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Much evidence shows that physical exercise (PE) is a strong genemodulator that induces

structural and functional changes in the brain, determining enormous benefit on both

cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration.

However, it is unclear if such protection is granted through modifications to the biological

mechanisms underlying neurodegeneration or through better compensation against

attacks. This concise review addresses the biological and psychological positive effects

of PE describing the results obtained on brain plasticity and epigenetic mechanisms in

animal and human studies, in order to clarify how to maximize the positive effects of PE

while avoiding negative consequences, as in the case of exercise addiction.

Keywords: physical exercise, cognition, wellbeing, brain, epigenetic mechanisms

INTRODUCTION

Many evidences demonstrated that physical exercise (PE) affects brain plasticity, influencing
cognition and wellbeing (Weinberg and Gould, 2015; for review see Fernandes et al., 2017). In fact,
experimental and clinical studies have reported that PE induces structural and functional changes
in the brain, determining enormous biological, and psychological benefits.

In general, when reported PE effects, it is customary to separate the biological aspects from
the psychological ones. In fact, most of the studies documented either the effects of PE on the
brain (and then on the cognitive functioning) or on the wellbeing (in terms of physical and mental
health). In this review, wemerge both these aspects as they influence each other. In fact, behaviorally
appropriate choices depend upon efficient cognitive functioning. Furthermore, emotional states
influence cognitive functions through specific cerebral circuitry involving prefrontal areas and
limbic structures (Barbas, 2000).

Before analyzing the benefits of PE, it is necessary to define PE precisely. Indeed, PE is a term
often incorrectly used interchangeably with physical activity (PA) that is “any bodily movement
produced by skeletal muscles that requires energy expenditure” (WorldHealthOrganization, 2010).
Then, PA includes any motor behavior such as daily and leisure activities and it is considered a
determinant lifestyle for general health status (Burkhalter and Hillman, 2011). Instead, PE is “a
sub classification of PA that is planned, structured, repetitive, and has as a final or an intermediate
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objective the improvement or maintenance of one or more
components of physical fitness” (World Health Organization,
2010). Examples of PE are aerobic and anaerobic activity,
characterized by a precise frequency, duration and intensity.

In this review, we illustrate the biological and psychological
benefits of PE on cognition and wellbeing both in health and
diseases, reporting data from both animal and human studies.
The biological basis at both molecular and supramolecular level
have been largely studied. The other aim of present work is to
report the actual evidence on the epigenetic mechanisms that
determine or modulate the biological effects of PE on the brain.
In fact, while the biologic mechanisms are sufficiently studied
both at the molecular and supramolecular levels (see Lista and
Sorrentino, 2010), little is known about the epigenetic ones.
Finally, the modality with which PE should be practiced to gain
such advantages while avoiding negative consequences will be
discussed. In Table 1 are reported the inclusion and exclusion
criteria for studies discussed in this review.

PHYSICAL EXERCISE, BRAIN, AND
COGNITION

Among the biological effects of PE, those linked to
“neuroplasticity” are quite important.

Neuroplasticity is an important feature of the nervous system,
which can modify itself in response to experience (Bavelier and
Neville, 2002). For this reason, PE may be considered as an
enhancer environmental factor promoting neuroplasticity.

In animal studies, the structural changes analyzed concern the
cellular (neurogenesis, gliogenesis, synaptogenesis, angiogenesis)
and molecular (alteration in neurotransmission systems and
increasing in some neurotrophic factors) level (Gelfo et al., 2018),
while the functional activity has been measured using the levels
of performance in behavioral tasks, such as spatial tasks that
allow to analyze the different facets of spatial cognitive functions
(Mandolesi et al., 2017). In humans, indicators of structural
changes correspond for example to brain volumes, measures of
white matter integrity or modulation in neurotrophins levels (by
correlation with trophic factors plasma levels). Such metrics can
be correlated to cognitive performances, defining the functional

TABLE 1 | Inclusion and exclusion criteria for studies included in this review.

