a, Schrobback et al. 2011). Briefly, cells were cultivated in spinner flasks 

(Bellco Glass, Vineland, NJ) using the Variomag BIOSYSTEM 4B (H+P 

Labortechnik/Thermo Fisher, Waltham, MA). Agitation was initially set to intermittent 

stirring at 20 revolutions per minute (rpm) for 30 s every 30 min for the first 2 days 

and thereafter changed to continuous stirring at 50-65 rpm for the remainder of the 

experiment, keeping the stirring speed as low as possible for the microcarrier 

aggregates to remain afloat. Cells were harvested from microcarriers by washing 

twice in PBS and incubating in 0.25% trypsin/EDTA (Invitrogen) at 37˚C for 10-20 

min, until the microcarriers were digested. Coarse microcarrier debris was removed 

by passage through a cell strainer (100 μm pore, BD Biosciences).  

Harvested cells were counted with a NucleoCounter (Chemometec, Allerød, 

Denmark) which confirmed similar levels of viability in cells isolated from monolayer 

and microcarrier cultures. Population doubling times and total population doublings 

were calculated and compared between groups. Chondrocytes used in differentiation 

experiments and for phenotypic analysis were propagated for four weeks either on 

TCP (3 passages) or on microcarriers. Cells freshly isolated from monolayers or 

microcarriers were also kept for biochemical assays and RNA isolation to establish 

DNA, glycosaminoglycan and gene expression levels before redifferentiation (day 0). 
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Immunophenotypic analysis 

Cells were harvested after each different expansion regimen and incubated at room 

temperature for 30 min in PBS with 3% m/v bovine serum albumin (Sigma) 

(3%BSA/PBS) and one of the following monoclonal antibodies: CD45 (1:20, H5A5, 

Developmental Studies Hybridoma Bank (DSHB), Iowa City, IA), CD44 (1:20, H4C4, 

DSHB), CD105 (1:20, P4A4, DSHB) or IgG isotype control (1:50, Invitrogen). Cells 

were washed twice with cold PBS and then incubated for 1 hr on ice in 3%BSA/PBS 

containing a secondary, fluorescein isothiocyanate-labelled goat anti-mouse IgG 

antibody (1:80, CALTAG, Burlingame, CA). Finally, samples were washed again 

twice with cold PBS and resuspended in 3%BSA/PBS and immediately analysed on 

a FC500 flow cytometer (Beckman Coulter, Fullerton, CA). Ten thousand events 

were collected for each cell surface antigen and the parameters analyzed using CXP 

software (Beckman Coulter). The percentage of positive cells was calculated using 

the Overton method (Overton 1988).  

 

Chondrogenic differentiation  

The differentiation potential of expanded chondrocytes was evaluated using 

micromass cell pellets in serum-free chondrogenic media (basal medium 

supplemented with 1.25 mg/mL BSA, 10-7 M dexamethasone, 1% v/v ITS+1 (all from 

Sigma), 0.1 mM L-ascorbic acid (WAKO) and 10 ng/mL transforming growth factor 

type beta 1 (TGF-β1) (Chemicon/MILLIPORE, Billerica, MA)). Pellets were formed by 

centrifugation of 2.5x105 cells per well in microplates (Axygen Scientific, Union City, 

CA) at 600 x g and transferred into 24-well plates after day 3. Micromass pellets 

were cultured either at 20% or 5% pO2 for up to 28 days, as described under cell 
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expansion. Media were refreshed twice per week. Pellet samples were taken after 7, 

14 and 28 days of culture and weighed. 

 

Quantification of DNA and glycosaminoglycans (GAG) 

The DNA content in cell samples was quantitated using the Quant-iT™ PicoGreen® 

dsDNA assay (Invitrogen). Briefly, cells were incubated overnight at 60˚C with 0.5 

mg/mL proteinase K (Invitrogen) in 20 mM Na2HPO4, 30 mM NaH2PO4.H2O, 5 mM 

EDTA, pH 7.1. Samples were mixed 1 in 1 with dye solution in 96-well plates (Nunc) 

and sample fluorescence was measured using a micro-plate reader (BMG Labtech, 

Offenburg, Germany) at 485 nm excitation and 520 nm emission. DNA content was 

calculated from λ phage DNA standards.  

The GAG content of each proteinase K-digested samples was quantified using the 

1,9-dimethylmethylene blue (DMMB, Sigma) assay (Farndale et al. 1982, Farndale 

et al. 1986). Absorbance at 525 nm was measured with a microplate 

spectrophotometer (Bio-Rad, Hercules, CA). The quantity of GAG was calculated 

from standards of chondroitin sulphate (Sigma). 

 

Total messenger ribonucleic acid (mRNA) extraction and qRT-PCR 

Total RNA was isolated from cell samples using TRIzol® Reagent (Invitrogen) 

following the manufacturer’s protocol with modifications for high proteoglycan 

content (Chomczynski and Mackey 1995). Briefly, after chloroform-guided phase 

separation, RNA was precipitated from the aqueous layer with 0.5 volumes of 2-

propanol, 0.5 volumes of acidified salt (1.2 M NaCl, 0.8 M sodium citrate) and 16 

μg/mL linear polyacrylamide (Ambion, Austin, TX) at -80°C overnight. RNA was 
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pelleted and washed in 70% ethanol and resuspended in RNAase-free water. Total 

RNA was quantified using UV spectroscopy. Only RNA samples with an A260/A280 

ratio of greater than 1.8 and acceptable agarose tris hydroxymethylaminoethane-

acetate-EDTA gel analysis were used in subsequent polymerase chain reaction 

(PCR) analyses.  

