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Abstract 

The availability of oxygen has a major effect on all organisms. The yeast Sac-

charomyces cerevisiae is  able  to  adapt  its  metabolism  for  growth  in  different  

conditions of oxygen provision, and to grow even under complete lack of oxy-

gen. Although the physiology of S. cerevisiae has mainly been studied under 

fully aerobic and anaerobic conditions, less is known of metabolism under oxy-

gen-limited conditions and of the adaptation to changing conditions of oxygen 

provision. This study compared the physiology of S. cerevisiae in conditions of 

five levels of oxygen provision (0, 0.5, 1.0, 2.8 and 20.9% O2 in feed gas) by 

using measurements on metabolite, transcriptome and proteome levels. On the 

transcriptional level, the main differences were observed between the three level 

groups, 0, 0.5–2.8 and 20.9% O2 which  led  to  fully  fermentative,  respiro-

fermentative and fully respiratory modes of metabolism, respectively. However, 

proteome analysis suggested post-transcriptional regulation at the level of 0.5 

O2. The analysis of metabolite and transcript levels of central carbon metabolism 

also suggested post-transcriptional regulation especially in glycolysis. Further, a 

global upregulation of genes related to respiratory pathways was observed in the 

oxygen-limited conditions and the same trend was seen in the proteome analysis 

and in the activities of enzymes of the TCA cycle.  

The responses of intracellular metabolites related to central carbon metabo-

lism and transcriptional responses to change in oxygen availability were studied. 

As a response to sudden oxygen depletion, concentrations of the metabolites of 

central carbon metabolism responded faster than the corresponding levels of 

gene expression. In general, the genome-wide transcriptional responses to oxy-

gen depletion were highly similar when two different initial conditions of oxy-

gen provision (20.9 and 1.0% O2) were compared. The genes related to growth 

and cell proliferation were transiently downregulated whereas the genes related 

to protein degradation and phosphate uptake were transiently upregulated. In the 

cultures initially receiving 1.0% O2, a transient upregulation of genes related to 

fatty acid oxidation, peroxisomal biogenesis, response to oxidative stress and 

pentose phosphate pathway was observed. 
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Additionally, this work analysed the effect of oxygen on transcription of genes 

belonging to the hexose transporter gene family. Although the specific glucose 

uptake rate was highest in fully anaerobic conditions, none of the hxt genes 

showed highest expression in anaerobic conditions. However, the expression of 

genes encoding the moderately low affinity transporters decreased with the de-

creasing oxygen level. Thus it was concluded that there is a relative increase in 

high affinity transport in anaerobic conditions supporting the high uptake rate. 
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Tiivistelmä 

Toisin kuin useimmat aitotumalliset eliöt, leivinhiiva Saccharomyces cerevisiae 

pystyy kasvamaan erilaisissa happipitoisuuksissa, jopa täysin hapettomissa 

oloissa. Tätä ominaisuutta on hyödennetty laajasti erilaisissa bioprosesseissa. 

Jotta näistä prosesseista saataisiin mahdollisimman tehokkaita, on tärkeä tietää 

miten leivinhiivan aineenvaihduntaa säädellään hapen vaikutuksesta. Tässä väi-

töskirjatyössä tutkittiin leivinhiivan aineenvaihduntaa olosuhteissa, joissa syöte-

tyn hapen määrä oli tarkasti määritetty. Työssä käytettiin viittä eri happipitoi-

suutta (0, 0.5, 1.0, 2.8 ja 20.9 % happea kasvatukseen syötetyssä kaasuseokses-

sa) sekä olosuhteita, joissa hapen syötttöä muutettiin äkillisesti. Työssä mitattiin 

solunsisäisiä ja -ulkoisia aineenvaihduntatuotteita ja geenien ilmentymistä. Ha-

pensyötön eri tasoilla mitattiin myös proteiinien määriä ja entsyymien aktiivi-

suuksia. 

Geenien ilmentymisen ja solunulkoisten aineenvaihduntatuotteiden perusteella 

näytti siltä, että leivinhiivan aineenvaihdunta on hyvin samankaltaista rajoitetun 

hapen olosuhteissa (0.5, 1.0 ja 2.8 O2), mutta eroaa niissä selvästi hapettomista 

(0 % O2)  ja  normaalin hapen olosuhteista  (20.9 % O2). Proteiinitasoja vertailta-

essa kuitenkin havaittiin, että aineenvaihdunta ei ole täysin samanlaista happira-

joitetuissa olosuhteissa, erityisesti 0.5 ja 1.0 % hapensyötön välillä nähtiin eroja, 

mikä kertoo todenäköisesti geenitason yläpuolella tapahtuvasta säätelystä.  

Tässä työssä havaittiin myös, että suurin osa hengitykseen liittyistä geeneistä 

ilmentyi voimakkaammin happirajoitteisissa kuin normaalin hapen olosuhteissa, 

ja sama tulos näkyi myös kyseessä olevien proteiinien tasoissa ja sitruunahappo-

kierron entsyymien aktiivisuuksissa. Tämä kertoo luultavasti siitä, että solu yrit-

tää saada rajoitetun hapen mahdollisimman tehokkaasti käyttöönsä. Lisäksi ha-

vaittiin, että vaikka glukoosin sisäänottonopeus on suurin hapettomissa olosuh-

teissa, glukoosinkuljettajaproteiineja koodaavien geenien ilmentyminen ei ole 

tällöin voimakkaimmillaan. Sen sijaan hapen määrän laskiessa keskimääräisen 
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affiniteetin omaavia glukoosinkuljettajia koodaavien geenien tasot laskivat. 

Edellämainittu aiheuttaa todennäköisesti sen, että solukalvolla on hapettomissa 

olosuhteissa suhteellisesti enemmän proteiineja, joilla on korkea affiniteetti glu-

koosia kohtaan kuin hapellisissa olosuhteissa.  

Lopetettaessa hapensyöttö äkillisesti kokonaan, aineenvaihdunnan muutokset 

näkyivät nopeammin solunsisäisten aineenvaihduntatuotteiden määrissä kuin 

geenien ilmentymisessä. Havaittiin. että muutokset olivat hyvin samankaltaisia 

riippumatta siitä kuinka paljon happea kasvatuksiin oli alunperin syötetty. Hapen 

loppuessa kasvuun ja solujen uudistumiseen liittyvien geenien ilmentymistasot 

laskivat, kun taas proteiinien hajotukseen liittyvien geenien ilmentymistasot 

nousivat. Lisäksi havaittiin stressivasteeseen liittyviä muutoksia. 
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1. Introduction 

1.1 Oxygen 

Oxygen is an essential molecule for most eukaryotic organisms. In the early, 

prebiotic atmosphere of earth, oxygen was present only in trace amounts if at all 

[1, 2]. Approximately two to three billion years ago the emergence of the first 

photosynthetic organisms led to slow accumulation of atmospheric oxygen [3]. 

The concentration of oxygen in the atmosphere has varied between 10 and 35% 

during the last 550 million years [4] and stabilised at its present level of 21% the 

during last 200 million years [5]. 

The first eukaryotes appeared on earth at around the same time as the increase 

in atmospheric oxygen occurred [6–8]. The level of oxygen has been suggested 

to have constrained the evolution of receptor proteins, which are important in the 

communication  across  membranes  and  between  cells  and  are  thus  crucial  for  

eukaryotes [9]. As the oxygen level increased, the size and number of communi-

cation-related transmembrane proteins increased [9]. In addition to transmem-

brane proteins, sterols play a key role in the transport of materials across the cell 

membrane. The biosynthesis of sterols is an oxygen-dependent process facili-

tated by high atmospheric oxygen levels. Only a few prokaryotes are able to 

synthesise sterols [10]. 

Most known eukaryotes rely on oxygen during growth even though oxygen 

can also be harmful to them. Free radicals which are formed in the mitochondrial 

reactions can damage the cell membranes and DNA [11, 12]. There are also 

some eukaryotes which can survive and grow (temporarily) without oxygen [13]. 

The unicellular eukaryote Saccharomyces cerevisiae (baker’s yeast) is able to 

grow both in the presence and absence of oxygen. However, in the absence of 

oxygen, sterols and unsaturated fatty acids have to be obtained from the envi-
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ronment [14, 15]. The ability of growth in diverse oxygen concentrations and the 

ability to produce ethanol even in the presence of oxygen, has made S. cerevisiae 

an important industrial organism. 

S. cerevisiae has long been used for the leavening of bread and for biomass 

production. S. cerevisiae and other Saccharomyces yeasts also make an impor-

tant contribution in the brewing and wine-making. More recent applications of S. 

cerevisiae can be found in the production of heterologous proteins such as hepa-

titis b vaccine and insulin and in the production of bulk chemicals such as fuel 

ethanol and lactic acid [16]. In this thesis, the term yeast refers to S. cerevisiae. 

The provision of an optimal level of oxygen is still problematic in industrial 

scale bioreactors. The level of oxygen influences product and by-product forma-

tion and thus the economics of the process [17, 18]. Full oxygenation in large 

reactors  is  expensive  and  sometimes  even  impossible.  On  the  other  hand,  too  

high oxygen levels may lead to biomass growth at the expense of product forma-

tion. Anaerobic conditions lead to ethanol production, which is not favourable in 

cultivations for protein production and anaerobic conditions may be energeti-

cally less efficient since ATP is produced by substrate-level phosphorylation 

only. Furthermore, production of e.g. heterologous proteins may require high 

cell densities, which makes mixing more difficult and leads to temporal or local 

oxygen gradients inside the production vessels. These gradients cause differ-

ences in the physiology of the cells [19]. 

1.2 Fermentative and respiratory metabolism of  
S. cerevisiae 

During fermentative and mixed respiro-fermentative growth, S. cerevisiae con-

verts six-carbon sugars to two- and three-carbon components. This conversion, 

and subsequent use of the two- and three-carbon components (ethanol, acetate, 

glycerol) as carbon source, is energically less efficient than conversion of sugars 

directly to CO2 by respiration. However, this strategy (make-accumulate-

consume–strategy) gives yeast an advantage over many microorganisms for 

which ethanol is toxic [20]. In nature, S. cerevisiae lives on fruit surfaces and 

competes for resources with other yeasts, moulds and bacteria [16]. 

The ability of S. cerevisiae to consume ethanol is thought to have arisen from 

the duplication and differentiation of the ADH gene 80 million years ago [21], 

after the whole genome duplication which occurred 100 million years ago [22, 

23]. The genome of S. cerevisiae contains five alcohol dehydrogenases which 
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are involved in the metabolism of ethanol. ADH1, ADH3, ADH4 and ADH5 

encode alcohol dehydrogenase isoforms used during the formation of ethanol 

whereas the enzyme encoded by ADH2 is used during the consumption of etha-

nol. At about the same time as ADH duplication, eight additional gene duplications 

occurred, six of which are involved in the conversion of glucose to ethanol [21].  

In S. cerevisiae, fully fermentative metabolism occurs only under anaerobic 

conditions while fully respiratory metabolism occurs on the respiratory carbon 

sources (e.g. ethanol, glycerol, acetate, fatty acids) and at low specific growth 

rates on the fermentative carbon sources (e.g. glucose, fructose, galactose). 

When both oxygen and excess sugars are present, S. cerevisiae uses respiro-

fermentative metabolism. As the sugars become used, yeast undergoes a diauxic 

shift during which the growth is switched from the respiro-fermentative to the 

respiratory mode. The respiro-fermentative growth in high concentrations of 

sugars in the presence of oxygen has been suggested to result either from the rate 

of glycolysis exceeding the rate of pyruvate dehydrogenase enzyme or from 

carbon catabolite repression [24, 25]. The most studied repressor is glucose, 

which is known to repress the genes needed in mitochondrial respiration, utilisa-

tion of alternative carbon sources and gluconeogenesis, via a complex mecha-

nism which is not yet fully understood (for review see [24, 26]). The presence of 

glucose also affects mRNA turnover and protein translation rate and degradation 

[24]. In addition to glucose, the presence of other sugars such as fructose, mal-

tose and galactose leads to respiro-fermentative metabolism in the presence of 

oxygen [24]. The yeasts that produce ethanol from sugars in the aerobic condi-

tions are called crabtree-positive. In the study of Vemuri et al. [27], an alterna-

tive oxidase from Histoplasma capsulatum was over-expressed in S. cerevisiae, 

resulting in increased expression of several genes encoding the enzymes of the 

TCA cycle and decreased aerobic ethanol formation in the presence of high con-

centration of sugars. These results suggest that the crabtree effect is a conse-

quence of limited capacity of the respiratory system involved in oxidation of 

mitochondrial NADH. 

