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EFFECTS OF PHONON DYNAMICS ON ELECTRONS
IN ONE-DIMENSIONAL CONDUCTORS

A. BJELI0160 and S. BARI0160I0106

Institute of Physics, University of Zagreb
Croatia, Yugoslavia

Résumé. 2014 Nous étudions les électrons de conducteurs unidimensionnels, couplés aux phonons
mous, décrits par un facteur de structure phénoménologique. Nous trouvons les critères exacts
prouvant que le comportement critique de la densité d’états électronique dépend des indices critiques
dynamiques du phonon mou. Nous discutons l’application de nos résultats aux matériaux réels.

Abstract. - The exact conditions under which the critical behavior of the electron density of states
involves the dynamical critical indices of the soft phonon, as well as the corresponding expressions
for the electron density of states are derived for a model phonon structure factor. The application
of these results to real materials is discussed.

A good understanding of the anomalous conduc-
tivity behavior in the qua~i-one-dimensional systems
requires a knowledge of simpler quantities, such as
the density of states of the electron system. Beside
this, the electron density of states is interesting in

. itself, since it is directly related to the magnetic
susceptibility and other derived quantities [1-4]. These
data show that the phonon softening produces
progressively a dip in the density of states at the
Fermi level. This dip merges into the Peierls gap at
the lattice instability temperature.
An interesting problem which arises in this connec-

tion is the question of the phonon properties relevant
to the electron density of states. Since the soft phonon
modes become static at the transition temperature
it is tempting to think [5-7] that only the static pro-
perties determine the forementioned dip in the density
of states. While this is obviously true at the very
transition temperature, we show that the behavior
of the dip in the critical region can involve the dynamic
phonon properties, i.e. the dynamical critical behavior.
Among three limiting situations, which appear to
be interesting in the model examined below, there
is only one in which the static structure factor alone
determines the electron spectrum. In this limit we
recover the previously derived results [5-7].
At temperatures at which the thermal distribution

of soft phonons becomes anomalous, the leading

term in the first order (Migdal) approximation for
electron self energy is

Here g2 is the electron-phonon coupling constant,
S(co~ is the phonon dynamic structure factor and G
the (retarded) Green’s function of one-dimensional
electrons. In references [6, 7] this latter was replaced
by its value at w’ = 0. Then, after the use of Kramers-
Kronig relation, eq. (1) reduces to the starting point
of reference [5], in which only the static phonon
structure factor was involved from the outset. However
this step is justified only if some general criteria on
the functions S(c~) and G are satisfied [8].

In order to illustrate this point we choose here the
simple form of the dynamic structure factor

m

with the Lorentzian shape of the static structure

factor
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Here c~o and Q are respectively the bare and the renor-
malized phonon frequency at the Kohn wave number
2 Pp, and ~ is the longitudinal temperature dependent
correlation length. The dynamical parameters a

and 1 appearing in S’(c~) are assumed to be real and
independent of the wave vector. The parameter 1
determines the shape of S’(~). For 1 = 0, Sew) reduces
to the Lorentzian with the half-width

With / arbitrary and for ot &#x3E; ~/2 /~(2/?F - k), S(c~)
has a central peak structure, and is expected to

where the imaginary part of the square root in eq. (4b)
has to be taken positive. The energy scale is conve-
niently defined by the parameter

i.e. the reduced variables appearing in eq. (4) are
f2 -= ~2/J, a = a/2 A and x -= ((1) + VF(P - PF))/A.
Depending on the value of lu, two different regimes

are distinguished in eq. (5). For lu &#x3E; 1, J~(x) coincides
with the static result [5, 6] ; whereas for lu  1, a
and I appear explicitly in the self-energy. Let us discuss
the x-dependence of E(x) in this dynamic regime.
Remembering that lu  1 goes together with a ~ 1Q,
and assuming for simplicity lu  1, we get

Note that in the case (6c) 2~) is of the static form (4a).
The electron density of states is defined as

where ÕJ = cola. Obviously, at the very instability
(0 = 0, wc(2 PF) = 0) the imaginary parts in eq. (4a, b)

1

describe situations in which the relaxation behavior
is dominant [9]. In the limit a &#x3E;&#x3E; lco(2 PF - k), the
characteristic frequency of this central peak is

~c(2~p " ~ i.e. it becomes independent of I. In
the opposite regime, a  .J2 Ico(2 PF - k), the pho-
nons are dispersive. The phonon group velocity in
the Kohn anomaly is then equal to ~//. Obviously,
this velocity should be smaller than the Fermi velocity
VF, i.e. lu VF 11~Q cannot be smaller than unity in
the dispersive regime : lu  1 goes together with the
overdamping a &#x3E; ~ 152.

