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The primary metabolic pathways of caffeine are 3-N-demethylation to
paraxanthine (CYP1A2), 1-N-demethylation to theobromine and 7-N-deme-
thylation to theophylline (CYP1A2 and other enzymes), and 8-hydroxylation
to 1,3,7-trimethyluric acid (CYP3A). The aim of the present study was to in-
vestigate the influence of phenothiazine neuroleptics (chlorpromazine, levo-
mepromazine, thioridazine, perazine) on cytochrome P-450 activity meas-
ured by caffeine oxidation in rat liver microsomes. The obtained results
showed that all the investigated neuroleptics competitively inhibited caffeine
oxidation in the rat liver, though their potency to inhibit particular metabolic
pathways was not equal. Levomepromazine exerted the most potent inhibi-
tory effect on caffeine oxidation pathways, the effect on 8-hydroxylation
being the most pronounced. This indicates inhibition of CYP1A2 (inhibition
of 3-N- and 1-N-demethylation; K� = 36 and 32 �M, respectively), CYP3A2
(inhibition of 8-hydroxylations; K� = 20 �M), and possibly other CYP isoen-
zymes (inhibition of 7-N-demethylation; K� = 58 �M) by the neuroleptics.
The potency of inhibition of caffeine oxidation by perazine was similar to
levomepromazine. Thioridazine was a weeker inhibitor of caffeine 3-N- and
7-N-demethylation, while chlorpromazine was weaker in inhibiting caffeine
1-N- and 7-N-demethylation, compared to levomepromazine. In summary,
the obtained results showed that all the investigated neuroleptics had a broad
spectra of CYP inhibition in the rat liver. The isoenzymes CYP1A2 and
CYP3A2 were distinctly inhibited by all the investigated neuroleptics, while
other CYP isoenzymes (CYP2B and/or 2E1) by perazine and levomepro-
mazine. The CYP3A2 inhibition was most pronounced. (K� = 20–40 �M).

Key words: caffeine oxidation, rat, cytochrome P-450 activity, chlorpro-
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INTRODUCTION

Caffeine (1,3,7-trimethylxanthine) is extensive-
ly metabolized in humans and laboratory animals.
The primary metabolic pathways of caffeine are
3-N-demethylation to paraxanthine (1,7-dimethyl-
xanthine), 1-N-demethylation to theobromine (3,7-
-dimethylxanthine), and 7-N-demethylation to theo-
phylline (1,3-dimethylxanthine) [3, 4, 9, 17, 18, 19].
Caffeine is a marker drug for testing the activity of
CYP1A2 (3-N-demethylation) in humans and rats.
Moreover, it may be also considered as a relatively
specific substrate of CYP3A (8-hydroxylation). In
the case of 1-N- and in particular 7-N-demethyla-
tion of caffeine, apart from CYP1A2, other cyto-
chrome P-450 isoenzymes play a significant role.

Phenothiazine neuroleptics are very often com-
bined with other psychotropics (antidepressants,
antianxiety drugs or carbamazepine) that are me-
tabolized by different cytochrome P-450 isoen-
zymes. Therefore, the knowledge of interaction of
phenothiazines with the cytochrome is of a great
practical value, since it allows to predict their meta-
bolic/pharmacokinetic interaction with other drugs.
During phase I of their metabolism, neuroleptics
which are phenothiazine derivatives undergo mainly
sulfoxidation in a thiazine ring, aromatic hydroxy-
lation and N-demethylation in a side chain. It has
been shown that isoenzyme CYP2D6 contributes to
the metabolism of phenothiazines in humans. Clini-
cal studies with perphenazine have demonstrated
that the disposition of this neuroleptic is related to
the polymorphic hydroxylation of debrisoquine,
indicating that CYP2D6 is involved in its metabo-
lism [10]. Recent studies have shown that CYP2D6
is a main enzyme catalyzing 7-hydroxylation of
chlorpromazine, the reaction being partially cata-
lyzed by CYP1A2 [26]. Moreover, 2-sulfoxidation
of thioridazine in the thiomethyl substituent and
5-sulfoxidation in a thiazine ring are governed by
CYP2D6 [5, 20, 25]. In contrast, sulfoxidation of
chlorpromazine in a thiazine ring was catalyzed by
the subfamily CYP3A, as was shown in vitro [8].
CYP3A4 and CYP2C9 were identified as the major
enzymes mediating perazine N-demethylation [23].
On the other hand, phenothiazine neuroleptics have
been shown to inhibit competitively CYP2D6, and
some of them (fluphenazine and perphenazine) also
CYP1A2 [22] in human liver microsomes. In rats,
the N-demethylation of promazine, perazine and
thioridazine seemed to be catalyzed by the isoen-