1.3 Central carbon metabolism of S. cerevisiae 

The central carbon metabolism of S. cerevisiae provides precursors for biosyn-

thesis, energy as ATP and reducing power in the form of NAD(P)H and FADH2 

(Figure 1). In glycolysis, glucose taken up by hexose transporters is rapidly 

phosphorylated and converted to pyruvate. Pyruvate can be further converted to 
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acetaldehyde by pyruvate decarboxylase (fermentation), to acetyl-CoA by pyru-

vate dehydrogenase (respiration) or to oxaloacetate by pyruvate carboxylase 

(gluconeogenesis). In high intracellular concentrations of pyruvate, the pyruvate 

decarboxylase reaction is favoured [28]. In this fermentative pathway to ethanol, 

NADH formed in the glycolysis and biomass formation is reoxidised. NADH 

can also be oxidised by respiration and through glycerol formation, the latter 

occurring especially under anaerobic conditions and under conditions in which 

respiration is repressed [29].  

The control of glycolysis is still largely unknown, although it has been exten-

sively studied [30–32]. Individual enzymes are known to be allosterically regu-

lated [33–38] and glucose transport has been suggested to play a role in the regu-

lation of glycolytic rate [39]. Transcriptional regulation of the genes encoding 

glycolytic enzymes also occurs [37, 40–42] although the flux through glycolysis 

is thought to be controlled mainly post-transcriptionally [43, 44]. 

Under conditions in which aerobic respiration takes place, pyruvate is taken 

into the tricarboxylic acid (TCA) cycle through Acetyl-CoA. Acetyl-CoA enters 

the TCA cycle in a reaction in which citrate synthase converts oxaloacetate to 

citrate.  The  TCA cycle  produces  NADH and  FADH2 for the respiratory chain 

and precursors for amino acid biosynthesis. The genes encoding the enzymes of 

the TCA cycle are subject to glucose-repression [45, 46]. However, the flux 

through the TCA cycle is most probably regulated by growth rate or glucose 

uptake rate and not by extracellular glucose concentration [47]. In addition, sev-

eral genes encoding the enzymes of the TCA cycle are under positive regulation 

by the Hap2/3/4/5p complex which also regulates other genes related to respira-

tion [48]. In respiratory-deficient cells, the control of CIT1, ACO1, IDH1, and 

IDH2, encoding for enzymes of the TCA cycle, switches to transcription factors 

Rgt1p, Rgt2p and Rtg3p. This switch has been suggested to ensure the synthesis 

of -ketoglutarate [49]. In batch cultures with high glucose concentration and in 

the of oxygen, TCA cycle functions only partially (see section 1.5), providing a 

precursor for amino acid synthesis [50]. 

To enable growth on non-sugar carbon sources, gluconeogenesis is used to 

synthesise glucose. Gluconeogenesis is essentially the reversal of glycolysis, but 

as two enzymes in glycolysis catalyse irreversible reactions, these reactions are 

circumvented by the enzymes pyruvate carboxylase (Pyc1p, Pyc2p), phosphoe-

nolpyruvate carboxykinase (Pck1p) and fructose-1,6-bisphosphatase (Fbp1). The 

genes encoding these enzymes are under transcriptional regulation [51–53]. In 

addition, Fbp1p is subject to glucose-induced protein degradation [54]. 
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Figure 1. Genes encoding the enzymes of central carbon metabolism in S. cerevisiae. 
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In addition to gluconeogenesis, the glyoxylate cycle is required for growth on two-

carbon substrates. In the glyoxylate cycle, these two-carbon substrates are con-

verted to four-carbon compounds. Many of the reactions of the TCA cycle and the 

glyoxylate cycle are identical, but are catalysed by different isoenzymes. Whereas 

enzymes of the TCA cycle are located in mitochondria, the glyoxylate cycle oc-

curs in cytosol and in peroxisomes [55]. The enzymes functioning only in the gly-

oxylate cycle are isocitrate lyase (Icl1p) and malate synthase (Mls1p, Dal7p) [56–

58]. Synthesis of these enzymes is repressed in cells grown on glucose [55]. 

Under aerobic conditions, the reactions of the pentose phosphate pathway 

(PPP) produce reducing power in the form of NADPH and precursors for nu-

cleotide and amino acid biosynthesis in the form of ribose 5-phosphate and 

erythrose 4-phosphate. The regulation of PPP has been thought to occur 

through the need for NADPH and biosynthetic precursors [59]. Especially the 

activity of the first enzyme of the PPP, glucose 6-phosphate dehydrogenase 

(Zwf1p),  is  largely affected by the ratio of  NADP to NADPH [60,  61].  How-

ever, regulation of other enzymes of the PPP also affects the activity of the 

pathway and in addition PPP is important in the protection against oxidative 

stress and is subject to regulation by the Yap1p and Stb5p transcription factors 

[62, 63]. Many of the enzymes of the PPP exist as two isoforms. The physio-

logical role of the minor isoforms is not known, but it is known that they re-

spond similarly during diauxic shift and in response to e.g. histone depletion, 

heat shock and nitrogen depletion [46, 64, 65]. 

1.4 Mitochondrial respiratory chain 

The respiratory chain uses electrons from NADH and FADH2 to create a trans-

membrane proton gradient that is used to synthesise ATP by ATP synthase. In S. 

cerevisiae, the respiratory chain is present under both aerobic and anaerobic 

conditions, although the protein levels are lower in the absence of oxygen [66, 

67]. Activity of the respiratory chain can be detected within 25–30 minutes after 

oxygenation of glucose-repressed anaerobic cells of S. cerevisiae, although at 

least 400 minutes are needed for full activity [68].  

The respiratory chain in yeast consists of complexes II, III, IV and V whereas 

it lacks the complex I (Figure 2). The functions of complex I (NADH dehydro-

genase) are replaced by an internal (Ndi1p) and two external (Nde1p and Nde2p) 

NADH dehydrogenases and a glycerol 3-phosphate dehydrogenase shuttle con-
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sisting of cytosolic glycerol 3-phosphate dehydrogenase (Gpd1p) and mitochon-

drial FAD-linked glycerol 3-phosphate dehydrogenase (Gut2p) [69, 70]. 

 

 

Figure 2. The mitochondrial respiratory chain of S.cerevisiae. 

 

Complex II (succinate dehydrogenase) oxidises succinate to fumarate and re-

duces ubiquinone. Ubiquinone is oxidised by complex III (Cytochrome bc) and 

the electrons are transferred to cytochrome c. Complex IV (cytochrome c oxi-

dase) oxidises cytochrome c by reducing oxygen to water. Complexes III and IV 

translocate protons across the inner mitochondrial membrane, resulting in a pro-

ton gradient. Complex V (ATP synthase) uses the proton gradient in the synthe-

sis of ATP. Complexes III and IV can form supercomplexes and complex V can 

exist both as a monomer and a dimer [71]. In addition, complex II can form su-

percomplexes with the mitochondrial membrane-bound dehydrogenases Gut2p, 

Nde1p, Nde2p and Ndi1p [72].  

Succinate dehydrogenase (complex II) consisting of four subunits Sdh1p, 

Sdh2p, Sdh3p and Sdh4p, is also a component of the TCA cycle [73]. The cyto-

chrome bc (complex III) consists of three catalytic subunits encoded by COB1, 

RIP1 and CYT1 and seven additional subunits encoded by COR1, QCR2 and 

QCR6-10 [74]. Cytochrome c is encoded by two isoforms, CYC1 and CYC7, of 

which CYC1 is expressed under aerobic conditions and CYC7 under hypoxic and 
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anaerobic conditions [75]. Cytochrome c oxidase (complex IV) consists of 9 

subunits encoded by both mitochondrial and nuclear genomes. The three largest 

subunits performing catalytic functions (encoded by COX1, COX2 and COX3) 

are mitochondrially encoded [76]. Nuclearly encoded subunits function in the 

assembly or stability of the holoenzyme or modulate the catalysis (COX4, 

COX5a, COX5b and COX6-COX9) [76]. Cox5a and Cox5b are interchangeable 

subunits, which affect the turnover rate of the enzyme [77]. COX5a is expressed 

under aerobic conditions, whereas COX5B is expressed under hypoxic and an-

aerobic conditions [75, 78]. Genes encoding for different subunits of cytochrome 

c oxidase exhibit different kinetics during transition from anaerobic to aerobic 

conditions. Some of them are fully induced rapidly, whereas others need more 

than two hours for full induction [75]. ATP synthase (complex IV) is encoded by 

ATP6, ATP8 and ATP9 located in the mitochondrial genome and ATP4, ATP5, 

ATP7, ATP14, ATP17-12, INF1, STF1 and STF2 which are encoded in the nu-

clear genome [79]. The genes encoding the subunits of respiratory chain com-

plexes and cytochrome c are glucose repressed [80–82] and are regulated by 

oxygen concentration (see section 1.5). In addition, under glucose limitation, the 

amounts of cytochrome c oxidase, cytochrome c and cytochrome bc are maximal 

when 5% oxygen is provided in the gas stream, whereas the activity of cyto-

chrome c oxidase is maximal when 10% oxygen is provided [83]. 

In addition to harvesting the chemical energy and storing it as ATP, mito-

chondria house parts of the metabolism of amino acids, lipids, heme and iron 

[84–87], and play an important role in apoptosis [88]. Sickmann et al. identified 

750 different proteins in yeast mitochondria using various protein separation 

methods and tandem mass spectrometry [89]. Reinders et al. refined the mito-

chondrial proteome of S. cerevisiae, covering 851 proteins [90]. When the mito-

chondrial proteome of yeast was compared under fermentative (glucose) and 

respiratory (glycerol) conditions, the overall differences were small; only 18 

proteins were found to be differentially expressed under these conditions [91]. 

When yeast proteomes from cells grown on glucose and lactate were compared, 

more proteins were detected in lactate-grown cells [92]. A study by Reinders et 

al.(2006) which identified yeast mitochondrial phosphoproteins suggested that 

many mitochondrial functions are regulated by reversible phosphorylation of 

proteins [90]. 
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1.5 Growth under anaerobic conditions and oxygen-
mediated transcriptional regulation 

Under anaerobic conditions, energy is harvested by substrate-level phosphoryla-

tion in glycolysis. The conversion of one molecule of glucose yields two mole-

cules of ATP and two molecules of NADH. This NADH can be reoxidised 

through conversion of pyruvate to ethanol. Residual TCA cycle activity that is 

maintained to provide precursors for biosynthetic reactions also produces reduc-

ing equivalents in the form of NADH and FADH2.  The  NAD/NADH  ratio  is  

regulated by production of glycerol, particularly through the action of  NADH-

dependent glycerol 3-phosphate dehydrogenase. This enzyme is encoded by two 

genes, GPD1 and GPD2, the latter of which is primarily used for redox balanc-

ing under anaerobic conditions [93]. FADH2 is  reoxidised  by  cytoplasmic  fu-

marate reductase, encoded by FRDS1 [94]. Flavin co-factors are exchanged be-

tween the cytosol and mitochondria by the carrier protein Flx1p [95, 96]. Under 

anaerobic conditions, TCA cycle operates as two branches because of low or 

zero oxoglutarate dehydrogenase and succinate dehydrogenase activities [97, 

98]. In addition to production of biosynthetic precursors, the action of the TCA 

cycle also leads to excretion of organic acids under anaerobic conditions. 