Quantitative reverse transcribed-PCR (qTR-PCR) was applied to determine the 

presence and copy numbers of specific mRNA species in chondrocyte micromass 

cultures. Oligonucleotide primers were designed with Primer Express (Applied 

Biosystems) or primer sequences reported in the literature (Table 1). Samples 

containing 300 ng of total RNA were treated with DNase I (Invitrogen) and reverse 

transcribed into complementary DNA (cDNA) with SuperScript™ III first-strand 

synthesis supermix (Invitrogen) following the manufacturer’s protocols. Absolute 

quantification was performed using standard curves (Leong et al. 2007). All reactions 

were performed in duplicate in 7.5 μL volumes in 384-well plates using Express 

SYBR® GreenER™ qPCR supermix universal (Invitrogen) and the 7900HT fast real-

time PCR system (Applied Biosystems, Foster City, CA). Each reaction contained 1 

X qPCR mix, 132 nM forward and reverse primers and 0.2 μL undiluted cDNA. PCR 

amplification followed a three step cycling protocol of an initial 5 min incubation at 

50ºC, 2 min denaturation at 95ºC and 40 cycles of 95ºC for 15 s and 60ºC for 30 s. 

All reactions included a post-amplification melt curve analysis to validate 

amplification of the correct sequence. Amplification plots were analysed with ABI 

Sequence Detection System software version 2.3 (Applied Biosystems). The cDNA 

copy number of genes of interest was calculated by direct comparison to the known 

standards and normalised to the housekeeping gene 18S rRNA. 18S rRNA has been 

reported to be amongst the most stable housekeeping genes in samples from human 
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OA cartilage tissue (Pombo-Suarez et al. 2008), chondrocytes stimulated with 

various cytokines (McAlinden et al. 2004) and in monolayer culture under hypoxia 

(Foldager et al. 2009), and we found it to be stably expressed under our culture 

conditions.(. 

 

Safranin O staining 

Cell pellet cultures were probed for GAG with safranin O. Briefly, fresh frozen 

micromass pellet samples embedded in Tissue-Tek™ O.C.T. compound (Sakura 

Finetek, Tokyo, Japan) were cut to yield ~5 µm thick cross-sections. Sections were 

fixed in 100% ice-cold acetone and stained using haematoxylin, fast green FCF 

(0.001% w/v) and safranin O (0.1% w/v) (all from Sigma) (Lillie 1965). 

Representative images were captured with a digital camera (QImaging, Surrey, 

Canada) mounted on a microscope (Olympus, Tokyo, Japan). 

 

Immunohistochemical analysis on frozen sections 

To determine the protein expression of collagen type I and type II in chondrocyte 

pellets, fresh-frozen sections were fixed in 100% ice-cold acetone for 15 min, then 

treated with 0.1% hyaluronidase (Sigma) in PBS for 20 min at 37°C and blocked with 

2.5% normal horse serum (Vector laboratories, Burlingame, CA) for 20 min. Samples 

were subsequently incubated with monoclonal antibodies specific for collagen type I 

(1:300, I-8H5, MP Biomedicals, Solon, OH), collagen type II (1:100, II-II6B3, DSHB), 

or an isotype-matched control antibody (1:1000, Sapphire Bioscience, Redfern, 

Australia), in a humidified chamber overnight at 4°C. A 5 min wash in PBS was 

performed after each step. Subsequently, biotinylated secondary horse anti-
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rabbit/mouse IgG antibody (Vector) was applied to the sections for 30 min, followed 

by incubation with the avidin and biotinylated horseradish peroxidase complex 

reagent (Vector) for 30 min in a humidified chamber. Samples were then incubated 

with ImmPACT™ DAB Substrate (Vector) for 5 min, followed by rinsing with tap 

water and counterstaining in Mayer’s haematoxylin (Amber Scientific, Midvale, 

Australia). Images of samples were captured with a digital camera (QImaging, 

Surrey, Canada) mounted on a microscope (Olympus). 

 

Statistical analysis 

Statistical analyses were performed using Minitab 15 (Minitab, Inc., State College, 

PA). Analysis of variance was determined using a general linear model in which the 

donor was considered a random effect. To test the effect of oxygen concentration 

during cell differentiation, data from day 0 were excluded. Effects of cultivation time, 

culture system or oxygen levels during expansion were tested separately for each 

differentiation condition including day 0 data. In addition, data sets from each 

individual time point were independently tested for statistical significance. In cases 

where a significant difference was detected between conditions, Tukey’s post-hoc 

test for pair-wise comparisons was performed. Correlations between the expression 

of the different genes from chondrocyte pellets during differentiation were analyzed 

by linear regression. Statistical significance was accepted to be present at p<0.05. 
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Results 

Expansion of chondrocytes with hypoxic and normoxic conditions using different 

culture systems  

The time required for the population of freshly isolated osteoarthritic chondrocytes to 

double over four weeks of ex vivo propagation was shorter on tissue culture plastic 

than in the microcarrier cultures (p<0.001) (Fig. 1 a). Consequently, the number of 

population doublings of chondrocytes in the monolayer cultures was significantly 

higher than the number of population doublings observed in microcarrier cultures 

after an equivalent period (p<0.001) (Fig. 1 b). However, no significant effects of 

oxygen level on cell growth were observed, regardless of the culture system. 

 

Immunophenotype of cultivated chondrocytes 

The hematopoietic cell marker CD45 was not detected in any of the cultured 

populations, as determined by flow cytometry (Fig. 2). Subpopulations expressing 

the putative stem cell surface markers CD105 and CD44 (Grogan et al. 2007, 

Pittenger et al. 1999) were more numerous among monolayer cultures than among 

populations cultured on microcarriers. In both culture systems, expansion under 

hypoxic conditions resulted in slightly higher percentages of cells positive for CD44 

and CD105 compared to chondrocytes expanded under normoxic conditions. 

 

Redifferentiation of cultivated chondrocytes (biochemical assays) 

Wet weight, and DNA and GAG content were determined in micromass pellet 

cultures maintained under either normoxic (20% pO2) or hypoxic (5% pO2) conditions 

over four weeks.  
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Varying pO2 tensions during expansion or differentiation had no effect on the DNA 

content of cell pellets (both p=0.1) (Fig. 3 a,b). However, cells propagated on 

microcarriers showed overall lower DNA amounts than monolayer-expanded groups 

(p<0.001). DNA content decreased over the first 7 days of culture (p<0.05) and 

correlated with microscopic observations indicating that some cells from the initial 

cell suspension failed to remain aggregated as a mass; particularly, in microcarrier-

cultured samples (data not shown).  