zymes CYP2D1, CYP2B2 and CYP1A2 (CYP1A2
does not refer to promazine). The 5-sulfoxidation
of these drugs might be mediated by different iso-
enzymes, e.g. CYP2D1 (promazine and perazine),
CYP2B2 (perazine) or CYP1A2 (thioridazine). The
2-sulfoxidation of thioridazine could be catalyzed
by CYPs 2D1, 2B2 and 1A2 [11].

The aim of the present study was to investigate
the influence of phenothiazine neuroleptics with
different chemical structures on cytochrome P-450
activity measured by caffeine oxidation in rat liver
microsomes.

MATERIALS and METHODS

Chemicals

Chlorpromazine and thioridazine (hydrochlori-
des) were provided by Polfa (Jelenia Góra, Po-
land), perazine (dimaleate) was obtained from La-
bor (Wroc³aw, Poland), levomepromazine (maleate)
from Egyt (Budapest, Hungary). Caffeine and its
metabolites, NADP, DL-isocitric acid (trisodium-
salt) and isocitric dehydrogenase were purchased
from Sigma, St. Louis, USA. All organic solvents
with HPLC purity were supplied by Merck, Darm-
stadt, Germany.

Animals

The experiment was carried out on male Wistar
rats (230–260 g) kept under standard laboratory
conditions. Liver microsomes were prepared by
differential centrifugation in 20 mM Tris/KCl buffer
(pH = 7.4) including washing with 0.15 M KCl, ac-
cording to a conventional method.

In vitro studies into caffeine oxidation in rat liver

microsomes

The in vitro metabolic studies were carried out
at linear dependence of the metabolite formation
on time, and protein and substrate concentrations.
Pooled liver microsomes from six control rats were
used. Each sample was prepared in duplicate. The
rates of 3-N-, 1-N- and 7-N-demethylation and
8-hydroxylation of caffeine (caffeine concentrations:
100, 400, 800 nmol/ml) were assessed in the absen-
ce or presence of one of the neuroleptics added in
vitro (neuroleptic concentrations: 200–800 nmol/ml).
Incubations were carried out in a system containing
liver microsomes (ca. 1 mg of protein/ml), phos-
phate buffer (0.1 M, pH = 7.4), MgCl� × 6 H�O
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(6 mM), NADP (1.2 mM), DL-isocitric acid (6 mM)
and isocitric dehydrogenase (1.2 U/ml). The final
incubation volume was 0.5 ml. After a 2-min prein-
cubation, the reaction was started with the addition
of NADPH generating system and the incubation
lasted for 50 min. Afterwards, the reaction was
stopped by adding 350 �l of 2% ZnSO" and 25 �l
of 2 M HCl.

Determination of caffeine and its oxidized

metabolites

Caffeine and its four oxidized metabolites were
assessed using the HPLC method [14] adapted
from Rasmussen and Brøsen [21]. After incubation
the samples were centrifuged for 10 min at 2000 × g.
A water phase containing caffeine and its metabo-
lites was extracted with 6 ml of organic mixture
consisting of ethyl acetate and 2-propanol (8:1, v/v).
The residue obtained after evaporation of microso-
mal extract was dissolved in 100 �l of the mobile
phase described below. An aliquot of 20 �l was
injected into the HPLC system. A Merck-Hitachi
chromatograph, “LaChrom” (Darmstadt, Germany),
equipped with an UV detector was used. The ana-