The biosynthesis of heme, sterols, unsaturated fatty acids and deoxyribonu-

cleotides is generally thought to require oxygen [14, 15, 99, 100], although con-

tradicting evidence has also been reported [66, 101]. Consequently, the plasma 

membrane of S. cerevisiae contains more saturated fatty acids and less total 

sterol, less ergosterol and squalene under anaerobic than under aerobic condi-

tions [102]. In yeasts that cannot grow under anaerobic conditions, synthesis of 

pyrimidines requires oxygen, but in S. cerevisiae the enzyme dihydro-orotate 

dehydrogenase is cytosolic and independent on the functionality of the respira-

tory chain [99, 103].  

Deoxyribonucleotides are synthesised from ribonucleotides by ribonucleotide 

reductases (RNRs) [100]. There are three classes of RNRs of which class I pro-

teins are dependent on oxygen, class III proteins operate only in the absence 

oxygen and class II proteins can function both in the presence and absence of 

oxygen.  Only class  I  RNR is  known in S. cerevisiae [104, 105], but as the se-

quence homologies of these proteins is very low, it is possible that class II or III 

proteins are also present [19]. 

During anaerobic growth, sterols and unsaturated fatty acids must be provided 

in the growth medium [14, 15, 99, 100]. Unsaturated fatty acids are synthesised 
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from saturated fatty acids by a single oxygen-dependent acyl-CoA desaturase, 

encoded by OLE1 [106] whereas in the sterol biosynthesis pathway oxygen is 

required in six enzymatic reactions [107] and references therein. In the absence 

of oxygen, the cell wall of S. cerevisiae is  remodelled for  the import  of  sterols  

and unsaturated fatty acids [19, 108, 109]. Under aerobic and anaerobic condi-

tions, different classes of cell wall mannoproteins are used and this switch is 

regulated on the transcriptional level. Under anaerobic conditions, CWP1 and 

CWP2 transcription is on a lower level and transcription of PAU, DAN and TIR 

genes are on a higher level than under aerobic conditions [110].  

The transcription factors Mox1p, Mox2p, Rox1p, Mot3p Upc2p, Ecm22p and 

Sut1p are known to play a role in the remodelling of cell walls and import of 

sterols [19, 111]. Nearly one third of anaerobically upregulated genes contain 

Upc2p/Ecm22p-binding sites in their promoters [108, 112]. Upc2 regulates the 

expression of DAN/TIR genes and the genes of sterol biosynthesis. Mox1p and 

Mox2p modulate the action of Upc2 in a heme-dependent way and Mot3p also 

regulates some of these genes [109]. In addition to Upc2p, Ecm22p regulates the 

genes of sterol biosynthesis. Upc2p and Ecm22p bind the same sequence and the 

binding is dependent on sterol concentration [113]. The target genes of Sut1p are 

not known, but the overexpression SUT1 has been shown to enable uptake of 

sterols under aerobic conditions [114, 115].  

Heme levels decline during growth under anaerobic conditions, and the con-

centration of heme plays an important role in the regulation of genes needed 

under anaerobic and strictly oxygen-limited conditions [116–118]. However, it 

has been reported that cells grown under anaerobic conditions contain small 

amounts of heme and it has thus been suggested that electron carriers other than 

oxygen could function during synthesis of heme [66, 101]. In addition, there are 

at least two types of heme pools in the cell, a protein-bound and a free pool, and 

it is not known how these two pools contribute to the transcriptional regulation 

[116]. Under aerobic conditions, a heme-activated transcription factor Hap1 

activates the expression of genes encoding the respiratory chain complexes and 

those related to oxidative stress [118, 119]. Hap1p also induces the expression of 

ROX1, which encodes a repressor of genes needed during severe hypoxia or 

under anaerobic conditions [117, 120]. In addition, Hap1p acts as a repressor of 

genes involved in ergosterol biosynthesis in the absence of heme [121]. Another 

heme-activated transcription factor Hap2/3/4/5p is also involved in the activation 

of many genes related to respiratory metabolism in the presence of oxygen [48, 

122]. However, the exact mechanisms of regulation of Hap2/3/4/5p by heme and 
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oxygen are unknown [123]. In addition, Hap2/3/4/5p regulates the expression of 

respiratory genes during glucose derepression [124].  

Under strictly oxygen-restricted conditions, S. cerevisiae adapts the expres-

sion of certain genes to improve oxygen utilisation [118]. These genes are re-

lated to those functions that require oxygen (respiration and heme, sterol and 

unsaturated fatty acid biosynthesis). Some of these genes have counterparts that 

are used under aerobic conditions [125]. As stated above, Rox1p acts as a rep-

ressor of many of the genes needed under strictly oxygen-restricted conditions 

[117]. In addition, Ixr1p functions in the induction of certain genes during severe 

oxygen restriction [126–128]. Furthermore, induction of OLE1 is regulated by 

low oxygen response element (LORE) [129] and cytochrome c oxidase is in-

volved in the induction of at least OLE1 and CYC7 [130]. Additionally, compu-

tational evidence of Hypoxia response elements (HRE) in the yeast genome has 

recently been published [131]. In mammals, these elements are crucial in the 

regulation of gene expression under oxygen restriction [132]. 

In the absence of oxygen, mitochondria are present as precursor structures 

called promitochondria, which differ in their number, morphology and ultra-

structure from the mitochondria present in the presence of oxygen [133, 134]. 

During growth on the respiratory carbon source glycerol, mitochondria are typi-

cally strongly branched and tubular, whereas during growth on fermentable car-

bon source glucose, the mitochondrial network is relatively simple [135]. Cells 

under anaerobicity typically contain only one promitochondrion whereas aero-

bic, ethanol- grown cells contain 20-30 mitochondria [68, 136, 137]. The mito-

chondrial structure is maintained by balanced fusion and fission [138]. In addi-

tion, it has been shown that dimerisation of ATP synthase is involved in control 

of the biogenesis of the inner mitochondrial membrane [139]. However, al-

though respiration and mitochondrial morphology are linked, respiration is not 

required for normal mitochondrial morphology [140]. Furthermore, during tran-

sition from anaerobic to aerobic conditions, changes in the mitochondrial mor-

phology continue for several hours after respiratory capacity has reached its 

maximum, indicating that one particular mitohcondrial morphology is not a pre-

requisite for increased respiration rate. This suggests that mitochondrial structure 

is formed and maintained for other functions than respiration, one of which is 

the mitochondrial inheritance [140]. In addition, mitochondria have been sug-

gested to have a role in the anaerobic uptake of sterols. Deletion of certain genes 

encoding mitochondrial proteins leads to deficiency in the aerobic uptake of 
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sterols and to the formation of electron-dense mitochondrial inclusions in a mutant 

that otherwise would be able to transport sterols in the presence of oxygen [141].  

1.6 Oxidative stress 

During growth in the presence of oxygen, the mitochondrial respiratory chain 

produces reactive oxygen species (ROS) [11, 142]. In addition, ROS are gener-

ated when cells are exposed to heavy metals, ionising radiation or redox-cycling 

chemicals [143]. It has also been suggested that ROS produced by the mitochon-

drial respiratory chain function as signalling molecules during oxygen sensing 

especially under oxygen-restricted conditions [125, 144, 145]. Transiently ele-

vated ROS levels are seen as a response to anoxia [146, 147]. In addition, tran-

sient oxidative stress as a response to anoxia is seen as increased levels of car-

bonylation of mitochondrial and cytosolic proteins, accumulation of 8-hydroxy-

2’-deoxyguanosine in the mitochondrial and nuclear DNA, and as increased 

expression of SOD1 [146].  

Generally, the cells respire more when more oxygen is available and conse-

quently many genes involved in the protection against oxidative stress are in-

duced by oxygen [145]. Furthermore, respiring cells are more resistant to exter-

nal oxidants such as H2O2 and superoxide anions than fermentative cells [148]. 

When oxygen provision exceeds 30% of the gas stream, toxic effects are ob-

served [149]. In addition, exposure to sub-lethal concentrations of oxidants leads 

to an adaptive response which protects cells against subsequent exposure to 

higher concentrations of oxidants [150, 151]. Different oxidants confer some-

what different responses in S. cerevisiae, the most studied ones being H2O2 and 

menadione, which produce superoxide anions in the cells [148, 152, 153]. 

Cells use both enzymatic and non-enzymatic systems in the defence against 

oxidative stress (reviewed by [143]). In S. cerevisiae, glutathione, metal-

lothioneins, thioredoxin, glutaredoxin and possibly trehalose and flavohaemo-

globin act as non-enzymatic defence systems. The enzymes used in the protec-

tion against reactive oxygen species are catalases and superoxide dismutatases. 

In addition, as glutathione and thioredoxin reductases require NADPH, the pen-

tose phosphate pathway plays an important role in defence against oxidative 

stress [154]. 

The transcriptional responses to oxidative stress are mediated by Yap1p, 

Skn7p and Msn2p/4p transcription factor,s of which Msn2p/4p is also involved 

in the regulation of general stress response evoked by many stress situations [64, 
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155–157]. As a response to oxidative stress, Yap1p relocalises from the cyto-

plasm to the nucleus, inducing the transcription of its target genes. [157]. Yap1p 

and Skn7p regulate a partially shared group of target genes. Skn7p and Yap1p 

are needed for induction of catalase, superoxide dismutase and of proteins of the 

thioredoxin system whereas only Yap1p upregulates the genes related to the 

glutathione system and the pentose phosphate pathway [63].  

1.7 Genome-wide studies on responses to oxygen 

Although major changes in the physiology of S. cerevisiae under anaerobic con-

ditions are observed, only 23 genes, for most of which the function is unknown, 

are essential only under anaerobic conditions [158]. In addition, of 1300 genes 

that are essential for aerobic growth only 33 are not required for anaerobic 

growth. Interestingly, these genes are not regulated by oxygen [158]. Further, 

gene regulation under anaerobic and aerobic conditions also depends on other 

factors such as carbon or nitrogen source [159, 160]. Ter Linde and co-workers 

identified 369 genes which had highly different levels of expression in aerobic 

and anaerobic glucose-limited conditions [161]. The genes that had the greatest 

differences between the two conditions included those involved in respiration, 

oxygen toxicity and fatty acid oxidation, and also included many with unknown 

functions. Piper and co-workers also compared the aerobic and anaerobic tran-

scriptome of S. cerevisiae under glucose limitation and found 877 transcripts to 

be differentially expressed [162]. Tai and co-workers found that only 155 of 

these genes responded consistently to anaerobiosis under four different macronu-

trient limitations [160]. These genes included those of transport, cell wall or-

ganisation, metabolism and energy and once again, 55 of them were of unknown 

function.  

Lai and co-workers studied the transcriptome of yeast during transition from 

aerobic to anaerobic conditions in batch cultivations on galactose and glucose 

[163, 164]. On galactose, DNA replication and repair-, cell cycle-, rRNA proc-

essing and protein synthesis -related networks controlled by Fhl1p, MCB, SCB, 

PAC and RRPE transcription factor binding sites were transiently downregu-

lated. At the same time, the Msn2/4p controlled networks related to import and 

utilisation of different carbon sources were transiently upregulated. These re-

sponses,  which  were  not  seen  on  glucose,  are  similar  to  the  general  stress  re-

sponse in S.cerevisiae. These responses were suggested to result from cessation 

of respiration, which is not as significant on glucose due to the already low ac-
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tivity of respiration under conditions of glucose repression [163]. In accordance 

with this hypothesis, it was shown that treatment of galactose-grown cells with 

the respiratory chain inhibitor antimycin A leads to a similar transient transcrip-

tomic response to that resulting from anoxia [165]. On both glucose and galac-

tose, slower responses of Hap1p, Hap2/3/4/5p, Rox1p, Upc2p and Mot3p –

regulated networks were observed [163, 164]. Lai et al. also studied the tran-

scriptional response after re-oxygenation and found that this response was simi-

lar in both glucose and galactose and dominated by Yap1p-controlled networks 

related to oxidative stress and networks regulated by heme [164]. In a study of 

Kundaje by co-workers (2008), a machine learning algorithm was used to inte-

grate information about the oxygen-related regulation in S. cerevisiae.  The  re-

sults indicated that the network of oxygen regulation is significantly different 

from the general stress response network [166].  