Inclusion criteria Exclusion criteria

1. All studies and review published on

indexed journals and indexed in

PubMed.

2. Studies related to:

-PE effects (biological and

psychological effects)

- neuroplasticity (structural and

functional changes)

- correlation between PE and

unhealthy behaviors

-intensity and modality of PE

3. Published in English

4. Electronically available

1. Not directly related to PE effects

(except in the case of the

explanation of neuroplasticity)

2. Not relative to a specific

geographic population (for

humans)

neural efficiency (Serra et al., 2011). To this regard, it should
be emphasized that any morphological change results in a
modification of the functional properties of a neural circuit and
vice versa any change in neuronal efficiency and functionality is
based on morphological modifications (Mandolesi et al., 2017).

Experimental and clinical studies have shown that PE induces
important structural and functional changes in brain functioning.
In Table 2 are reported the more evident effects induced by PE.

Animal Studies
In animals, motor activity or motor exercise are terms often used
instead of PE. The effects of motor exercise are mainly studied in
rodents by means of specific training on wheels or by locomotor
activity analyses.

Studies on healthy animals have demonstrated that intense
motor activity increases neurons and glia cells proliferation
rates in the hippocampus and the neocortex (van Praag et al.,
1999a,b; Brown et al., 2003; Ehninger and Kempermann,
2003; Steiner et al., 2004; Hirase and Shinohara, 2014) and
induces angiogenesis in the neocortex, hippocampus, and
cerebellum (Black et al., 1990; Isaacs et al., 1992; Kleim
et al., 2002; Swain et al., 2003; Ekstrand et al., 2008; Gelfo
et al., 2018). At the molecular level, motor activity causes

TABLE 2 | Structural and functional effects of PE.

Evidences of PE increasing brain functioning

Animal studies Human studies

Neurogenesis, synaptogenesis,

gliogenesis (hippocampus,

neocortex) [1]

Angiogenesis (hippocampus,

neocortex, cerebellum) [2]

Modulation in neurotransmission

systems (e.g., serotonin,

noradrenalin, acetylcholine) [3]

Increased neurotrophic factors (e.g.,

BDNF, IGF-1) [4]

Improvements of spatial memory

performances [5]

Transgenerational effects of maternal

motor exercise [6]

Increased gray matter volume in frontal

and hippocampal regions [7]

Increased levels of neurotrophic factors

(e.g., peripheral BDNF) [8]

Increased blood flow [9]

Increasing in academic achievement

(especially children) [10]

Improvements in cognitive abilities

(learning and memory, attentional

processes and executive processes) [11]

Prevention of cognitive decline and

reduced risk of developing dementia

(especially in the elderly) [12]

Modified network topology [13]

[1] van Praag et al., 1999a,b; Brown et al., 2003; Ehninger and Kempermann, 2003;

Steiner et al., 2004; Hirase and Shinohara, 2014; [2] Black et al., 1990; Isaacs et al.,

1992; Kleim et al., 2002; Swain et al., 2003; Ekstrand et al., 2008; Gelfo et al., 2018; [3]

Lista and Sorrentino, 2010; Lin and Kuo, 2013; [4] Vaynman et al., 2004; van Praag, 2009;

Lafenetre et al., 2011; Coelho et al., 2013; [5] van Praag et al., 2005; Nithianantharajah

and Hannan, 2006; Langdon and Corbett, 2012; Snigdha et al., 2014; [6] Akhavan et al.,

2008; Aksu et al., 2012; Robinson et al., 2012; [7] Colcombe et al., 2006; Erickson et al.,

2011; Chaddock-Heyman et al., 2014; [8] Brunoni et al., 2008; Coelho et al., 2013; Hötting

et al., 2016; [9] Weinberg and Gould, 2015; Cabral et al., 2017; Fernandes et al., 2017;

[10] Sibley and Etnier, 2003; Voss et al., 2011; Lees and Hopkins, 2013; Donnelly et al.,