After the integrations in complex co’ and k planes,
eq. (1) reduces to

become infinitesimally small, while the real parts
coincide and are equal to A/x. The electron density
of states has then the standard a, l independent form [5]

whith L1 representing the half-width of the gap.
The critical behavior of parameters a and u deter-

mines the manner in which ~V(6))/~Vo tends to the
form (8) when Q --+ 0. There are three extreme possi-
bilities related to different critical behaviors of ae and u.

They correspond to the cases when one of the regimes
(6a-c) dominates in the range of integration in eq. (7).
For brevity we quote only the results for N(O) and
~(1); if kB T  L1, N(O) is roughly equal to the ther-
mally averaged density of states.

If ae//2 ~ 1 (together with lu  1), ~(~) has the
form given by eq. (6a), and we obtain

If fl./ /2 ~ 1 and xM~  1, the decisive behavior is

that given by eq. (6b), and we find

where Dc -= ~(2~p)/~’
If a/l2 &#x3E; 1 and au2 &#x3E; 1, the dominant contribu-

tion in eq. (7) comes from the static form (6c). This
leads to

Eq. (9c) is just the Q -+ 0 limit of the result first
derived for soft phonons by Lee et al. [5]. For lu &#x3E; 1,
this result holds for any a. The limit (6d) does not
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correspond to the critical behavior for S and u describ-
ed above. This limit, as well as the intermediate
cases x//~ ~ 1 and au2 ~ 1 in the critical limit,
will be discussed in the more extended text [8].

In summary, if fiU2 ’" a/T 1~2 ~~3~2 &#x3E; 1 the pseudo-
gap in the electron spectrum is governed solely by
static properties. In the opposite limit,

cx/T 1/2 ~~312  1 ,
and if /u  1, the decrease with temperature of the
density of states at the Fermi level is faster than that
which is obtained from the static calculations. The
corresponding critical behavior, defined by eq. (9a, b)
is influenced, not only by the static and the dynamic
critical exponents, but also by the shape 1 of the
dynamic structure factor.
We have also calculated [8] the electron self-

energy using the three-dimensional Lorentzian instead
of eq. (3) in the whole range of integration in eq. (1).
Provided that 5~~1/kB T  a/~, where ~1 is the trans-
verse correlation length and a the interchain distance,
the cut-off in the integration over transverse compo-
nents of wave vector coincides with the Brillouin
zone boundary [7]. Then, as long as

~V(a))/~Vo retains the one-dimensional form, but with
the halfwidth of pseudo-gap given by

Its critical behavior in the static regime (defined as
before) is then given by

instead of eq. (9c). The dynamical results (9a, b) remain
entirely unmodified (with L1 given by eq. (5)) if

is also satisfied.

Clearly, the requirement ~/~ ~ 1 is contained in
the above condition (10). When this condition ceases
to be satisfied, the electron density of states is domi-
nated by ~1, i.e. the effects of phonon three-dimen-
sionality become all important, as obtained previously
for the static calculations [7]. A similar analysis
applies to the case ~ 0/kB T &#x3E; ~/7c, i.e. to the trans-
verse cut-off smaller than the Brillouin zone boundary.
Again, the density of states remains essentially one-
dimensional provided that the ratio ç.i/ç is small

enough.
In the remaining text we wish to discuss how these

results apply to real systems. The above discussion
shows that the interchain coupling affects the elec-
tronic properties differently than the vibrational

properties. This is not unexpected since only phonons
are critical degrees of freedom. The one-dimensional
approximation can be reasonably used on the elec-
tronic level provided that ~1/~ is small enough.
However, even when ~1/~  I the phonon parameters
in eq. (2, 3) will behave quite differently, according
to the value of the ratio ~ol/a [10-13], where Ç01.
is the temperature independent transverse correlation
length :