On the proteome level, less is known concerning the effect of oxygen than on 

the transcriptional level. The proteome of S. cerevisiae has been compared in 

anaerobic and aerobic glucose-limited conditions and during growth on xylose 

[44, 167, 168]. Bruckmann and co-workers used 2D electrophoresis and reported 

differences mainly in cytoplasmic proteins involved in energy metabolism, c-

compound and carbohydrate metabolism. Altogether 110 spots were identified, 

the levels of which differed more than twofold between aerobic and anaerobic 

conditions [168]. De Groot and co-workers used methods based on mass spec-

trometry and were able to quantify and identify 474 proteins. The results of the 

study of de Groot and co-workers indicated that glycolysis, amino-acyl-tRNA 

synthesis, purine nucleotide synthesis and amino acid biosynthesis are regulated 

on the post-transcriptional level [44]. The levels of proteins involved in transla-

tion and synthesis of precursor molecules for translation were on a higher level 

under anaerobic than aerobic conditions, even though the overall translation rate 

was equal under both conditions. The authors suggested that this could be due to 

an increased need for synthesis of glycolytic proteins, which represent a substan-

tial percentage of cellular protein [44].  

1.8 Glucose transport 

Glucose and fructose are the preferred carbon and energy sources for S. cere-

visiae [169]. Generally, Crabtree-positive yeasts such as S. cerevisiae utilise 

only facilitated-diffusion glucose-transport systems, whereas high-affinity pro-

ton-symport mechanisms with much lower Km values for glucose are common 
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in Crabtree-negative yeasts and are used by them under glucose-limited condi-

tions [25, 170–172]. The facilitated-diffusion glucose-transport system of S. 

cerevisiae is encoded by 20 genes, of which 18 encode transporters (Hxt1p-

Hxt17p, Gal2p) and two encode sensor proteins (Snf3p, Rgt2p) [173, 174]. The 

diversity of the transporters gives S. cerevisiae the ability to utilise efficiently 

different levels of glucose. 

The transporters encoded by HXT1 to HXT4 and HXT6 to HXT7 are consid-

ered to be the major hexose transporters in S. cerevisiae. These transporters have 

been classified as high (Hxt6p, Hxt7p), moderately low (Hxt2p, Hxt4p) and low 

(Hxt1p, Hxt3p) affinity transporters. However, Hxt2p exhibits both high and low 

affinity transport kinetics in cells grown on low glucose concentration [175]. In 

addition, HXT5 encodes a moderately low affinity transporter, the specific func-

tion of which is not known [176]. However, it is known to be regulated by 

growth rate, osmolarity, sporulation and glucose concentration [176, 177]. De-

pending on the strain background, deletion of either HXT1-7 or of all 18 hexose 

transporters is needed to completely abolish growth on glucose [178, 179].  

Extracellular glucose concentration sensed via the Snf3p and Rtg2p receptors 

affects the transcription of the major hexose transporters [180–183] (Figure 3). 

As a response to glucose, Snf3p and Rgt2p generate a signal that stimulates the 

degradation of  Mth1p and Std1p via Grr1p-dependent degradation [184–186]. 

Mth1p and Std1p associate with Rgt1p which represses the HXT genes [187]. 

The release of repression of the HXT genes requires both the degradation of 

Mth1p and Std1p and phosphorylation of Rgt1p [180]. Rgt1p is phosphorylated 

by protein kinase A, which in turn is activated by the G-protein coupled receptor 

Gpr1p [188]. In addition, in high glucose concentrations, Rgt1p acts as an acti-

vator of the low affinity transporter Hxt1p [189]. Furthermore, the glucose re-

pression pathway mediated by Snf1p-Mig1p acts by repressing the expression of 

genes encoding the moderately low affinity transporters HXT2 and HXT4 and 

genes encoding MTH1 and SNF3 [190]. 
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Figure 3. Regulation of genes encoding the major hexose transporters. Positive regula-
tion is marked by a line with an arrowhead and negative regulation by a line with a bar at 
the end. The figure is adapted from Kim and Johnston 2006 [188]. 

HXT8-HXT17 encode transporters with mainly unknown functions. Although the 

expression of all but HXT11 and HXT12 is regulated by extracellular glucose 

concentration, the expression levels of all these genes is very low both under 

glucose limitation and glucose excess [183, 191]. Some of these transporters 

may function in the transport of other compounds than glucose. Transporters 

encoded by HXT9 and HXT11 are involved in drug resistance process [192], and 

Hxt9p and Hxt10p are able to transport arsenic trioxide into the cell [193]. In 

addition, HXT17 contains a binding site for Mac1p transcription factor, which 

regulates copper-uptake genes under copper-deficient conditions [194, 195]. 

Further, HXT13 and HXT17 are induced on non-fermentable carbon sources and 

HXT17 is upregulated in cells grown on medium containing galactose and raffi-

nose at pH 7.7, but not at pH 4.7 [196]. 
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1.9 Aims of the study 

Oxygen has a major effect on cellular metabolism. The general aim of this study 

was to obtain further knowledge on the regulation of the metabolism of S. cere-

visiae in regard to oxygen provision. This knowledge would greatly benefit the 

planning of new bioprocesses and the control of those already in use.  

In the beginning of this work, most of the studies available had concentrated 

on comparing the fully aerobic and fully anaerobic growth of  S. cerevisiae 

whereas less data existed on oxygen-limited conditions. Especially the genome-

wide data and studies combining simultaneous measurements of different levels 

of metabolism were lacking. In addition, it was not known whether previous 

adaptation to oxygen-restricted conditions prepared the cells to sudden oxygen 

depletion, compared to cells grown under fully aerobic conditions.  

Although glycolysis has a central role in the metabolism of S. cerevisiae, the 

control of this pathway is still not fully understood. One of the controlling 

mechanisms  has  been  suggested  to  be  the  transport  of  hexoses  into  the  cell.  

Oxygen greatly affects the glucose uptake rate and the flux through glycolysis. 

Thus this study aimed at determining out how the glucose transporters are regu-

lated by the availability of oxygen.  

The specific aims of this study were 

1) to compare the physiology of Saccharomyces cerevisiae under condi-

tions of different oxygen provision by using measurements of multiple 

levels of metabolism 

2) to study the responses of transcriptome and intracellular metabolites to 

changes in oxygen availability 

3) to analyse the effect of oxygen provision on the expression of genes be-

longing to the hexose transporter gene family. 
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2. Materials and methods 

2.1 Summary of methods 

Materials and methods are described in detail in the original articles I–IV. Meth-

ods are summarised in Table 1. 

Table 1. Methods used in this study. 

Method Study 

Biomass determination 
Enzyme activity assays 
Extracellular metabolite analysis 
Intracellular metabolite extraction and analysis 
Microarray analysis 
Protein identification 
RNA extraction 
Sequencing 
Steady state chemostat cultivations of S.cerevisiae 
Time-course chemostat cultivations of S.cerevisiae 
TRAC 
2DE proteome analysis 
 

I 
III 
I 
I 
III, IV 
III 
III, IV 
II 
I, II, III, IV 
I, II, III, IV 
I, II 
III 
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2.2 Chemostat cultures 

Chemostat  cultures  and  analyses  carried  out  in  this  study  are  summarised  in  

Table 2.  

 
Table 2. Chemostat cultivations carried out in studies I–IV and in unpublished studies and 
the analyses of these cultivations. 

Cultivation  Analyses Study 

Steady state cultures receiving  
0, 0.5, 1.0, 2.8 or 20.9% oxygen 

 

Extracellular metabolite analysis 
Intracellular metabolite analysis 
Transcription analysis using TRAC 
Transcription analysis using microarrays 
Proteomics analysis using 2DE 
Enzyme activity measurements   

I 
I 
I, II 
III 
III 
III 

Time course analysis from aerobic 
(0.5, 1.0, 2.8 or 20.9% oxygen)  
to anaerobic conditions 

Extracellular metabolite analysis 
Intracellular metabolite analysis 
Transcription analysis using TRAC 
Transcription analysis using microarrays 

I 
I 
I, II 
IV 

Time course analysis from anaerobic 
to aerobic (1.0 or 20.9% oxygen)  
conditions 

Extracellular metabolite analysis 
Intracellular metabolite analysis 
Transcription analysis using TRAC 
 

II, PYFF3, 
unpublished 
results 
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3.  Results 

3.1 Cultivations and physiology (I) 

In order to study the effects of oxygen on S. cerevisiae, both steady state and 

time-course analyses were used. In the steady state setup, cells were grown in 

glucose-limited chemostats with 0, 0.5, 1.0, 2.8 or 20.9% oxygen provision in 

the incoming air. In the first time-course setup, oxygen feed was replaced with 

nitrogen in cultures which initially received 0.5, 1.0, 2.8 or 20.9% O2. The cul-

tures  were  followed  until  a  new  anaerobic  steady  state  was  achieved  (cultures  

initially receiving 0.5, 1.0 and 20.9% O2) or for 4 hours after anaerobicity was 

reached (cultures initially receiving 2.8% O2). In the second time-course analy-

sis, cultures initially in anaerobic steady state were given 1.0% or 20.9% O2 and 

followed until a new steady state was achieved or until the cultures started to 

oscillate (yeast cells synchronised their cell cycle). Oscillations were observed in 

cultures provided with 20.9% O2.  

The biomass concentration (g L
-1

) and the specific oxygen uptake rate (OUR) 

had very strong positive correlation (>0.9) with oxygen provision in the steady 

states receiving 0–2.8% O2 (Table  3).  In  20.9% O2, the biomass concentration 

and OUR were only slightly higher compared to 2.8% O2. The specific carbon 

dioxide evolution rate (CER), the specific glucose consumption rate and the 

specific ethanol production rate had high (>0.7) negative correlation to oxygen 

provision in 0–2.8% O2. However, in 20.9% O2 CER, specific glucose consump-

tion rate and specific ethanol consumption rate were only slightly lower than in 

2.8% O2. Glycerol was produced only under anaerobic conditions. The main 

difference between 2.8% and 20.9% O2 was that 20.9% O2 sustained fully respi-

ratory metabolism, as no ethanol was produced at this level of oxygen provision (I).  
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Table 3. Physiological parameters in glucose-limited chemostat cultivations of 
CEN.PK113-1A under provision of 0, 0.5, 1, 2.8 or 20.9% oxygen (I).  

 0% 0.5% 1.0% 2.8% 20.9% 

Oxygen solubility  

(µM)* 
0 6 12 34 250 

Biomass  

(g L-1) 
1.0 ± 0.02 2.1 ±0.02 3.0 ± 0.03 4.8 ± 0.05 5.0 ± 0.03 

Yield (x/C) 

(Cmol Cmol-1) 
0.12 ± 0.03 0.27 ± 0.01 0.36 ± 0.03 0.56 ± 0.01 0.60 ± 0.01 

Specific OUR 

[mmol (g DW)-1h-1] 
0 1.2 ± 0.02 1.7 ± 0.02 2.5 ± 0.04 2.7 ± 0.04 

Specific CER 

[mmol (g DW)-1h-1] 
11.3 ± 0.30 4.6 ± 0.06 3.7 ± 0.04 3.0 ± 0.03 2.6 ± 0.03 

Specific glucose 
consumption rate  

[Cmol (g DW)-1h-1] 

37.1 ± 3.0 14.3 ± 1.1 11.4 ± 0.5 8.0 ± 0.3 6.6 ± 0.5 

Specific ethanol 
production rate  

[Cmol (g DW)-1h-1] 

16.7 ± 1.6 5.5 ± 0.5 3.2 ± 0.2 0.2 ± 0.01 0 

Specific glycerol 
production rate  

[Cmol (g DW)-1h-1] 

3.0 ± 0.3 ND** ND ND ND 

* Solubility of O2 in pure water at 30°C 
** Not determined 

 

In the time-course experiments in which oxygen (0.5–20.9%) was replaced with 

nitrogen, the ethanol and glycerol concentrations started to increase within one 

hour of the switch (I, Figure. 3). Biomass concentration also started to decrease 

almost immediately, but the cells continued to grow at a rate of 0.06 h
-1

 during 

the washout and returned to 0.1 h
-1

 after approximately 15 hours. A new steady 

state was achieved in 36 hours (I). 