lytical column (Supelcosil LC-18, 15 cm × 4.6 mm,
5 �m) was from Supelco (Bellefonte, USA). The
mobile phase consisted of 0.01 M acetate buffer
(pH = 3.5) and methanol (91:9, v/v). The flow rate
was 1 ml/min (0–26.5 min) followed by 3 ml/min
(26.6–35 min). The column temperature was main-
tained at 30°C. The absorbance of caffeine and its
metabolites was measured at a wavelength of 254
nm. The compounds were eluted in the following
order: theobromine (9.7 min), paraxanthine (15.8
min), theophylline (16.9 min), 1,3,7-trimethyluric
acid (23.4 min), caffeine (30.5 min). The calculated
recovery, intra-day precision, inter-day reproduci-
bility and accuracy were similar to the respective
values obtained by Rasmussen and Brøsen [21].

The obtained results were evaluated using
Dixon analysis [16].

RESULTS and DISCUSSION

Literature data indicate that caffeine is a marker
drug for testing the activity of CYP1A2 (3-N-de-
methylation) in humans and rats. Moreover, it
seems also to be a relatively specific substrate of
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Fig. 1. The influence of levomepromazine on the metabolism of caffeine in rat liver microsomes (Dixon plots). Kinetics of the inhibi-
tion of caffeine 3-N-demethylation (A); 1-N-demethylation (B); 7-N-demethylation (C); 8-hydroxylation (D). V = velocity of the re-
action, I = concentration of inhibitor



CYP3A (8-hydroxylation). In the case of 1-N- and,
in particular, 7-N-demethylation of caffeine, apart
from CYP1A2, other CYP isoenzymes play a con-
siderable role, probably CYP2B and/or CYP2E1
[3, 24]. Therefore, caffeine has been chosen for our
studies to show interactions of phenothiazine neu-
roleptics with cytochrome P-450 isoenzymes.

The obtained results showed that all the investi-
gated neuroleptics competitively inhibited caffeine
oxidation in the rat liver, though their potency to

inhibit particular metabolic pathways was not
equal. Dixon analysis of caffeine metabolism car-
ried out on control liver microsomes, in the absence
and presence of the neuroleptics showed that levo-
mepromazine exerted the most potent inhibitory
effect on caffeine oxidation pathways (Fig. 1 a, b,
c, d), the effect on 8-hydroxylation being the most
pronounced (Tab. 1). This indicates inhibition of
CYP1A2 (inhibition of 3-N- and 1-N-demethyla-
tion), CYP3A2 (inhibition of 8-hydroxylations),
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Table 1. The influence of phenothiazine neuroleptics on the metabolism of caffeine. The presented inhibition constants (K�) for com-
petitive inhibition of particular metabolic pathways were calculated using Dixon analysis

Neuroleptics
(inhibitors)

Inhibition of caffeine metabolism

Paraxanthine (caffeine
3-N-demethylation)

K� [�M]

Theobromine (caffeine
1-N-demethylation)

K� [�M]

Theophylline (caffeine
7-N-demethylation)

K� [�M]

1,3,7-trimethyluric acid
(caffeine C-8-hydroxylation)

K� [�M]

Chlorpromazine 48 76 123 40

Levomepromazine 36 32 58 20

Thioridazine 73 47 100 40

Perazine 52 50 52 32
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Fig. 2. The influence of perazine on the metabolism of caffeine in rat liver microsomes (Dixon plots). Kinetics of the inhibition of caf-
feine 3-N-demethylation (A); 1-N-demethylation (B); 7-N-demethylation (C); 8-hydroxylation (D). V = velocity of the reaction,
I = concentration of inhibitor
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Fig. 4. The influence of chlorpromazine on the metabolism of caffeine in rat liver microsomes (Dixon plots). Kinetics of the inhibi-
tion of caffeine 3-N-demethylation (A); 1-N-demethylation (B); 7-N-demethylation (C); 8-hydroxylation (D). V = velocity of the re-
action, I = concentration of inhibitor
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Fig. 3. The influence of thioridazine on the metabolism of caffeine in rat liver microsomes (Dixon plots). Kinetics of the inhibition of
caffeine 3-N-demethylation (A); 1-N-demethylation (B); 7-N-demethylation (C); 8-hydroxylation (D). V = velocity of the reaction,
I = concentration of inhibitor