Exposing chondrocyte micromass pellets to hypoxic conditions during differentiation 

resulted in a significant increase in wet weight (p<0.001) compared to micromass 

pellets differentiated under normoxic conditions (Fig. 3 c,d). Pellets formed from 

monolayer-expanded cells produced more tissue than pellets formed from 

microcarrier-expanded chondrocytes when differentiated under normoxic (p<0.001) 

or hypoxic (p<0.01) conditions. Pellets differentiated under normoxic conditions 

declined in wet weight from day 7 to day 28 of culture (p<0.05).  

The GAG content of micromass tissue pellets was greater when chondrocytes were 

differentiated under hypoxic conditions compared to those differentiated under 

normoxic conditions (p<0.01) (Fig. 3 e,f). Cells cultivated as monolayers produced 

more GAG than cells cultivated on microcarriers (p<0.05). The GAG data have not 

been normalised to DNA content, as the decrease in DNA content over time results 

in misleading overestimation of synthesised GAGs at later time points.  

 

Gene expression during differentiation (qRT-PCR) 

The presence and copy number of cartilage-specific mRNA species, aggrecan and 

collagen type II (COL2A1) were determined by qRT-PCR. Aggrecan mRNA levels 

were higher when chondrocytes were cultivated in monolayers, rather than on 
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microcarriers (p<0.001) (Fig. 4 a d0). Only cells redifferentiated under hypoxic 

conditions increased their overall expression of aggrecan (p<0.01). While aggrecan 

mRNA transcripts significantly decreased with extended culture in micromass pellets 

under normoxic conditions (p<0.05) (Fig. 4 a), aggrecan mRNA expression under 

hypoxic conditions peaked after 7 days (p<0.05) and declined only at the end of the 

culture period (p<0.01). Transcripts encoding COL2A1 were undetectable after the 

initial ex vivo expansion of isolated cells (Fig. 4 b d0), but were re-expressed during 

micromass pellet culture in hypoxic conditions (p<0.05) (Fig. 4 b). 

Chondrocyte dedifferentiation markers, collagen type I (COL1A1) and versican 

(Benya and Shaffer 1982, Binette et al. 1998), were strongly expressed at levels 

equivalent to, or greater than, aggrecan and COL2A1 (Fig. 4 a-d). COL1A1 

expression levels were higher in cells cultured on tissue culture plastic than in those 

from microcarrier cultivation at day 0; however, this effect was reversed after one 

week of culture under hypoxic conditions (Fig. 4 c). Cells expanded on tissue culture 

plastic also expressed higher levels of versican after cell propagation than cells from 

microcarrier cultures (p<0.01) (Fig. 4 c d0), which remained evident under normoxic 

conditions at day 7 (p<0.01) (Fig. 4 c). Under normoxic differentiation conditions, 

transcript levels of COL1A1 and versican were up-regulated after 7 days (p<0.05) 

(Fig. 4 c,d). In contrast, hypoxic differentiation conditions attenuated changes in 

expression for several days. However, we did not detect any significant influence of 

oxygen on these genes following 28 days of differentiation culture (VCAN: p=0.1, 

COL1A1: p=0.4) (Fig. 4 c,d).  

Transcripts encoding the hypertrophy-associated gene, collagen type X (COL10A1), 

were barely detectable following expansion in all conditions (Fig. 4 e d0). While 
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expression of this gene increased with subsequent cultivation, this was independent 

of normoxic (p<0.001) and hypoxic conditions (p<0.01).  

We also examined gene products known to regulate cellular responses to reduced 

oxygen, the hypoxia inducible factors (HIFs). Surprisingly, cells that were initially 

established ex vivo in normoxic conditions expressed significantly more transcripts 

encoding HIF-1α and HIF-2α than chondrocytes initially established in hypoxic 

conditions, (p<0.05) (Fig. 5 a,b d0). Messenger RNA synthesis of HIF-1α and HIF-2α 

declined over the course of redifferentiation independently of atmospheric oxygen 

tension. However, the expression of HIF-1α was significantly elevated in hypoxic 

conditions (p<0.05). When exposed to normoxic differentiation conditions, 

chondrocytes expanded as monolayers expressed measurably more transcripts 

encoding HIF-1α (p<0.01) and HIF-2α (p<0.05) than chondrocytes initially expanded 

on microcarriers. We also probed for the expression of HIF-3α and found that initially 

it was barely detectable after cell expansion (Fig. 5 c). However, thereafter, cells 

cultivated in micromass pellets under normoxic (p<0.05) and hypoxic (p<0.001) 

conditions were found to express HIF-3α.  

We also examined the expression of the HIF regulator, egl nine 1 homolog (EGLN1). 

The expression of EGLN1 was striking and paralleled the expression of HIF-1α 

(R2=0.61; p<0.001) and HIF-2α (R2=0.68; p<0.001). However, there was no 

correlation with the expression of HIF-3α, or with other chondrocyte-specific genes 

we examined (Fig. 5 d). Predictably, EGLN1 mRNA synthesis was down-regulated 

with extended culture (p<0.001) and significantly greater in cell pellets cultured under 

hypoxic conditions than in cell pellets cultured under normoxia (p<0.05).  

 



 19 

Matrix synthesis during differentiation (histology / IHC) 

To determine the de novo synthesis of cartilaginous matrix, micromass pellet 

samples were stained with hematoxylin, Fast Green FCF and safranin O (for GAGs) 

and with antibodies specific for collagen type II and I.  