When the initially anaerobic cultures were given 1.0 or 20.9% O2, biomass ac-

cumulation and oxygen uptake started after two hours. Between 2 and 10 hours 

cultures receiving 1.0% and 20.9% O2 had specific growth rates of 0.21 h
-1

 and 

0.32 h
-1
, respectively. After 10 hours, the growth rate of 0.1 h

-1
 was restored.  In 

both cultures receiving 1.0 or 20.9% O2, glycerol production stopped as soon as 

oxygen was present in the environment and glycerol was washed out of the cul-

ture at a rate of ~0.13 h-1. In cultures receiving 20.9% O2, ethanol was washed 

out at the dilution rate for the first 2 to 3 h, and then at rates up to ~0.81 h-1 until 

all ethanol was removed. In cultures receiving 1.0% O2, ethanol production con-
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tinued  after  the  shift  at  a  slower  rate  than  before  the  shift  and  ethanol  was  re-

moved from these cultures at a rate of 0.04 h
-1 

[197],
 
(II). 

3.2 Intracellular metabolites (I) 

The concentrations of metabolites of upper glycolysis (G6P, F6P, FBP) and the 

TCA cycle (citrate, succinate, fumarate, malate) were higher in the anaerobic 

than  in  the  aerobic  conditions  as  were  the  concentrations  of  pyruvate,  6-

phosphogluconate (6PG), combined pentose phosphate pool and mannose 6-

phosphate. Concentrations of the metabolites of lower glycolysis (2PG+3PG, 

PEP) and trehalose 6-phosphate (T6P) were lower under anaerobic than under 

aerobic conditions (I, Figure. 1).  

When the aerobic (0.5–20.9% O2) conditions were turned to anaerobic, the lev-

els of metabolites started to change immediately (within 10 minutes) and mostly in 

the direction predicted on the basis of the steady state data. However, it took 30 

hours before they had reached the new steady state level. Furthermore, the concen-

trations of most of the metabolites responded similarly independently of the initial 

oxygen concentration. Clear exceptions were T6P, which showed transient 

upregulation in 0.5–2.8% O2 before the final downregulation, and 6PG, which 

showed transient downregulation in the 1.0% and 20.9% O2 before the final 

upregulation. In addition, decrease in concentration of 6PG was observed already 

at 0.2 hours in the initially fully aerobic cultures, whereas in the initially oxygen-

limited cultures the decrease was not seen until 3 hours (I, Figure 4 and Figure 5).  

When oxygen (1.0 or 20.9%) was added to anaerobic cultures, the levels of 

TCA cycle intermediates and FBP decreased within 1 to 2 h, whereas the levels 

of metabolites of lower glycolysis increased. Generally, changes in the metabo-

lite concentrations required more than 10 minutes. Similar changes were ob-

served with 1.0% and with 20.9% O2 [197].  
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3.3 Transcriptional analyses (I, II, III, IV) 

3.3.1 Targeted analysis using TRAC (I,II) 

3.3.1.1 Analysis of central carbon metabolism (I) 

Transcription of 71 selected genes, mostly related to the central carbon metabo-

lism, was measured with the TRAC method. 92% of these genes showed signifi-

cant (p<0.05) differences in their expression between the fully aerobic (20.9% 

O2) and anaerobic conditions, most of them having higher expression levels in 

aerobic than anaerobic conditions. Only ADH1, COX5b, ACS1 and PYC1 were 

more highly expressed under anaerobic than under aerobic steady state condi-

tions. Expression of most of the genes related to glycolysis was on the same 

level in 0 to 1.0% O2 whereas higher levels were observed in 2.8% than in lower 

oxygen levels. The expression of genes related to the TCA cycle showed higher 

levels  already  at  0.5%  O2 than under anaerobic conditions. Most of the genes 

related to the pentose phosphate pathway (PPP) showed higher expression levels 

in  2.8%  O2 than in the lower oxygen concentrations. In total, 50% of all the 

genes measured showed significant differences in expression between 2.8 and 

20.9% O2 (I, Figure1). 

During the time-courses from aerobic (0.5–20.9% O2) to anaerobic conditions, 

the expression levels of many genes did not change during the first hour or in 

some cases even during the first 8 hours. Many genes showed transient re-

sponses of both down- and upregulation. The duration of these responses was 

affected by the initial level of oxygen provision. Glycolytic genes generally 

showed no downregulation until 24 hours after the shift and some of them 

showed transient upregulation. The genes of the TCA cycle were downregulated 

already 2 to 3 hours after the shift. Most of the genes related to the PPP showed 

either transient of permanent downregulation, but transient upregulation was 

also observed. Genes related to ethanol consumption, respiration and some genes 

involved in acetate metabolism were consistently downregulated within 1 hour 

(I, Figure 6 and Figure7). 

During the time-courses from anaerobic to aerobic (1.0 or 20.9% O2) condi-

tions, most glycolytic genes were transiently downregulated within 10 min after 

the shift. Most TCA cycle genes were upregulated after 2-3 hours. Provision of 

1.0% O2 had little effect on the genes of the PPP whereas GND1, ZFW1 and 
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TKL1 were upregulated as a response to provision of 20.9% oxygen. In general, 

the level of oxygen provision affected the transcriptional responses [197]. 

3.3.1.2 Analysis of hexose transporters (II) 

The transcription of HXT2, HXT4 and HXT5, encoding for moderately low affinity 

transporters was on a higher level in the fully aerobic (20.9% O2) than in any of 

the intermediate oxygen or anaerobic conditions (II, Figure. 1). The transcription 

of HXT6, encoding for a high affinity transporter, and HXT13 and HXT15/16, 

encoding for transporters with unknown functions, was on a higher level under the 

intermediate oxygen conditions compared to either the fully aerobic or anaerobic 

conditions. The expression of HTX7, encoding for a high affinity transporter with 

high similarity to the protein encoded by HXT6, reached its highest level in 2.8% 

and 20.9 % O2. None of the HXT genes showed higher level of transcription in the 

anaerobic than under the fully aerobic conditions. Expression of HXT9, HXT14 

and GAL2 was not detected under the conditions studied (II).   

As a response to the change in oxygen provision (from 1.0 or 20.9% O2 to an-

aerobic and vice versa), the transcription of most of the hexose transporters 

HXT1 to HXT7 changed either transiently or permanently. The permanent 

changes were in the direction predicted from the steady state analysis. The tran-

sient changes were affected by the level of aeration.  

As a response to lack of oxygen in the cultures which were initially fully aero-

bic, HXT1, HXT2, HXT4 and HXT5 were downregulated, HXT6 was perma-

nently upregulated and HXT3 and HXT7 were transiently upregulated. While 

HXT1-HXT4 and HXT6-HXT7 responded in 0.2–1 hours, the transcription of 

HXT5 remained unchanged for the first 3 hours. Lack of oxygen in the cultures 

which were initially oxygen-limited, led to responses of some of the HXT genes 

which were clearly different than those observed in the initially fully aerobic 

cultures. HXT1, HXT4, and HXT7 were either transiently or permanently down-

regulated and HXT3, HXT5 and HXT6 were transiently upregulated before 

downregulation. In addition, HXT2 was upregulated.  

During transition from the anaerobic to the fully aerobic conditions, HXT3, 

HXT6 and HXT7 were downregulated and HXT2 and HXT4 were upregulated 

either transiently or permanently. HXT5 was downregulated before final upregu-

lation. The responses to oxygen provision were similar, but not exactly the same 

when limited oxygen was provided, compared to 20.9% oxygen provision. When 

limited oxygen was provided to the anaerobically grown cells, HXT2 was  per-
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manently and HXT6 transiently downregulated. HXT4 was transiently and HXT5 

permanently upregulated. 

In general, the responses of the transporter genes HXT8 to HXT17 were 

weaker than the responses of HXT1 to HXT7. The highest responses were ob-

served for HXT13 and HXT15/16 when the oxygen provision was changed from 

oxygen-limited to anaerobic and vice versa. As a response to lack of oxygen in 

oxygen-limited conditions, HXT13 and HXT15/16 were downregulated and as a 

response to limited oxygen under anaerobic conditions, these genes were 

upregulated. During the transitions between fully aerobic and anaerobic condi-

tions the expression of HXT13 and HXT15/16 did not change (II, Figure 2 and 

Figure 3).  

3.3.2 Global analysis using microarrays (III, IV) 

3.3.2.1 Different levels of oxygen provision (III) 

The level of oxygen provision, not only the presence and absence of oxygen, 

affected a  significant  part  of  the transcriptome of  S. cerevisiae. The expression 

of 3435 genes had significant (p<0.01) differences under five steady state condi-

tions studied (0, 0.5, 1.0, 2.8 and 20.9% O2). However, the expression level of 

only a few genes correlated strictly with oxygen concentration in the feed gas 

(III). The main differences in the transcriptome were observed between the fully 

aerobic, intermediate oxygen and anaerobic conditions. Especially the levels of 

0.5 and 1.0% oxygen were very similar to each other: only 10 genes were found 

to have significant (p<0.01) differences in their expression levels between these 

two conditions (III, Figure 1 and Table 1).  

Analysis of gene expression data with fuzzy c-means clustering resulted in 22 

clusters with different expression profiles (III, Figure 2). The promoters and 3’ 

untranslated regions (3’UTRs) of the genes in these clusters were analysed for the 

most informative regulatory motifs. 17 transcription factor binding sites and 7 

3’UTR motifs, of which some had significant co-occurrence and/or co-localisation 

patterns, were identified (III, Figure 3) In addition, GO categories and KEGG-

pathways over-represented in these clusters were analysed (III, Table S1). 

Under conditions of intermediate oxygen availability (0.5–2.8 % O2), the 

genes related to oxidative phosphorylation, TCA cycle and metal ion homeosta-

sis were more highly expressed than under either aerobic or anaerobic condi-

tions. These genes included nearly all the genes (34 out of 37) encoding the nu-
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clearly-encoded subunits of the respiratory chain complexes and all but three of 

the genes encoding for the main enzymes of the TCA cycle. Of the genes encod-

ing the main enzymes of the TCA cycle, FUM1, LSC1 and LSC2 had their high-

est expression under fully aerobic conditions. The promoters of genes of the 

respiratory pathway and the TCA cycle were enriched in binding sites for 

Hap2/3/4/5p transcription factor and for two previously undescribed 3’UTR 

elements. In addition, many respiratory enzymes contain metals and accordingly, 

9 out of 16 genes known to be involved in transport of iron from the extracellu-

lar medium to the cytosol had higher expression levels in 2.8% than 20.9% O2.  

In  addition  to  the  respiratory  pathways,  several  genes  related  to  the  MAPK  

signalling pathway of mating and filamentous growth had their highest levels of 

expression under the intermediate oxygen conditions. The genes encoding tran-

scription factors Ste12p and Tec1p, that are activated by these MAPK pathways 

and control the expression of genes needed in mating and filamentous growth 

[198, 199], also showed the same behaviour.  

In contrast to the respiratory pathways, most genes related to the mitochon-

drial protein synthesis and import were present at higher levels under all oxygen-

limited and anaerobic conditions, compared to the fully aerobic conditions. 

These genes were enriched for Puf3p 3’UTR motif.  

Lipid metabolism was highly affected by the oxygen level provided. Genes en-

coding activities of fatty acid -oxidation and genes related to peroxisomal bio-

genesis had their highest levels of expression under the fully aerobic conditions 

and similar, lower levels of expression under all three intermediate oxygen levels. 