and possibly other CYP isoenzymes (inhibition of

7-N-demethylation), e.g. CYP2B2 and/or CYP2E1,

by the neuroleptics. As reflected by K� values, the

potency of inhibition of caffeine oxidation by pera-

zine was similar to that of levomepromazine (Fig. 2

a, b, c, d; Tab. 1). Thioridazine was a weaker in-

hibitor of caffeine 3-N- and 7-N-demethylation and

8-hydroxylation than levomepromazine (Fig. 3 a, b,

c, d; Tab. 1). Chlorpromazine was weaker than le-

vomepromazine in inhibiting caffeine 1-N-deme-

thylation and 8-hydroxylation, and could hardly in-

hibit 7-N-demethylation of the marker substance

(Fig. 4 a, b, c, d; Tab. 1), The in vitro observed in-

teractions of neuroleptics with cytochrome P-450

should be important in in vivo conditions since the

calculated K� values were within the presumed con-

centration range of the inhibitors in the liver in vivo

(i.e. below 100 �M), both in pharmacological ex-

periments and in psychiatric patients [1, 2, 6, 7, 12,

13, 15].
The investigated phenothiazine neuroleptics ex-

hibit similar inhibitory potencies towards caffeine

oxidation (in terms of both metabolic pathway spe-

cificity and potency) to earlier studied imipramine

with its broad and distinct inhibition of caffeine

metabolism. But they differ from other antidepres-

sant drugs, e.g. amitriptyline, a weak CYP3A2 in-

hibitor or fluoxetine, a weak CYP1A2 inhibitor, as

shown by high inhibitory constants for caffeine

8-hydroxylation and 3-N-demethylation, respecti-

vely [14].
As mentioned in the Introduction, our earlier

studies as well as data of other authors point to spe-

cies differences in the contribution of cytochrome

P-450 isoenzymes to the metabolism of phenothi-

azine neuroleptics. For example, N-demethylation

of perazine in humans was shown to be catalyzed

by CYP3A4 and CYP2C9 [23] while in the rat no

influence of specific CYP3A and CYP2C inhibi-

tors on perazine N-demethylation was observed.

The present work indicates that there are also spe-

cies differences in the inhibition of caffeine oxida-

tion pathways, i.e. in the inhibition of the isoen-

zymes CYP1A2 and CYP3A2 by neuroleptics. Our

studies carried out on rats showed competitive inhi-

bition of both CYPs by the investigated phenothi-

azines, while experiments carried out on human

liver microsomes revealed that out of four pheno-

thiazine neuroleptics (perphenazine, thioridazine,

chlorpromazine, fluphenazine) only perphenazine

and fluphenazine exerted moderate inhibition of

CYP1A2-catalyzed phenacetin O-deethylation [22].
Hence, this suggests certain structural differences
in the catalytic sites of the two mentioned enzymes
between humans and rats.

In summary, the obtained results showed that all
the investigated neuroleptics had broad spectra of
CYP inhibition in the rat liver. The isoenzymes
CYP1A2 and CYP3A2 were distinctly inhibited by
all the investigated neuroleptics, while other CYP
isoenzymes (CYP2B and/or 2E1) by perazine and
levomepromazine. The CYP3A2 inhibition was
most pronounced. The obtained results require fur-
ther consideration, since the investigated CYP
isoenzymes (CYP1A2 and CYP3A) contribute to
the metabolism of endogenous substances, number
of drugs and carcinogens. It seems, therefore, ad-
visable to carry out analogical experiments con-
cerning phenothiazines and caffeine oxidation on
human liver microsomes.
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