Tissue from chondrocyte micromass cultures expanded on tissue culture plastic 

exhibited greater intensity staining for GAGs (Fig. 6 a-i) and immuno-reactivity with 

collagen type II antibodies than micromass cultures from microcarrier-expanded 

chondrocytes (Fig. 6 j-o). Cells located near the center of pellets formed from 

monolayer cultures were surrounded by extracellular matrix and assumed a rounded 

morphology (Fig. 6 b,g). Micromass pellets formed from chondrocytes expanded in 

microcarrier cultures were more densely packed with minimal extracellular matrix 

(Fig. 6 j,m). This extracellular matrix stained only faintly for GAGs and was poorly 

immuno-reactive for collagen type II (Fig. 6 k,n). In contrast immuno-reactivity for 

collagen type I was found to be uniformly intense and well distributed in all 

micromass pellets formed from microcarrier-expanded cells (Fig. 6 l,o). Pellets from 

all groups were found to have a common superficial rim formed from multiple layers 

of flattened, elongated cells (Fig. 6). These superficial layers did not stain with 

safranin O and showed only localised immuno-reactivity for collagens, in particular 

type I.  

Different oxygen tensions during cell expansion on microcarriers had no 

recognisable influence on the cell phenotype and the quality of matrix in the pellets 

(Fig. 6). However, among the monolayer expansion groups, pellets with cells 

redifferentiated under hypoxic conditions exhibited more intense staining for GAG 

and higher immuno-reactivity for collagen type II (Fig. 6 b,d) than those under 
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normoxic conditions (Fig. 6 a,c). Nonetheless, all monolayer-expanded groups were 

also highly positive for collagen type I (Fig. 6 e,f,i). 

 

Discussion 

The aim of this study was to evaluate the effect of culture systems and different 

oxygen tensions on the propagation and the redifferentiation capacity of human 

osteoarthritic chondrocytes. The chondrogenic potential of osteoarthritic cells was 

determined in vitro in micromass pellets exposed to normoxic (20% pO2) or hypoxic 

conditions (5% pO2). 

Exposing the chondrocytes to different oxygen tensions during cell propagation failed 

to confer any measurable effect on proliferation or the chondrogenic potential of 

human osteoarthritic chondrocytes. This is consistent with the findings of a similar 

study, in which moderate hypoxia during microcarrier expansion of bovine articular 

chondrocytes did not improve cell growth or subsequent differentiation compared to 

ambient oxygen concentrations (Malda et al. 2004a). In contrast, other recent studies 

which examined rabbit and bovine chondrocytes isolated from the humeral head 

found that monolayer expansion under 5% and 1.5% oxygen, respectively, enhanced 

their redifferentiation capacity (Egli et al. 2008, Henderson et al. 2010). These 

studies also found that low oxygen tension had no effect on the redifferentiation of 

the chondrocytes in micromass pellets.  

We observed that the synthesis of ECM, including GAG and collagen type II, as well 

as mRNA encoding chondrogenic markers were enhanced when cell pellets were 

cultured under hypoxic conditions. There is, indeed, growing support in the literature 

for this (Murphy and Polak 2004, Yudoh et al. 2005, Katopodi et al. 2009, Malda et 

al. 2004b, Khan et al. 2007, Koay and Athanasiou 2008). Some reports also claim 
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that the high expression of proteins up-regulated during dedifferentiation, such as 

collagen type I and versican, is sustained. We made similar observations at the 

mRNA and protein level. The transcription of COL1A1 and VCAN genes was 

diminished only slightly at early time points under hypoxic conditions, suggesting that 

a majority of cells fail to fully redifferentiate to the chondrogenic phenotype. In 

addition, the expression of these genes at high levels and the detection of the 

hypertrophy marker, COL10A1, may be associated with osteoarthritis. Osteoarthritic 

chondrocytes are reported to also change from a chondrocytic to a dedifferentiated 

and hypertrophic phenotype (Sandell and Aigner 2001). Given the appearance of 

COL10A1 as a marker of terminal differentiation and the high cell loss observed in 

the micromass pellets towards the end of the redifferentiation period, it is also 

possible that some chondrocytes did not respond well to the four weeks in this 

simplified in vitro environment, irrespective of the oxygen environment. 

To investigate the mechanisms underlying the differences observed at varying 

oxygen levels, we measured the mRNA levels encoding different factors involved in 

the cellular response to hypoxia. We found that HIF-1α and HIF-2α were 

constitutively transcribed in our differentiation cultures, thus were unresponsive to 

varying oxygen tensions at mRNA levels. HIFα subunits are ubiquitinated under 

normoxia by the von Hippel-Lindau complex (pVHL) for subsequent proteasomal 

degradation (Maxwell et al. 1999, Maynard et al. 2003). The binding of pVHL is 

mediated through hydroxylation of conserved proline residues in the HIF-α protein in 

an iron- and oxygen-dependent manner by HIF prolyl hydroxylases (Jaakkola et al. 

2001, Ivan et al. 2001). In our study, EGLN1 (HIF prolyl hydroxylase 2), which has 

also been found to be expressed in growth plate chondrocytes (Terkhorn et al. 

2007), paralleled the expression pattern of HIF-1α and HIF-2α. Interestingly, all three 
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genes showed higher transcript levels during expansion, particularly under normoxic 

conditions, than during redifferentiation. However, it remains to be investigated if the 

basal levels of these transcripts in dedifferentiated and redifferentiated chondrocytes 

have any functional relevance. We also report, to our knowledge for the first time, 

transcription of the HIF-3α gene in redifferentiated chondrocytes. Although mRNA 

transcript levels were extremely low, potentially indicative of expression by a minority 

of chondrocytes, transcription was dependent on low oxygen and, surprisingly, 

seemed to follow the expression profiles of other chondrogenic marker genes during 

differentiation. HIF-3α is thought to be a competitive inhibitor of HIF-1/2α action 

(Maynard et al. 2005). Its regulation at the transcriptional level under hypoxia 

appears to be unique for this member of the HIF family (Heidbreder et al. 2003). 

Moreover, HIF-1α can directly up-regulate HIF-3α splice variants, thereby, providing 

a further level of negative feedback to the HIF system (Makino et al. 2007). However, 

the regulation of the cellular response to hypoxia is very complex and a specific 

physiological role for HIF-3α during chondrogenesis requires clarification. 