In the anaerobic conditions, the expression levels of these genes were similar to or 

even lower than under the intermediate oxygen conditions. The genes encoding 

known regulatory elements of these genes, namely PIP2 and OAF1 [200] were 

also found to be similarly expressed. The genes related to sterol synthesis and 

uptake had either the lowest level of expression in the intermediate oxygen or 

were transcribed at a lower level under all oxygen-containing conditions, com-

pared to the anaerobic conditions. In the promoters of these genes two putative 

transcription factor binding sites with strong positive co-occurrence were over-

represented. One of these motifs corresponded to AR1 and SRE motifs which are 

known to function in the regulation of genes of ergosterol biosynthesis [112, 201]. 

Stress-related effects were also seen in the data. Binding sites of several 

stress-related transcription factors (Msn2p/Msn4p, Gis1p and Xbp1p) [202–204] 

were identified in the promoter analysis of clustering results. Binding sites for 

the transcription factors Msn2p, Msn4p, Gis1p were over-represented among 
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genes in two clusters which were enriched in genes belonging to the GO cate-

gory of response to stress. In one of these clusters, the expression level of genes 

was  on  similar  level  in  0  to  1.0% O2, on the lowest level in 2.8% O2 and  the  

highest level under fully aerobic conditions. The genes in the second cluster had 

their lowest levels of expression under the anaerobic conditions, similar, inter-

mediate level of expression under the intermediate oxygen conditions and the 

highest level of expression under the fully aerobic conditions. In the second clus-

ter binding sites for Ume6p and two unknown sites were also over-represented. 

In addition, the gene encoding Xbp1 was a member of this cluster and the bind-

ing site of Xbp1p was under-represented in the promoters of genes of this clus-

ter. Furthermore, the binding site for Xbp1 was over-represented in two clusters, 

the expression profiles of which negatively correlated with the expression level 

of XBP1. The four  core bases of binding site of Xbp1 were found in the promot-

ers of approximately 70% of the genes in these clusters. Many of these genes 

were related to cell division and cell wall organisation. 

Of the genes of the central carbon metabolism, major changes in the expres-

sion of genes of the PPP were observed. The expression of genes encoding the 

minor isoforms of enzymes of the PPP had their highest level of expression un-

der the fully aerobic conditions, lower level of expression in the intermediate 

oxygen and lowest expression under the anaerobic conditions. The expression of 

genes encoding the major isoforms of the PPP enzymes was not significantly 

affected by oxygen concentration. 

3.3.2.2 Change in oxygen provision (IV) 

In order to study the dynamics of transcriptional regulation by oxygen, time-

course analysis was performed. Steady state cultures, which were initially fully 

aerobic (20.9% O2) or oxygen-limited (1.0% O2), were switched to anaerobicity 

and followed until a new steady state was obtained. Whereas the transcriptional 

response to oxygen depletion was faster in the initially oxygen-limited than in 

the fully aerobic cultures (IV, Figure 1), the overall patterns of gene expression 

were very similar. 1169 genes responding to lack of oxygen showed a correla-

tion of >0.9 in their expression profiles (IV).  

The multidimensional reporter features algorithm was used to analyse the 

transcriptional responses in the context of the network of all known interactions 

between transcription factors and other regulatory proteins and genes [205]. The 

analysis identifies the features of which the surrounding genes have had highly 
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correlated expression in the time series. The regulators shared by and specific for 

the two initial conditions are summarised in Table 4.  

Analysis of gene expression data with fuzzy c-means clustering resulted in 24 

and 22 clusters with different expression profiles in the initially fully aerobic and 

oxygen-limited cultures, respectively (IV, Figures 2 and 3). The promoters and 

3’ untranslated regions (3’UTRs) of the genes in these clusters were analysed for 

the most informative regulatory motifs. In the initially fully aerobic cultures, 8 

transcription factor binding sites and 4 3’UTR motifs were identified (IV, Figure 

S1). In the initially fully aerobic cultures, 14 transcription factor binding sites 

and 8 3’UTR motifs were identified (IV, Figure S2). In addition, GO categories 

and KEGG-pathways over-represented in these clusters  were analysed (IV,  Ta-

bles S2 and S3).  

Table 4. Reporter features identified when initially fully aerobic (20.9% O2) or oxygen-
limited (1.0% O2) cultures were switched to anaerobicity. 

20.9% and 1.0% O2  specific for 20.9% O2 specific for 1.0% O2 

Growth  

BAS1, RAP1, IFH1, RSC30, 
ESA1, GTS1 
Protein degradation  
RPT6, SNF7 
Stress 
MSN2, MSN4, HSF1, HOG1 
Fatty acid -oxidation 
OAF1, PIP2 
Sterol biosynthesis 

UPC2 
Carbon-source regulation 

ADR1 
Vesicle trafficking 

SLY1 
Methionine biosynthesis 

MET1 
 

Growth 

LYS14, AMA1 
Protein degradation  
RPT4 
Stress and nutrient limitation 

TPK2, RAS2, HAA1 
Metabolic kinases 

SNF1, SNF4 
Glycolysis 

GCR1 
Response to copper ion 

CUP2 
Unknown function 

RIM9 
 

Growth 

SFP1, MBP1 
Protein degradation  
RPN4 
Heme 

HAP2/3/4/5, HAP1 
Methionine biosynthesis 

MET4 
Arginine transport 

YHC3 
 
 

 

Both culture conditions responded to the lack of oxygen by transient downregu-

lation of genes related to growth and cell proliferation (amino acid and purine 

metabolism, ribosomal biogenesis, RNA processing, biogenesis of RNA poly-

merases and genes related to cell cycle and DNA replication and repair). Some 
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of the clusters containing these genes showed more rapid responses in the oxy-

gen-limited cultures, but mostly the gene expression patterns were similar under 

the two conditions studied. Under both conditions, PAC motif and binding sites 

of transcription factors Rap1p and Xbp1p were over-represented in the promot-

ers of the genes belonging to these clusters. Under the fully aerobic conditions, 

two putative 3’UTR motifs were over-represented. One of these motifs was also 

identified in a shorter form under the oxygen-limited conditions. Additionally 

under the oxygen-limited conditions, RRPE motif, binding sites of transcription 

factors Bas1p and Swi4p, and 3’UTR motifs for binding of Puf4p and Puf5p 

were over-represented. 

Specifically, the genes related to biosynthesis of the amino acid methionine 

and to sulphate assimilation were rapidly and transiently downregulated in both 

the fully aerobic and the oxygen-limited cultures. In the fully aerobic cultures, 

the response of these genes was over after 1 h whereas in the oxygen-limited 

cultures the recovery was complete only after 8 hours.  

Transient downregulation was also seen in the transcription of genes related to 

mitochondrial translation and protein targeting to mitochondria in both culture 

conditions studied. In the fully aerobic cultures, the expression of these genes 

recovered to a higher level than in the initial steady state. Under both conditions, 

3’UTR motif for binding of Puf3p was over-represented in the clusters contain-

ing these genes. 

Transient upregulation of genes related to protein degradation mechanisms 

was  observed  in  both  the  fully  aerobic  and  the  oxygen-limited  cultures.  In  the  

oxygen-limited cultures, binding sites of Msn2p/Msn4p, Gis1p, Rpn4p and one 

putative transcription factor binding site were enriched among genes related to 

protein degradation. Furthermore, genes related to reserve energy metabolism 

(storage and degradation of trehalose and glycogen) were transiently upregulated 

in both cultures. In the oxygen-limited cultures, binding sites of Msn2p/Msn4p, 

Gis1p and Ume6p, a putative transcription factor binding site and a putative 

3’UTR motif were enriched among these genes.  

Under both culture conditions, genes related to fatty acid oxidation, perox-

isomal biogenesis and response to oxidative stress showed downregulation to-

wards the anaerobic steady state. In the initially oxygen-limited cultures binding 

site of Ume6p, one putative transcription factor binding site and two putative 

3’UTR motifs were over-represented in the cluster containing these genes. Fur-

thermore, in the initially oxygen-limited cultures, some genes related to fatty 

acid oxidation and peroxisomal biogenesis, together with genes related to re-
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sponse to oxidative stress, genes of oxidative phosphorylation, TCA cycle and 

pentose phosphate pathway were transiently upregulated before the final down-

regulation.  

Genes related to transport of different compounds responded to lack of oxygen 

in both the initially fully aerobic and oxygen-limited cultures. Genes related to 

sterol and iron transport and cell wall biogenesis were upregulated towards 

steady state. In the initially oxygen-limited cultures the upregulation did not start 

until  after  3  hours  whereas  in  the  fully  aerobic  cultures,  a  response  was  seen  

already at 0.2 hours. Under both culture conditions, genes encoding phosphate 

transporters were transiently upregulated as a response to lack of oxygen. Fur-

thermore, many genes related to uptake of amino acids and other nitrogen con-

taining metabolites responded by either transient or permanent upregulation 

during the adaptation to anaerobic conditions in both cultures (IV, Figure 4). 

Additionally, the redox cofactor NADH was identified as a Reporter Metabolite 

after 24 h, when the anaerobic steady state was established, independent of the 

initial metabolic state, but in the initially fully aerobic cultures NADH was identi-

fied as a Reporter also in the earlier phase of adaptation, between 1 and 3 h. In the 

initially oxygen-limited cultures, the cofactor NADPH was identified as a Re-

porter Metabolite between 1 and 3 h after the switch to anaerobic conditions. 

The responses of the genes related to central carbon metabolism were seen in 

the clustering analysis and were further studied by the Reporter metabolite 

analysis. If genes encoding the enzymes producing and/or consuming a metabo-

lite have significantly differential gene expression between different time points, 

the metabolite is defined as a reporter by the Reporter metabolite algorithm 

[206]. The Reporter metabolite analysis revealed that the temporally differential 

expression of the genes encoding the enzymes of central carbon metabolism as a 

response to oxygen depletion was dependent on the initial metabolic state of the 

culture (IV, Figure 7). The metabolites of the pentose phosphate pathway and 

the upper glycolysis were identified as reporters between 0 and 0.2 hours in the 

initially oxygen-limited cultures whereas in the initially fully aerobic culture 

metabolites of the pentose phosphate pathway and glyoxylate cycle were identi-

fied as reporters between 0.2 and 1 hours. In the initially fully aerobic cultures, 

the metabolites  of  the TCA cycle and cofactor  NADH responded after  1  and 3 

hours. Additionally, NADH was identified as a reporter between 1 and 3 hours 

and between 24 and 79 hours. In the initially oxygen-limited cultures, NADPH 

was identified between 1 and 3 hours. In the clustering analysis, it was observed 

that in the initially oxygen-limited cultures, genes of NADPH regeneration and 



3. Results 

  45 

the pentose phosphate pathway were either transiently downregulated (TAL1, 

TKL1, SOL3, RKI1, GND1) or showed transient upregulation before final 

downregulation (SOL4, GND2, TKL2), whereas in the initially fully aerobic 

cultures, these genes were transiently (TAL1, TKL1, RKI1, GND1, ADH6, 

PYC2) or permanently (SOL4, GND2, TKL2) downregulated. 

3.3.3 Comparison of TRAC and microarray analyses (I, III, IV) 

The gene expression levels of selected genes related to central carbon metabo-

lism were measured with the TRAC and Affymetrix methods (I, III, IV) and the 

results of these analyses were compared for the steady state data (III) and for the 

data from initially fully aerobic time-course analysis (data not published). For 

the initially oxygen-limited cultivation, the comparison was not performed since 

separate cultivations had been performed for the TRAC and Affymetrix analysis 

and the sampling points were not exactly the same. In addition, the expression 

levels of HXT genes were measured with both these methods (II, III, IV), but the 

Affymetrix measurements were not reliable for all these genes because of high 

sequence homologies in the coding regions of the genes. The probes used in the 

TRAC analysis were manually designed so that these homologies were taken 

into account (II).   

In the steady state data 61 of the 71 selected genes related to central carbon 

metabolism showed statistically significant differences in their expression levels 

with both the Affymetrix (p<0.01) (III) and the TRAC (p<0.05) (I) methods. 