2016; [11] Kramer et al., 1999; Colcombe and Kramer, 2003; Grego et al., 2005; Pereira

et al., 2007; Winter et al., 2007; Lista and Sorrentino, 2010; Chieffi et al., 2017; Fernandes

et al., 2017; [12] Colberg et al., 2008; Yaffe et al., 2009; Hötting and Röder, 2013; Niemann

et al., 2014; Hollamby et al., 2017; Mandolesi et al., 2017; [13] Deeny et al., 2008; Douw

et al., 2014; Huang et al., 2016.
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changes in neurotrasmitters such as serotonin, noradrenalin, and
acetylcholine (Lista and Sorrentino, 2010; for a review, see Lin
and Kuo, 2013) and induces the release of the brain-derived
neurotrophic factor (BDNF Vaynman et al., 2004; Lafenetre et al.,
2011) and the insulin-like growth factor-1 (IGF-1; for a review,
van Praag, 2009).

Animals performing motor exercise showed improvements in
spatial abilities (van Praag et al., 2005; Snigdha et al., 2014) and
in other cognitive domains such as executive functions (Langdon
and Corbett, 2012), evidencing thus that motor exercise improve
cognitive functions.

Similar structural and functional changes were evident even
in older animals (Kronenberg et al., 2006) and in animal models
of neurodegenerative diseases (Nithianantharajah and Hannan,
2006), suggesting that motor exercise is a potent neuroprotective
factor against physiological and pathological aging (Gelfo et al.,
2018). In this context, one can use transgenic models to
determine exactly when a structural alteration occurs, and then
to study when the animals should undergo motor training in
order to maximize its effects. To this regard, converging evidence
is showing that motor activity should be performed before the
development of neurodegeneration in order to exert its protective
role (Richter et al., 2008; Lin et al., 2015) such as before the
formation of beta amyloid plaques in Alzheimer’s disease (Adlard
et al., 2005). However, there are some experimental evidences
showing that motor exercise performed after neurodegenerative
lesions permits to improve spatial abilities, hence being also a
potent therapeutic agent (Sim, 2014; Ji et al., 2015).

Interestingly, PE induces modifications that can be passed
on to the offspring. In fact, positive maternal experiences can
influence the offspring at both behavioral and biochemical levels
(see Cutuli et al., 2017, 2018). Preclinical studies also indicated
that the effects of maternal exercise during pregnancy can be
passed on to offspring (Robinson et al., 2012). However, it is
not clear if the possibilities of inheritance are limited to motor
exercise alone. To this regard, it has been seen that pregnant
rats exposed to motor exercise on wheel-running and treadmill
running have offspring with improved spatial memory, and
increased hippocampal BDNF level (Akhavan et al., 2008; Aksu
et al., 2012). However, further studies are necessary since it
remains unclear whether these beneficial effects result from
physiological changes to the in utero environment and/or from
epigenetic modifications to the developing embryo (Short et al.,
2017). On the other hand, few studies, conflicting and hard to
replicate, do not yet allow to explore the transgenerational effects
of paternal motor exercise (Short et al., 2017).

Human Studies
Neuroplasticity phenomena following PE have been evidenced
even in humans. A great number of studies demonstrated that in
adults, PE determines structural changes such as increased gray
matter volume in frontal and hippocampal regions (Colcombe
et al., 2006; Erickson et al., 2011) and reduced damage in the gray
matter (Chaddock-Heyman et al., 2014).

Moreover, PE facilitates the release of neurotrophic factors
such as peripheral BDNF (Hötting et al., 2016), increases blood
flow, improves cerebrovascular health and determines benefits

on glucose and lipid metabolism carrying “food” to the brain
(Mandolesi et al., 2017).