When comparing the influence of the different cultivation systems on the propagation 

of human articular chondrocytes, we observed shorter doubling times for cell 

populations cultivated in monolayer up to passage 3, than for cell populations 

maintained in microcarrier culture. Since the latter underwent fewer cell divisions, 

these chondrocytes would be expected to be less dedifferentiated (Mandl et al. 

2004). We were, therefore, surprised to find that expansion on microcarriers did not 

improve cell viability, GAG synthesis and mRNA expression of chondrogenic 

proteins of osteoarthritic chondrocytes, when subsequently redifferentiated, 

compared to the conventional monolayer system. This contrasts with the findings of 

other studies which report beneficial effects of the gelatine microcarrier culture 
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system for the redifferentiation potential of monolayer-propagated human 

osteoarthritic chondrocytes, nasal chondrocytes and immature bovine chondrocytes 

(Malda et al. 2003a, Melero-Martin et al. 2006, Frondoza et al. 1996). A major 

difference in our study is the use of freshly isolated osteoarthritic chondrocytes. This 

raises the general question of how and why the chondrogenic potential of these cells 

may have been restricted through microcarrier propagation. 

An unexpected finding from our studies was the phenotypic differences of our in vitro 

cultured chondrocytes. Chondrocytes harvested from microcarriers expressed 

reproducibly lower levels of the surface markers CD44 and CD105, than cells 

expanded in monolayer culture (Fig. 2). CD44, the major hyaluronan receptor, and 

CD105, an accessory receptor for members of the TGF-β superfamily, are up-

regulated in human chondrocytes with increased passage in vitro (Diaz-Romero et 

al. 2008, Diaz-Romero et al. 2005). In fact, subclones of chondrocytes with higher 

chondrogenic capacity showed higher levels of CD44 (Grogan et al. 2007) and 

CD105 has been utilised to identify multipotent mesenchymal stem cells (Pittenger et 

al. 1999). It is, therefore, possible that monolayer cultivation, unlike the microcarrier 

system, selects for a subpopulation of chondrocyte progenitors with higher CD44 

and CD105 levels and higher differentiation potential.  

The differences in the surface marker expression of cells from monolayer and 

microcarrier cultures, in particular for CD105, could also be explained by the slightly 

prolonged trypsin treatment used to harvest chondrocytes from microcarriers. 

However, we found that cells released from microcarriers by the use of collagenase 

also expressed lower CD44 and CD105 levels than monolayer-expanded cells (data 

not shown). The cell release process may still have had various effects on 

microcarrier-propagated cells. Firstly, the prolonged enzymatic treatment of cells on 
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microcarriers could have influenced their gene expression. Secondly, despite 

subsequent washing and sieving of the cell suspension, chondrocytes released from 

gelatine microcarriers will be exposed to large amounts of collagen fragments. 

Fragments of extracellular matrix proteins, particularly at high concentrations, are 

known to alter catabolic and anabolic pathways in cartilage (Homandberg and Hui 

1994, Fichter et al. 2006). It is, therefore, possible that the large quantities of 

degradation products released from gelatine microcarriers during the harvest had a 

deleterious impact on subsequent chondrocyte redifferentiation, particularly, as cells 

had already been affected by osteoarthritis. An alternative explanation is that by 

subjecting the heterogeneous osteoarthritic chondrocytes (Tallheden et al. 2005, 

Katopodi et al. 2009, Barbero et al. 2004, Martin and Buckwalter 2003) to multiple 

passages in monolayer culture, compared to only one in microcarrier culture, one 

may specifically select for healthier, more rapidly growing cells from a population 

with variable chondrogenic potential; this phenomenon widely described, for 

example, in the case of the cross-contamination of cell lines by HeLa cells (Markovic 

and Markovic 1998). Moreover, culturing chondrocytes on a material derived from 

collagen type I could have generally altered their gene expression profile compared 

to cells propagated on TCP. Therefore, the choice of carrier material could also be 

critical for successful cultivation of osteoarthritic chondrocytes on microcarriers. 

 

Conclusions  

Our data suggest that porous gelatine microcarrier expansion offers few benefits 

over conventional monolayer propagation when applied to freshly isolated articular 

chondrocytes from osteoarthritic tissue. Furthermore, oxygen concentration has no 

influence on the chondrogenic potential of osteoarthritic chondrocytes when applied 
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during cellular expansion. However, exposure to mild hypoxia can improve cell 

viability and the expression of chondrogenic markers during redifferentiation. 

Moderate hypoxia enhances the redifferentiation of cells with existing differentiation 

capacity. Nevertheless, it may not be possible to restore the cellular function in all 

propagated chondrocytes, particularly those impaired by disease. The high 

expression levels of dedifferentiation markers, such as collagen type I and versican, 

in cartilaginous tissue constructs from osteoarthritic chondrocytes are of major 

concern for potential clinical applications. An improved understanding of 

mechanisms underlying chondrocyte senescence and strategies to modify, and 

potentially reverse this process, are required to enable chondrocytes from 

osteoarthritic and aged patients to become a useful cell source for cartilage tissue 

engineering.  
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Figures 

 