Most of the genes (16) that showed >3-fold differences in their expression in the 

different oxygen levels also showed a high average correlation of 0.8 between 

the TRAC and the Affymetrix analyses. The genes (13) that showed 2- to 3-fold 

difference in their expression had a good average correlation of 0.6. Finally, the 

genes (24) that showed <2-fold difference in their expression had a low average 

correlation of 0.2. However, five of these genes also had a good correlation of  

>0.7. The genes that showed 2-fold differences in their expression levels and 

had low correlation between the TRAC and the Affymetrix data were GPD2, 

CIT2, ACS1, HAP1, MAE1 and PCK1, the signals of the three latter genes being 

very close to the detection limit using TRAC (III). 

In the time-course data of the cultivations in which fully aerobic conditions 

were turned anaerobic, 48 of 67 selected genes had significant changes in their 

expression levels. 41 of the 48 genes showed good correlation of  >0.6 between 

the two methods. Of the 7 genes that showed correlation <0.6, 5 showed <2-fold 
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differences in their expression levels. The two showing >2-fold differences in 

their expression and low correlation between the TRAC and the Affymetrix data 

were CIT2 and CIT3. 

3.3.4 Comparison of transcriptional, proteomics and enzyme 

activity analyses in different oxygen concentrations (III) 

2D gel analysis of cells cultivated in five different levels of oxygen provision 

resulted in a proteome dataset of 484 protein spots. Of the 484 spots, the intensi-

ties of 145 differed significantly (p< 0.01) when the cells were provided differ-

ent levels of oxygen. In all the levels of oxygen provision studied, the Pearson’s 

correlations between proteins identified in the 2D gels and the mRNA levels of 

the corresponding genes in the transcriptome were similar, with r-values be-

tween 0.41 and 0.55 (III). For a more detailed comparison, the 107 protein spots 

from the 2D gels and the corresponding transcripts that showed significant dif-

ferences between the different oxygen levels were hierarchically clustered (III, 

Figure 5). The clustering analysis revealed that for many protein and transcript 

pairs, correlation of expression levels was high in 0, 1, 2.8 and 20.9% O2 and 

low in 0.5% O2.  

Enzymes of the TCA cycle and proteins involved in respiration showed either 

a slight increase in quantity (1.5- to 2-fold) under the intermediate oxygen condi-

tions (0.5–2.8% O2) compared to the fully aerobic and the anaerobic conditions, 

or a strong increase (3 to 64-fold) under the fully aerobic conditions, or did not 

differ in the different levels of oxygen provision. Activities of the enzymes of 

the TCA cycle could not be measured directly, but the combined activities of all 

isoforms  of  the  enzymes  citrate  synthase  (CS),  aconitase  (ACO),  isocitrate  de-

hydrogenase (IDH) and malate dehydrogenase (MDH) were analysed from crude 

cell extracts (III, Figure 4). All these enzymes showed highest activities under 

the intermediate oxygen conditions and strongly correlated (correlation >0.89) 

with the transcriptome data for the corresponding genes of the TCA cycle (CIT1, 

ACO1, IDH1,2 and MDH1, respectively). In the proteome analysis, only Idh2p 

and Aco1p were identified: Idh2p showed increase in intermediate oxygen 

whereas Aco1p did not change.  

Of the enzymes of the pentose phosphate pathway, Rki1p (ribose 5-phosphate 

Ketol-Isomerase) and Tkl2p (transketolase 2) were identified in the proteome 

analysis (III, Table S1). These showed correlations of 0.86 and 0.78 to the corre-

sponding gene expression levels, respectively. The enzyme activities of glucose 
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6-phosphate dehydrogenase (G6DPH) and 6-phosphogluconate dehydrogenase 

(6PGDH) and the combined activities of isoforms of transketolase (TKL) and 

transaldolase (TAL) were measured (III, Figure 4). The activity of G6PDH 

showed a correlation of 0.7 to ZWF1. The activity of 6PGDH showed correla-

tions of 0.6 and 0.3 with GND1 and GND2, respectively. The activities of TKL 

and TAL had a correlation of 0.5 with TKL1 and TAL1, respectively, and no 

correlation to TKL2 and ORF YGR043C, respectively.  

Of the proteins involved in glucose fermentation many were found as multiple 

pI isoforms which differed in relative quantities in different oxygen levels. 

These included Adh1p (3 pI isoforms), Adh2p (3), Ald4p (2), Ald6p (2), Eno1p 

(6), Eno2p (4), Gpm1p (3), Fba1p (2) and Hxk1p (2).  
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4. Discussion 

4.1 Physiological responses to oxygen 

The effect of oxygen on the physiology of S. cerevisiae was studied in highly 

controlled glucose-limited chemostat cultivations. Under steady state conditions 

of five different levels of oxygen provision (0, 0.5, 1.0, 2.8 and 20.9%), data of 

extra- and intracellular metabolites, expression of genes, levels of proteins and 

levels of enzyme activities were obtained. The data obtained from the central 

carbon metabolism are summarised in Figure 4 for glucose transport and fermen-

tation and in Figure 5 for the PPP and TCA cycle. In addition, the fluxes through 

central carbon metabolism have been measured under these conditions and pub-

lished separately [207].  

The provision of 20.9% or 2.8% O2 led only to small differences in the bio-

mass concentration and the specific glucose and oxygen consumption rates. A 

clear difference was that provision of 2.8% O2 led to respiro-fermentative 

growth, whereas provision of 20.9% O2 supported purely respiratory growth. 

However, only minor differences were observed in the metabolic flux distribu-

tion between 20.9% and 2.8% O2 , respiratory pathways also carrying the most of 

the  carbon  flux  in  2.8  %  O2 [207]. Interestingly, whereas the flux distribution 

was similar  in  20.9% and 2.8% O2, the transcriptional profiles under these two 

culture conditions were clearly different. On the other hand, the provision of 0.5, 

1.0 and 2.8 % of oxygen led only to small differences on the transcriptome level, 

but the measurements of flux distribution under these three conditions revealed 

distinct modes respiro-fermentative metabolism [207]. In addition, on the pro-

teome level differences were observed between 0.5% and 1.0% O2, suggesting 

that post-transcriptional regulation mechanisms were responsible for the differ-

ent physiological modes. 

After a switch from aerobic (0.5, 1.0, 2.8 or 20.9% O2) to anaerobic conditions, 

considerable time (four to five generations) was needed for the cells to reach a 
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new steady state regardless of the initial oxygen concentration provided. Thus, the 

provision of a low amount of oxygen does not prepare yeast for full anaerobicity. 

In a previous study an even longer time (>10 generations) was required for the 

new transcriptional steady state to be obtained after a shift from galactose to glu-

cose [208]. Interestingly, S. cerevisiae requires more time to adapt to new condi-

tions than the filamentous fungus Trichoderma reesei, which needs less than one 

generation to achieve a new transcriptional steady state [209]. 

4.2 Fermentative pathways, glucose transport and 
reserve carbohydrate metabolism 

In the steady state analysis, glycolytic genes were found to be largely unaffected 

(Affymetrix) or on a slightly higher level under the aerobic than the anaerobic 

conditions (TRAC), although the levels of glycolytic metabolites showed clear 

differences between the conditions of different oxygen provision. However, on 

the proteome level differences were seen. For many glycolytic proteins, different 

isoforms were observed which showed differences in their levels in different 

oxygen concentrations. These results are in accordance with earlier studies 

which have shown that the regulation of glycolysis occurs mostly on the post-

transcriptional level [43, 44]. The time-course analyses also supported this ob-

servation, as the responses of the glycolytic metabolites and genes did not corre-

late with each other. Although glycolysis has been extensively studied, the exact 

mechanism of its control is not known. Most probably, the control is distributed 

over a number of steps [33, 210–212, 212]. One of the controlling mechanisms 

of glycolysis has been suggested to be transport of glucose into the cell [39, 

213]. Under conditions of restricted respiration, the carbon flux through glycoly-

sis is increased [50, 207, 214–216] and the specific glucose consumption rate is 

inversely related to oxygen provided to the system. Interestingly, in the current 

study, the expression levels of the genes encoding hexose transporters were not 

positively correlated with the glucose uptake rate. Instead, the expression levels 

of the genes encoding moderately low affinity transporters (HXT2, HXT4 and 

HXT5)  were  low when  the  specific  glucose  consumption  rate  was  high.  It  was  

thus concluded that the relative increase in the high affinity compared to low 

affinity transport was sufficient to allow for the higher specific glucose con-

sumption rate.    

During the adaptation to anaerobic conditions a reporter metabolites of upper 

glycolysis were identified only in the cultures that were initially oxygen-limited. 

As upper glycolysis is the entry point of the storage carbohydrates, this response 
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may be related to the regulation of genes associated with the storage and mobili-

sation of trehalose and glycogen. In fact, the concentration of T6P, an intermedi-

ate in trehalose synthesis and one of the regulators of glycolysis [217], was de-

pendent on the initial level of oxygen provision. However, in the clustering 

analysis a transient upregulation of genes of reserve carbohydrate metabolism 

was observed in both the initially fully aerobic and in the initially oxygen-

limited cultures. The simultaneous upregulation of genes encoding both the en-

zymes needed in the mobilisation and storage of reserve carbohydrates has pre-

viously been observed as a response to stress and has been suggested to be in-

volved in maintaining a constant glucose concentration inside the cell [218, 219]. 
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Figure 4. Relative levels of intra- and extracellular metabolites, gene expression and 
protein expression in the fermentative pathway. The gene expression data is derived from 
Affymetrix measurements except for Hxt genes, the data of which is derived from TRAC 
measurements. 
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4.3 The respiratory pathway and the pentose phosphate 
pathway 

Under the steady state conditions of intermediate oxygen provision, higher levels 

of  the  genes  related  to  the  TCA  cycle  and  respiratory  pathways  was  observed  

compared to the fully aerobic or anaerobic conditions. The effect of this regula-

tion was also seen on the proteome level as higher concentrations of some of the 

proteins of the TCA cycle and respiratory chain and in addition as higher activi-

ties of the enzymes of the TCA cycle. Furthermore, many genes related to trans-

port of iron and zinc had their highest level of expression under the conditions of 

intermediate oxygen, reflecting the high demand of respiratory enzymes for 

metal ions. Of the respiratory genes Hap3/4/5p complex and two putative 3’UTR 

motifs were enriched. The Hap3/4/5p is suggested to play a role in the activation 

of respiration during growth rates above 0.08 h
-1

 to allow for higher respiratory 

capacity [48, 123]. The findings of the current study suggest that under the con-

ditions of restricted oxygen, but not in the complete absence of oxygen the cells 

also try to enhance the respiration by upregulation of respiratory genes. Under 

these conditions the upregulation is not sufficient to enable fully respiratory 

growth.  However,  it  is  possible  that  the regulation is  needed to sustain respira-

tory energy metabolism, which has been observed still to account for 25 % of 

ATP generation at 0.5 % O2 [207]. Further, similar to the results of the current 

study, maximal amounts of cytochromes (5% O2) and maximal activity of cyto-

chrome c oxidase (10% O2) were observed in lower oxygen provision than that 

which supported fully respiratory metabolism (26%) [83, 149]. 

In contrast to the expression of genes encoding the enzymes of the TCA cycle, 

the intracellular levels of the TCA cycle acids were highest under the anaerobic 

conditions. This in accordance with earlier studies measuring intracellular me-

tabolites under anaerobic and aerobic conditions [220]. The extracellular con-

centrations of these acids are high also in anaerobic batch cultures on glucose, 

which is thought to be due to TCA cycle functioning as two branches under an-

aerobic conditions to provide biosynthetic precursors for amino acids [97, 98].  