These effects are reflected on cognitive functioning (for a
review see Hötting and Röder, 2013). In fact, the results of
cross-sectional and epidemiological studies showed that PE
enhances cognitive functions in young and older adults (Lista
and Sorrentino, 2010; Fernandes et al., 2017), improvingmemory
abilities, efficiency of attentional processes and executive-control
processes (Kramer et al., 1999; Colcombe and Kramer, 2003;
Grego et al., 2005; Pereira et al., 2007; Winter et al., 2007;
Chieffi et al., 2017). Furthermore, structural changes following
PE have been related to academic achievement in comparison
to sedentary individuals (Lees and Hopkins, 2013; Donnelly
et al., 2016). In this line, it has been also showed that children
who practice regular aerobic activity performed better on verbal,
perceptual and arithmetic test in comparison to sedentary ones
of same age (Sibley and Etnier, 2003; Voss et al., 2011).

Numerous studies have demonstrated that PE prevents
cognitive decline linked to aging (Yaffe et al., 2009; Hötting and
Röder, 2013; Niemann et al., 2014), reduces the risk of developing
dementia (Colberg et al., 2008; Mandolesi et al., 2017), the level of
deterioration in executive functions (Hollamby et al., 2017) and
improves the quality of life (Pedrinolla et al., 2017). Furthermore,
positron emission tomography based studies evidenced that PE
determines changes in metabolic networks that are related to
cognition (Huang et al., 2016).

Recently, studies on magnetoencephalography based (MEG)
functional connectivity evidenced that PE influences network
topology (Foster, 2015). It is important to underlie that MEG is
a much more direct measure of neural activity in comparison
to fRMI, with the advantage of combining good spatial and
high temporal resolution. In healthy individuals, PE was related
to better intermodular integration (Douw et al., 2014) and
to improvements in cognitive functions (Huang et al., 2016).
Benefits of PE are evidenced even in individuals at risk for AD
(Deeny et al., 2008), thus once again suggesting a protective role
of PE.

A possible explanation for these ameliorative structural and
functional effects could be that PE stimulates blood circulation
in the neural circuits involved in cognitive functioning (Erickson
et al., 2012). Another interpretation could be found in the
concept of “cerebral reserves” (Stern, 2002, 2012) a mechanisms
that might explain why, in the face of neurodegenerative
changes that are similar in nature and extent, individuals vary
considerably in the severity of cognitive aging and clinical
dementia (Petrosini et al., 2009). Two types of reserves are
recognized: brain reserve and cognitive reserve. The former is
based on the protective potential of anatomical features such as
brain size, neuronal density and synaptic connectivity, the latter
is based on the efficient connectivity among neural circuits (Stern,
2002; Mandolesi et al., 2017).

According to the reserves hypothesis and taking into account
the numerous evidences described above, we could advance that
PE is an environmental factor that permits to gain reserves.

However, one must underline that if on the one hand PE
improves the cognitive functioning, providing reserves to be
spent in the case of a brain lesion, on the other hand the
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modifications of the clinical expression of neurodegeneration
delays the diagnosis. It has been seen that patients with higher
cognitive reserve take longer to manifest the symptoms of
memory loss (Zanetti et al., 2017). It has been hypothesized
a neural compensation mechanism that permits to perform
complex activities (Stern, 2009). Obviously, these conclusions
open important reflections more for the diagnosis of
neurodegenerative disease than for the practice of PE.

The effects of PE on cognitive functioning have been shown
across the lifespan from childhood to the old age (Hötting and
Röder, 2013). In particular, it has been evidenced that cognitive
functions that are influenced the most by brain maturation, such
as attention or cognitive flexibility, and the cognitive functions
that depend the most upon experiences, such as memory, are
the most sensitive ones to PE (Hötting and Röder, 2013).
Overall, these studies, together with those analyzing the effects
of combined environmental factors, suggest that for a positive
effect on cognitive function, it is necessary to maintain an
“enriched lifestyle” up to middle life. In fact, the exposure to
PE together to other many experiences provides a “reserve”-
like advantage which supports an enduring preservation of
cognitive function in old age (Chang et al., 2010; Loprinzi et al.,
2018).