Fig. 1 Effect of oxygen and culture system on chondrocyte proliferation. Freshly isolated human 
articular chondrocytes from osteoarthritic cartilage were seeded either on tissue culture plastic (TCP) 
at 3,000 cells/cm2 or on gelatine microcarriers (MC) at 1x104 cells per mg microcarrier per mL culture 
medium in a stirring bioreactor (at 50-65 rpm). Cells were cultured under 5% or 20% pO2 for four 
weeks and media (containing 10% FBS) were refreshed twice per week. Cells on TCP were 
passaged twice during culture before reaching confluency. Cells from the different expansion cultures 
were counted after harvest. (a) population doubling times and (b) population doublings during 
expansion are presented as mean + standard deviation (n = 3 donors). 
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Fig. 2 Effect of oxygen and culture system on immunophenotype of expanded chondrocytes. Human 
osteoarthritic chondrocytes were expanded either on (a-f) tissue culture plastic (TCP) up to passage 3 
or (g-l) on gelatine microcarriers (MC) for four weeks under either (a,b,c,g,h,i) 20% or (d,e,f,j,k,l) 5% 
pO2. Cells were probed with antibodies against CD45, CD44 or CD105 or an IgG isotype control 
antibody and labelled with a FITC-conjugated secondary antibody, then analysed by flow cytometry. 
Histograms of representative expression patterns for one donor are shown with the surface markers 
(a,d,g,j) CD45, (b,e,h,k) CD44 and (c,f,i,l) CD105 plotted against a matched IgG control (no color) 
along with the percentage of positive cells, calculated using the Overton method. 
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Fig. 3 (a,b) DNA content, (c,d) wet weight and (e,f) GAG content during pellet redifferentiation culture. 
Following cultivation either on tissue culture plastic (TCP) or on microcarriers (MC) under 5% or 20% 
pO2, respectively, cells (2.5x105 cells per pellet) were pelleted and cultured either under (a,c,e) 20% 
or (b,d,f) 5% pO2 in serum-free chondrogenic media for up to 28 days. Results for DNA content, wet 
weight and GAG content are expressed as mean ± standard error (n = 3 donors). Significant 
differences between day 0 (day 7 for wet weight) and later time points are indicated by * (p<0.05) or ** 
(p<0.01). Main effects were detected as follows: DNA content: TCP vs. MC = p<0.001; wet weight: 
differentiation under 20% pO2 vs. 5% pO2 = p<0.001, TCP vs. MC = p<0.01; GAG content: 
differentiation under 20% pO2 vs. 5% pO2 = p<0.01, TCP vs. MC = p<0.01. 
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Fig. 4 mRNA expression of chondrogenic, dedifferentiation and hypertrophic markers in pellet 
redifferentiation culture. Following cultivation either on tissue culture plastic (TCP) or on microcarriers 
(MC) under 5% or 20% oxygen tension, respectively, pellets (2.5x105 cells) were formed and cultured 
either under 5% or 20% oxygen tension in serum-free chondrogenic media for up to 28 days. The 
levels of mRNA expression for (a) aggrecan, (b) collagen type II, (c) collagen type I (d) versican, (e) 
collagen type X were determined by quantitative real-time RT-PCR calculated with reference to a 
specific gene standard. Results from each treatment were expressed as the copy number of the 
target gene divided by the copy number of the 18S ribosomal gene. Data are represented as mean + 
standard error (n = 3 donors). Significant differences between culture conditions at a particular time 
point are indicated by † (p<0.05). Significant differences between day 0 and day 7 or later time 
point(s) are indicated by * (p<0.05) or # (p<0.05), respectively. Main effects of oxygen tension during 
differentiation culture were detected for the expression of aggrecan (20%O2 vs. 5%O2 = p<0.01) and 
collagen type II (20%O2 vs. 5%O2 = p<0.05). 
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Fig. 5 mRNA expression of HIF family members in pellet redifferentiation culture. Following cultivation 
either on tissue culture plastic (TCP) or on microcarriers (MC) under 5% or 20% pO2, respectively, 
pellets (2.5x105 cells) were formed and cultured either under 5% or 20% pO2 in serum-free 
chondrogenic media for up to 28 days. The levels of mRNA expression for (a) hypoxia-inducible factor 
(HIF) 1α, (b) HIF-2α, (c) HIF-3α and (d) egl nine homolog 1 (HIF prolyl hydroxylase 2) was determined 
by quantitative real-time RT-PCR calculated with reference to a specific gene standard. Results from 
each treatment were expressed as the copy number of the target gene divided by the copy number of 
the 18S ribosomal gene. Data are represented as mean + standard error (n = 3 donors). Significant 
differences between culture conditions at a particular time point are indicated by † (p<0.05). 
Significant differences between day 0 and day 7 or later time point(s) are indicated by * (p<0.05) or # 
(p<0.05), respectively. Main effects of oxygen tension during differentiation culture were detected for 
the expression of HIF-1α (20%O2 vs. 5%O2 = p<0.05), HIF-3α (20%O2 vs. 5%O2 = p<0.05) and egl 
nine homolog 1 (20%O2 vs. 5%O2 = p<0.05). 
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Fig. 6 Histology and immunohistochemistry on pellet cultures from human osteoarthritic 
chondrocytes. Following cultivation either (a-i) on tissue culture plastic (TCP) or (j-o) on microcarriers 
(MC) under (a-f,j-l) 20% (20% EXP) or (g-i,m-o) 5% (5% EXP) pO2, respectively, cells (2.5x105 cells 
per pellet) were pelleted and cultured either under (a,c,e) 20% or (b,d,f,g-o) 5% pO2 in serum-free 
chondrogenic media for 28 days. Sections were stained with (a,b,g,j,m) safranin O and Fast Green or 
probed with antibodies against (c,d,h,k,n) collagen type II or (e,f,i,l,o) type I and counterstained with 
haematoxylin. Positive staining appears red for GAG (safranin O), cyan for cell matrix (Fast Green), 
brown for collagens (DAB) and purple for nuclei (haematoxylin). Scale bars represent 100 μm. 
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Tables 

Table 1: Oligonucleotide primers used for qRT-PCR 
Gene symbol 
(primer source) 

Sequence (5'3') 
 

GenBank 
accession # 

Amplicon 
position 

    

COL1A1 F: CAGCCGCTTCACCTACAGC NM_000088 4335-4417 
(Martin et al. 
2001) 

R: TTTTGTATTCAATCACTGTCTTGCC   

COL2A1 F: GGCAATAGCAGGTTCACGTACA NM_001844 4454-4532 
(Martin et al. 
2001) 

R: CGATAACAGTCTTGCCCCACTT   

COL10A1 F: ACCCAACACCAAGACACAGTTCT NM_000493 201-264  
(Daouti et al. 
2005) 

R: TCTTACTGCTATACCTTTACTCTTTA 
TGGTGTA 

  