During adaptation of fully aerobic cultures to anaerobic conditions, the genes 

encoding the enzymes of the TCA cycle and the respiratory pathway were down-

regulated. However, during adaptation of the oxygen-limited cultures to the an-

aerobic conditions, some of these genes were transiently upregulated. Transient 

upregulation of the genes of oxidative phosphorylation and the TCA cycle has 

previously been reported during adaptation to anaerobic conditions in batch cul-

tures on galactose, but not on glucose, suggesting that the response is linked to 
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termination of respiration [163, 164]. It is thus interesting that the response was 

not observed in the fully aerobic cultures.   

The genes related to oxygen-demanding processes of fatty acid oxidation and 

peroxisomal biogenesis were also transiently upregulated during the adaptation of 

oxygen-limited cultures to anaerobic conditions. It has previously been observed 

that the genes related to peroxisomal activities and anaplerotic reactions are 

upregulated in respiratory-deficient yeast cells as a response to the loss of oxida-

tive phosphorylation, in order to increase supplies of acetyl-CoA and OAA [221]. 

The PPP provides precursors and reducing power for biosynthesis, but it is also 

important in the protection against oxidative stress [222, 223]. In the steady state 

analysis, expression of the genes encoding the main isoforms of the enzymes of 

the PPP, and the combined activities of major and minor isoenzymes of PPP were 

mostly unaffected by provision of oxygen, or smaller than twofold differences 

were seen with exception of TAL1 in TRAC analysis. The specific flux through 

the oxidative part of PPP also remains constant under the conditions studied [207]. 

In addition, as Yap1p-regulated pathways specific to oxidative stress were not 

identified in either the reporter features analysis or the promoter analysis of clus-

tered gene expression, it appears that the oxygen concentration provided was not 

too high for the cells even under the fully aerobic conditions. In the time-course 

analysis, the genes encoding the major isoforms of enzymes of the PPP were tran-

siently downregulated during the adaptation to anaerobic conditions. This transient 

downregulation was possibly due to the transient decrease in the growth rate and 

thus decrease in the need for the biosynthetic precursors. 

In contrast to major isoforms, the expression of the genes encoding the minor 

isoforms of the enzymes of PPP was transiently upregulated during the adapta-

tion of oxygen-limited cultures to anaerobic conditions. Interestingly, a differ-

ence between the conditions was also observed on the metabolite level. The tran-

sient decrease in the concentration of 6PG was observed already after 0.2 hours 

in the initially fully aerobic cultures whereas in the initially oxygen-limited cul-

tures the decrease was not observed until 3 hours. Further, the expression of the 

genes encoding the minor isoforms of the PPP enzymes was strongly affected by 

provision of oxygen in the steady state cultures. The physiological role of the 

minor isoenzymes is not known. Under the steady conditions, the expression of 

genes correlated to the physiological state, being highest under purely respira-

tory conditions, lowest in fermentative conditions and on an intermediate level 

under respiro-fermentative conditions. This may suggest that they are beneficial 

under conditions of high respiration, which hypothesis is supported by previous 

findings that they are induced after diauxic shift [46].  
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Figure 5. Relative levels of intracellular metabolites, gene expression, protein expression 
and enzyme activities in A. pentose phosphate pathway and B. TCA cycle and glyoxylate 
cycle. The gene expression data is derived from Affymetrix measurements.  
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4.4 Growth, protein degradation and stress 

In the time-course analysis, a transient downregulation of genes related to 

growth and cell proliferation was observed. Especially, downregulation of both 

cytosolic and mitochondrial translation machineries was observed, but genes 

related to cell cycle, amino acid and purine biosynthesis and DNA replication 

and repair were also downregulated. Simultaneously to downregulation of 

growth-related genes, the genes encoding the protein degradation mechanisms 

were transiently upregulated. These changes are shared with the phenomenon of 

environmental stress response, a common response of certain patterns of genes 

to a variety of stressful situations [64, 155]. It has been suggested that at least 

part of this response, which also includes other processes such as reserve energy 

metabolism, carbohydrate metabolism and oxidative stress defence, is actually a 

response to changes in the growth rate [224]. Especially for the genes encoding 

ribosomal  proteins,  it  has  been  shown  that  in  steady  state  chemostat  cultures,  

their expression is positively correlated with the specific growth-rate [225, 226]. 

However, it has also been suggested that under dynamic conditions their re-

sponses are regulated by the external environment rather than by the specific 

growth rate [227]. This is supported by the findings that the gene expression 

responds faster than the growth rate and also that no correlation between growth 

rate and ribosomal gene expression has been observed during recovery from 

environmental perturbations [227]. In the current study, a recovery to the origi-

nal level in the expression of the ribosomal genes was also observed within 3 to 

8 h whereas the specific growth rate was below 0.1 h
-1
 for approximately 15 h. 

Among the genes related to growth and cell profiliferation, a set of transcrip-

tion factor binding sites (PAC, RRPE, RAP1, XBP1, BAS1, SWI4) was identi-

fied which may be involved in the regulation of genes. However, the rapid (10 

min) downregulation seen in particular in the expression of genes encoding the 

translational machineries indicates active degradation mediated by 3’UTR ele-

ments. It has been shown that in the case of heat and osmotic stress, the decay of 

mRNA plays an important role [228–230]. In our dataset, two putative 3’UTR 

motifs were identified in the fully aerobic cultures, whereas in the oxygen-

limited cultures PUF4, PUF5 and a putative motif were identified. PUF4 motif  

is known to be involved in the decay of the mRNAs of genes related to rRNA 

synthesis and processing and ribosomal biogenesis [228] whereas both PUF4 

and PUF5 are associated with mRNAs encoding nuclear components [231].  

The genes induced in the environmental stress response are mostly regulated 

by Msn2p and Msn4p transcription factors [64, 155], and these were also identi-
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fied in the analysis of the current data. However, a pattern of other known and 

putative transcription factors was also identified. Furthermore, stress-related 

responses mediated by Msn2p/Msn4p, Gis1p, Ume6p and Xbp1 were also ob-

served in the steady state data. In general, the fully respiratory conditions ap-

peared to be the most stressful for the cells.   

4.5 Transport of sterols, phosphate and nitrogen-
containing compounds 

Under the anaerobic conditions, the cell wall and cell membrane of S. cerevisiae 

is modified to enable the uptake of substances requiring oxygen for their biosyn-

thesis. In accordance with earlier studies [110, 112, 232], the genes of the DAN 

and TIR families encoding cell wall mannoproteins and the regulators of sterol 

biosynthesis and uptake (UPC2, ECM22) were on their highest level under the 

fully anaerobic conditions and on a lower level under all oxygen-containing 

conditions. The genes encoding the enzymes of ergosterol biosynthesis were also 

on their highest level under anaerobic conditions. Although ergosterol biosyn-

thesis requires oxygen, upregulation of these genes has previously been observed 

under anaerobic and severely oxygen-restricted conditions [44, 113, 164]. It was 

suggested that this upregulation gives the cells an advantage in situations in 

which small amounts of oxygen suddenly become available [233]. In the time-

course analysis, the switch to anaerobic conditions led to upregulation of the 

genes related to sterol transport, although in the initially oxygen-limited cultures 

the expression levels of these genes remained constant for the first 3 hours after 

the shift. A delayed response of these genes has also been observed in batch 

cultivations of glucose as a response to anaerobic conditions [164]. It is however 

unclear why the response was faster under the fully aerobic conditions. 

In the time-course analysis, upregulation of amino acid transport was observed 

as a response to anaerobic conditions. It is interesting that at the same time the 

cells shut down their biosynthesis for amino acids and upregulated the genes 

related to the uptake of these compounds. However, it may be an energetically 

more feasible strategy to use externally provided resources. Lai et al. [163, 164] 

suggested that when the cells experience a sudden depletion of oxygen, at least 

part of this response is related to balancing the energy status.  

In addition, a transient increase in the expression of genes encoding the phos-

phate transporters was seen in the time-course analysis. Previously, a transient 

increase in the intracellular phosphate and polyphosphate levels resulting from 

increase in transport of extracellular phosphate was observed after a shift to an-
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aerobiosis [234]. Although it is unclear why this happens, it has been suggested 

to be related to the regulation of glycolysis.  

4.6 TRAC vs. Affymetrix 

In the current study, two methods for transcript analysis were used. The TRAC 

analysis enabled the accurate analysis of expression levels encoding the hexose 

transporters, the sequences of which have high similarities to each other. In addi-

tion, with TRAC we were able to analyse a selected set of genes of central car-

bon metabolism in a steady state setup and in six different time-course setups. 

Genome-wide Affymetrix analysis was then used to analyse the steady state 

cultures and two of the time-course setups. 

In general, the data obtained from TRAC and Affymetrix analyses correlated 

well in situations in which >2-fold differences in the expression levels were 

observed. In large-scale studies comparing different methods of gene expression 

analysis, lower correlations have been often also been observed with smaller 

changes than with larger changes [235–237].  However, discrepancies were also 

seen in situations in which large changes in the gene expression were observed. 

These could result from multiple different factors, such as probe design, sample 

treatment and normalisation of the data.  
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5. Conclusions and future perspectives 

In S. cerevisiae, provision of 0%, 0.5–2.8% and 20.9% oxygen led to fully fer-

mentative, respiro-fermentative and fully respiratory modes of growth, respec-

tively. On the transcriptional level, the main differences were observed between 

these three modes of metabolism. Especially the expression levels in 0.5 and 

1.0% of oxygen provision were very similar. However, these two conditions 

differed on the proteome level, suggesting that post-transcriptional regulation 

occurred at this level of oxygen provision. In addition, proteomic analysis of 

glycolytic enzymes revealed oxygen-responsive isoforms, the level of which 

varied in the different oxygen concentrations. As the controlling mechanisms of 

glycolysis are still not fully understood, it would be important to study the role 

of these isoforms in the oxygen-mediated regulation of the pathway. One of the 

controlling mechanisms of glycolysis has been suggested to be transport of glu-

cose into the cell.  In  this  work,  it  was concluded that  to  enable the higher  spe-

cific glucose uptake rate in the anaerobic and oxygen-limited than fully aerobic 

cells, the transcription of moderately low affinity transporters was decreased.  

Under the oxygen-limited conditions, transcriptional adjustments for more ef-

ficient energy metabolism were observed. A global upregulation of genes encod-

ing the respiratory pathways was accompanied by higher concentrations of the 

proteins related to respiration and higher activities of the enzymes of the TCA 

cycle. In addition, the genes encoding the mitochondrial translation machinery 

were more highly expressed in all the oxygen-limited and anaerobic than under 

the fully aerobic conditions, suggesting separate regulation mechanism from that 

of genes directly related to respiration. This also indicates an important, non-

respiratory–related role for mitochondria under anaerobic conditions. Although 

mitochondria are known to exist in the absence of oxygen in the form differing 

from that of aerobic mitochondria, their function under anaerobic conditions is 

not known and would be an interesting subject of further studies.  
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There were only small differences in the transcriptional responses of cells ini-

tially in the oxygen-limited and the fully aerobic metabolic states to sudden oxy-

gen depletion. Thus at least the levels of oxygen limitation used in this work did 

not prepare the cells for complete anaerobiosis. As the oxygen provision was 

stopped, there was transient decrease in the growth rate and in the expression of 

genes related to growth and cell proliferation. In addition, stress-related changes 

were observed and the transient upregulation of genes related to protein degrada-

tion suggested a remodeling of the metabolism for the new state.  

Mass spectrometry–based methods for measurements of intracellular metabo-

lite levels and for studies of the proteome are constantly developing. With the 

use of these new methods a more complete analysis of the metabolism will be-

come possible. Especially, a larger spectrum of metabolites would enable the use 

of more sophisticated computational tools to combine the transcriptional and 

metabolite level data. In addition, although much is already known concerning 

the mechanisms regulating the metabolism of S. cerevisiae as a response to oxy-

gen, there has been no evidence for the proteins that may directly sense the oxy-

gen concentration in the environment. It might be that those kind of proteins do 

not exist at all, but as it is known that the lipid composition of the cell membrane 

is greatly affected by the provision of oxygen it would also be particularly inter-

esting to study the behaviour of the membrane proteins. 
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