PHYSICAL EXERCISE AND WELLBEING

There are consistent evidences that PE has many benefits for
people of any age, improving psychological wellbeing (Zubala
et al., 2017) and quality of life (Penedo and Dahn, 2005; Windle
et al., 2010; Table 3).

In children, PE is correlated with high levels of self-efficacy,
tasks goal orientation, and perceived competence (Biddle et al.,

TABLE 3 | Biological and psychological effects of PE (Adapted from Weinberg

and Gould, 2015).

PE effects on psychological wellbeing

Biological effects Psychological benefits

Increased cerebral blood flow, maximal

oxygen consumption and delivery of

oxygen to cerebral tissue, reduction in

muscle tension, increased serum

concentrations of endocannabinoid

receptors [1]

Cerebral structural changes, increased

levels of neurotransmitters (e.g.,

serotonin, beta-endorphins) [2]

PE decreases:

anxiety, depression, dysfunctional and

psychotic behaviors, hostility, tension,

phobias, headaches [3]

PE increases:

assertiveness, confidence, emotional

stability, cognitive functioning, internal

locus of control, positive body image,

self-control, sexual satisfaction [4]

[1] Thomas et al., 1989; Dietrich and McDaniel, 2004; Querido and Sheel, 2007; Gomes

da Silva et al., 2010; Ferreira-Vieira et al., 2014; [2] Young, 2007; Korb et al., 2010; Fuss

et al., 2015; [3] Martinsen, 1990; Scully et al., 1998; Craft and Perna, 2004; De Moor et al.,

2006; Knapen et al., 2009; Carek et al., 2011; Vatansever-Ozen et al., 2011; DeBoer et al.,

2012; Haasova et al., 2013; Mammen and Faulkner, 2013; de Souza Moura et al., 2015;

Tiryaki-Sonmez et al., 2015; Weinberg and Gould, 2015; Meyer et al., 2016a,b; [4] Marsh

and Sonstroem, 1995; Fox, 2000; Berger and Motl, 2001; Landers and Arent, 2001; Urso

and Clarkson, 2003; Craft, 2005; Penedo and Dahn, 2005; Raedeke, 2007; Stessman

et al., 2009; Bartlett et al., 2011; Biddle et al., 2011; Rodgers et al., 2014; Zamani Sani

et al., 2016.

2011). In youth and adulthood, most studies evidenced that PE
is associated with better health outcomes, such as better mood
and self-concept (Berger and Motl, 2001; Landers and Arent,
2001; Penedo and Dahn, 2005). In the aging population, PE helps
maintaining independence (Stessman et al., 2009), favoring social
relations and mental health.

It was now well-accepted that is the interaction between
biological and psychological mechanisms linked to PE enhances
the wellbeing (Penedo and Dahn, 2005). Biological mechanisms
of beneficial effects of PE are mainly related to increasing
in cerebral blood flow and in maximal oxygen consumption,
to delivery of oxygen to cerebral tissue, to reduction in
muscle tension and to increased serum concentrations of
endocannabinoid receptors (Thomas et al., 1989; Dietrich
and McDaniel, 2004; Querido and Sheel, 2007; Gomes da
Silva et al., 2010; Ferreira-Vieira et al., 2014). Moreover,
neuroplasticity phenomena such as changes in neurotransmitters
are recognized to affect wellbeing. For example, PE increases
the levels of serotonin (Young, 2007; Korb et al., 2010) and
the levels of beta-endorphins, such as anandamide (Fuss et al.,
2015).

Among the psychological hypothesis proposed to explain
how PE enhances wellbeing, it has been underlined feeling
of control (Weinberg and Gould, 2015), competency and self-
efficacy (Craft, 2005; Rodgers et al., 2014), improved self-
concept and self-esteem (Marsh and Sonstroem, 1995; Fox,
2000; Zamani Sani et al., 2016), positive social interactions and
opportunities for fun and enjoyment (Raedeke, 2007; Bartlett
et al., 2011).