ACAN F: GCCTGCGCTCCAATGACT NM_001135 739-844 
(Primer-BLAST) R: TAATGGAACACGATGCCTTTCA   

VCAN F: CTGGATGGTGATGTGTTCCAC NM_004385 1061-1139 
(Primer-BLAST) R: CCTGGTTTTCACACTCTTTTGC   

HIF1A F: GGGTTGAAACTCAAGCAACTGTC NM_001530 1351-1448 
(Primer-BLAST) R: GTGCTGAATAATACCACTCACAACG   

EPAS1 (HIF2A) F: CGCACAGAGTTCTTGGGAGC NM_001430 2460-2540 
(Primer-BLAST) R: TGCAGACCTTGTCTTGAAGGTG   

HIF3A F: TGGAGCTGCTGGGAGTGAGA NM_152794 1794-1951 
(Li et al. 2006) R: GGGCTCATTCAGGTTCAGGAGT   

EGLN1 (PHD2) F: TCAATGGCCGGACGAAAG NM_022051 4031-4111 
(Gelse et al. 2008) R: CATTTGGATTATCAACATGACGTACA   

18S rRNA F: GATCCATTGGAGGGCAAGTCT NR_003286 589-691 
(Primer-BLAST) R: CCAAGATCCAACTACGAGCTTTTT   
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	Abstract
	Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful control of environm...
	Key words: Cartilage tissue engineering, chondrocyte, microcarrier, hypoxia, differentiation
	Introduction
	Articular cartilage exhibits a limited intrinsic capacity to regenerate. Focal cartilage defects can lead to the development of osteoarthritis, a painful and debilitating disease. Given the limited treatment options that are currently available to tre...
	The regenerative behaviour of chondrocytes is regulated by a complex array of biochemical and biophysical factors, including mechanical stimulation and oxygen tension (Vinatier et al. 2009). Biomechanical stimulation of chondrocytes in bioreactors can...
	Oxygen is also an important factor for chondrocyte homeostasis. The oxygen partial pressure (pO2) of articular cartilage in situ is estimated to range between ~7-10% at the superficial interface and ~1% near the subchondral bone (Silver 1975, Malda et...
	Less controversial is the influence of low oxygen on the in vitro differentiation of chondrocytes. Human articular chondrocytes obtained from healthy (Murphy and Polak 2004), as well as osteoarthritic tissues (Yudoh et al. 2005, Katopodi et al. 2009),...
	We, therefore, hypothesised that reduced oxygen conditions improve the proliferation and redifferentiation capacity of human osteoarthritic articular chondrocytes cultivated on microcarriers (CultiSpher G) in a stirring bioreactor compared to conventi...
	Materials and Methods
	Cell isolation

	Articular cartilage was obtained with institutional ethics approval from consenting patients (3 female donors, age 65±6 years) undergoing joint arthroplasty. Cartilage slices were harvested from visually normal tissue (International Cartilage Repair S...
	Cell expansion

	Freshly isolated human chondrocytes were propagated on tissue culture plastic (TCP) or on porcine gelatine microcarriers (MC) under ambient (20% pO2) or reduced (5% pO2) oxygen concentration. Cells were cultivated in low-glucose basal medium supplemen...
	For monolayer expansion, chondrocytes were seeded at 3,000 cells per cm2 in tissue culture flasks (Nunc, Roskilde, Denmark) and cultured up to passage 3 over a total of four weeks. Subconfluent cells were released from TCP by washing twice with PBS an...
	For microcarrier expansion, macroporous CultiSpher G microcarrier beads (Percell, Åstorp, Sweden) with a nominal size range of 130-380 µm were used Due to the highly tortuous nature of these microcarriers, reliable determination of available surface a...
	Harvested cells were counted with a NucleoCounter (Chemometec, Allerød, Denmark) which confirmed similar levels of viability in cells isolated from monolayer and microcarrier cultures. Population doubling times and total population doublings were calc...
	Immunophenotypic analysis

	Cells were harvested after each different expansion regimen and incubated at room temperature for 30 min in PBS with 3% m/v bovine serum albumin (Sigma) (3%BSA/PBS) and one of the following monoclonal antibodies: CD45 (1:20, H5A5, Developmental Studie...
	Chondrogenic differentiation

	The differentiation potential of expanded chondrocytes was evaluated using micromass cell pellets in serum-free chondrogenic media (basal medium supplemented with 1.25 mg/mL BSA, 10-7 M dexamethasone, 1% v/v ITS+1 (all from Sigma), 0.1 mM L-ascorbic a...
	Quantification of DNA and glycosaminoglycans (GAG)


	The DNA content in cell samples was quantitated using the Quant-iT™ PicoGreen® dsDNA assay (Invitrogen). Briefly, cells were incubated overnight at 60˚C with 0.5 mg/mL proteinase K (Invitrogen) in 20 mM Na2HPO4, 30 mM NaH2PO4.H2O, 5 mM EDTA, pH 7.1. S...
	The GAG content of each proteinase K-digested samples was quantified using the 1,9-dimethylmethylene blue (DMMB, Sigma) assay (Farndale et al. 1982, Farndale et al. 1986). Absorbance at 525 nm was measured with a microplate spectrophotometer (Bio-Rad,...
	Total messenger ribonucleic acid (mRNA) extraction and qRT-PCR

	Total RNA was isolated from cell samples using TRIzol® Reagent (Invitrogen) following the manufacturer’s protocol with modifications for high proteoglycan content (Chomczynski and Mackey 1995). Briefly, after chloroform-guided phase separation, RNA wa...
	Quantitative reverse transcribed-PCR (qTR-PCR) was applied to determine the presence and copy numbers of specific mRNA species in chondrocyte micromass cultures. Oligonucleotide primers were designed with Primer Express (Applied Biosystems) or primer ...
	Safranin O staining

	Cell pellet cultures were probed for GAG with safranin O. Briefly, fresh frozen micromass pellet samples embedded in Tissue-Tek™ O.C.T. compound (Sakura Finetek, Tokyo, Japan) were cut to yield ~5 (m thick cross-sections. Sections were fixed in 100% i...
	Immunohistochemical analysis on frozen sections