(i) ~01 ~ a. The transverse cut-off in the calcula-
tion of phonon fluctuations is fixed by the Brillouin
zone. Then, well above the critical temperature Tc
the phonon parameters follow the one-dimensional
fluctuation laws. In this regime the static fluctuation
results [14] suggest that Q2 - 7~. Hence u ~ (To -’/2
and ocu2 ~ a/7~. This can be further specified by
distinguishing, after reference [15], the cases of the
scalar and complex order parameters.

In the first case both ç - 1 and u vanish exponentially
with temperature [14]. For small 7~ regardless of the
value of / this brings us into the regime (4b) for 2:(x).
The T -~ 0 limit of N(~)/No is of the standard
form (9c) only if the divergence of a is stronger than
that of Tç.

In the second case, ~-1 ~ T [14], and u depends
only upon the non critical parameters (such as vF
and those appearing in ~ and Q). Depending on pata-
meters, the T -+ 0 value of lu may be larger or smaller
than one. If lu  1, and for small Tc, the dynamical
limit (9a, b) occurs if rx --+ 0 when T -+ 0; otherwise
one recovers the standard result (9c).

Unfortunately, the theoretical knowledge of the
temperature dependence of a is rather poor in one-
dimensional regime, and its experimental determina-
tion is desirable for further discussion.

Close above 7~ the system crosses-over to the
three-dimensional behavior with ç ~ ç1. [16].

(ii) ~O1. &#x3E; a. The transverse cut-off in phonon
calculations is fixed by ~oj~. The parameters in-

eq. (2, 3) exhibit essentially three-dimensional critical
laws, but ç1.lç = ~ol/~o (~ 1) [10]. In this case the
one-dimensional results for N(CO)INO (with the above
mentioned modifications) can be valid in the whole
temperature range above 7~. The behaviors above and
below Tc, being of the same dimensionality can be
related by the scaling laws. The dynamic scaling for a
can be attempted. Using the analogy between the
phase fluctuations [17] below the Peierls transition
and e.g. the second sound in the superfluid helium [18],
we expect that a vanishes when the system approaches
the instability. This leads to the dynamic behavior
of ~V(~)/~o, analogous to that given by eq. (9a, b).
Well above 7~ the anisotropic three-dimensional

Kohn anomaly can be described within the mean-
field approximation [19]. In this case
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Due to the vanishing of this last parameter, 7V(c~)/~Vo
is given by the (modified) results (9a, b), provided
that lu  1. The departure of /2 from unity is caused
by the frequency dependence of the RPA phonon
self-energy. This dependence is unimportant for
u &#x3E; 1 [19-21]. For u  1 the dynamic effects in
the phonon renormalization become all important
and lead to the three-peak form of the structure

factor 5’((u) [19, 20]. The w-dependence of the central
peak is then given by eq. (2) with negative values of
the parameter l2. We shall discuss this range in the
more extended text [8].

In conclusion, we have examined the electron

density of states, using the simple phenomenological
expression for the dynamic phonon structure factor.

We have derived the conditions under which the

dynamic critical behavior of phonons governs the
critical behavior of the density of states. It was further
argued that the transversal components in the phonon
structure factor can be neglected in the electronic
calculation even when this is not possible in the calcula-
tions of the phonon critical properties. This observa-
tion leads to the large variety of the possible critical
behaviors of the coefficients in the phonon structure

. factor involved in the electronic calculations. The
; temperature behaviors of the less known dynamic

coefficients which lead to the dynamics-dominated
electron density of states are determined using the

’ 

usual critical laws for the static coefficients. When
; dynamic scaling may be used to describe the critical

behavior of the soft phonon, the dynamics-dominated
electron density of states is predicted.
We wish to acknowledge useful discussions with

Prof. J. Friedel and Dr. H. Launois.
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