	To determine the protein expression of collagen type I and type II in chondrocyte pellets, fresh-frozen sections were fixed in 100% ice-cold acetone for 15 min, then treated with 0.1% hyaluronidase (Sigma) in PBS for 20 min at 37 C and blocked with 2....
	Statistical analysis

	Statistical analyses were performed using Minitab 15 (Minitab, Inc., State College, PA). Analysis of variance was determined using a general linear model in which the donor was considered a random effect. To test the effect of oxygen concentration dur...
	Results
	Expansion of chondrocytes with hypoxic and normoxic conditions using different culture systems

	The time required for the population of freshly isolated osteoarthritic chondrocytes to double over four weeks of ex vivo propagation was shorter on tissue culture plastic than in the microcarrier cultures (p<0.001) (Fig. 1 a). Consequently, the numbe...
	Immunophenotype of cultivated chondrocytes

	The hematopoietic cell marker CD45 was not detected in any of the cultured populations, as determined by flow cytometry (Fig. 2). Subpopulations expressing the putative stem cell surface markers CD105 and CD44 (Grogan et al. 2007, Pittenger et al. 199...
	Redifferentiation of cultivated chondrocytes (biochemical assays)

	Wet weight, and DNA and GAG content were determined in micromass pellet cultures maintained under either normoxic (20% pO2) or hypoxic (5% pO2) conditions over four weeks.
	Varying pO2 tensions during expansion or differentiation had no effect on the DNA content of cell pellets (both p=0.1) (Fig. 3 a,b). However, cells propagated on microcarriers showed overall lower DNA amounts than monolayer-expanded groups (p<0.001). ...
	Exposing chondrocyte micromass pellets to hypoxic conditions during differentiation resulted in a significant increase in wet weight (p<0.001) compared to micromass pellets differentiated under normoxic conditions (Fig. 3 c,d). Pellets formed from mon...
	The GAG content of micromass tissue pellets was greater when chondrocytes were differentiated under hypoxic conditions compared to those differentiated under normoxic conditions (p<0.01) (Fig. 3 e,f). Cells cultivated as monolayers produced more GAG t...
	Gene expression during differentiation (qRT-PCR)

	The presence and copy number of cartilage-specific mRNA species, aggrecan and collagen type II (COL2A1) were determined by qRT-PCR. Aggrecan mRNA levels were higher when chondrocytes were cultivated in monolayers, rather than on microcarriers (p<0.001...
	Chondrocyte dedifferentiation markers, collagen type I (COL1A1) and versican (Benya and Shaffer 1982, Binette et al. 1998), were strongly expressed at levels equivalent to, or greater than, aggrecan and COL2A1 (Fig. 4 a-d). COL1A1 expression levels we...
	Transcripts encoding the hypertrophy-associated gene, collagen type X (COL10A1), were barely detectable following expansion in all conditions (Fig. 4 e d0). While expression of this gene increased with subsequent cultivation, this was independent of n...
	We also examined gene products known to regulate cellular responses to reduced oxygen, the hypoxia inducible factors (HIFs). Surprisingly, cells that were initially established ex vivo in normoxic conditions expressed significantly more transcripts en...
	We also examined the expression of the HIF regulator, egl nine 1 homolog (EGLN1). The expression of EGLN1 was striking and paralleled the expression of HIF-1α (R2=0.61; p<0.001) and HIF-2α (R2=0.68; p<0.001). However, there was no correlation with the...
	Matrix synthesis during differentiation (histology / IHC)

	To determine the de novo synthesis of cartilaginous matrix, micromass pellet samples were stained with hematoxylin, Fast Green FCF and safranin O (for GAGs) and with antibodies specific for collagen type II and I.
	Tissue from chondrocyte micromass cultures expanded on tissue culture plastic exhibited greater intensity staining for GAGs (Fig. 6 a-i) and immuno-reactivity with collagen type II antibodies than micromass cultures from microcarrier-expanded chondroc...
	Different oxygen tensions during cell expansion on microcarriers had no recognisable influence on the cell phenotype and the quality of matrix in the pellets (Fig. 6). However, among the monolayer expansion groups, pellets with cells redifferentiated ...
	Discussion
	The aim of this study was to evaluate the effect of culture systems and different oxygen tensions on the propagation and the redifferentiation capacity of human osteoarthritic chondrocytes. The chondrogenic potential of osteoarthritic cells was determ...
	Exposing the chondrocytes to different oxygen tensions during cell propagation failed to confer any measurable effect on proliferation or the chondrogenic potential of human osteoarthritic chondrocytes. This is consistent with the findings of a simila...
	We observed that the synthesis of ECM, including GAG and collagen type II, as well as mRNA encoding chondrogenic markers were enhanced when cell pellets were cultured under hypoxic conditions. There is, indeed, growing support in the literature for th...
	To investigate the mechanisms underlying the differences observed at varying oxygen levels, we measured the mRNA levels encoding different factors involved in the cellular response to hypoxia. We found that HIF-1α and HIF-2α were constitutively transc...
	When comparing the influence of the different cultivation systems on the propagation of human articular chondrocytes, we observed shorter doubling times for cell populations cultivated in monolayer up to passage 3, than for cell populations maintained...
	An unexpected finding from our studies was the phenotypic differences of our in vitro cultured chondrocytes. Chondrocytes harvested from microcarriers expressed reproducibly lower levels of the surface markers CD44 and CD105, than cells expanded in mo...
	The differences in the surface marker expression of cells from monolayer and microcarrier cultures, in particular for CD105, could also be explained by the slightly prolonged trypsin treatment used to harvest chondrocytes from microcarriers. However, ...
	Conclusions
	Our data suggest that porous gelatine microcarrier expansion offers few benefits over conventional monolayer propagation when applied to freshly isolated articular chondrocytes from osteoarthritic tissue. Furthermore, oxygen concentration has no influ...
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