Psychological research evidenced that PE can even modulate
the personality and the development of Self (Weinberg and
Gould, 2015). Moreover, PE has been correlated with hardiness, a
personality style that enables a person to withstand or cope with
stressful situations (Weinberg and Gould, 2015).

In the following sections, we will focus on correlations among
PE and the most common mental illnesses.

Depression and Anxiety
Depression is the most common type of mental illness and
will be the second leading cause of disease by 2020 (Farioli-
Vecchioli et al., 2018). Similar entity concerns anxiety disorders
that are among the most prevalent mental disorders in the world
population (Weinberg and Gould, 2015).

Epidemiological studies have consistently reported benefits of
PE on reductions in depression (Mammen and Faulkner, 2013)
and anxiety (DeBoer et al., 2012). For example, it has been seen
that individuals that practice PE regularly are less depressed or
anxious than those who do not (De Moor et al., 2006), suggesting
the use of exercise as a treatment for these illnesses (Carek et al.,
2011).

Most of the research on the relationship between PE and
positive changes in mood state has evidenced positive effects,
especially as a consequence of aerobic exercise, regardless of
the specific type of activity (Knapen et al., 2009), even if the
correct intensity of aerobic PE to control and reduce symptoms
is debated (de Souza Moura et al., 2015). For example, it has
been revealed that after about 16 weeks of an aerobic exercise
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program, individuals with major depressive disorder (MDD),
significantly reduced their depressive symptoms (Craft and
Perna, 2004). However, there are evidenced that documented
that even anaerobic activity has positive effects on treatment of
clinical depression (Martinsen, 1990). For anxiety disorders, it
has been evidenced that the positive effects of PE are visible even
with short bursts of exercise, independently from the nature of
the exercise (Scully et al., 1998).

A physiologic mechanism correlated to the improvement in
depressed mood post-exercise PE was identified in modulation
of peripheral levels of BDNF (Coelho et al., 2013). In this line, it
was suggested recently that the intensity of exercise to improve
mood should be prescribed on individual basis and not on the
patient’s preferred intensity (Meyer et al., 2016a,b). Conversely,
physical inactivity correlated to worse depressive symptoms and,
then, to lower peripheral levels of BDNF (Brunoni et al., 2008).
Post-PEmood improvement might also be due to lower oxidative
stress (Thomson et al., 2015). In this contest, it was evidenced that
there is an abnormal oxidative stress in individuals with MDD
or bipolar disorder (Cataldo et al., 2010; Andreazza et al., 2013)
and that PE, particularly in higher intensity, decreases oxidative
stress with consequent mood improvement (Urso and Clarkson,
2003).

Addictive and Unhealthy Behaviors
PE has been widely evidenced to be an effective tool for treating
several addictive and unhealthy behaviors. PE tends to reduce
and prevent behaviors such as smoking, alcohol, and gambling,
and to regulate the impulse for hunger and satiety (Vatansever-
Ozen et al., 2011; Tiryaki-Sonmez et al., 2015). In this context,
several studies evidenced substance abusers benefit from regular
PE, that also helps increasing healthy behaviors (Giesen et al.,
2015). It has been evidenced that regular PE reduces tobacco
cravings and cigarette use (Haasova et al., 2013). Although PE
has positive effects on psychological wellbeing, in this context it
is right underline that in some cases PE could reveal unhealthy
behaviors with negative consequence on health (Schwellnus et al.,
2016). It is the case of exercise addiction, a dependence on a
regular regimen of exercise that is characterized by withdrawal
symptoms, after 24–36 h without exercise (Sachs, 1981), such
as anxiety, irritability, guilt, muscle twitching, a bloated feeling,
and nervousness (Weinberg and Gould, 2015). There is a strong
correlation between exercise addiction and eating disorders
(Scully et al., 1998) suggesting thus a comorbidity of these
disorders and a common biological substrate. In particular, recent
studies have shown that these unhealthy behaviors are associated
to lower prefrontal cortex volume, activity and oxygenation,
with consequent impairment in cognitive functions, such as the
inhibitory control with the consequent compulsive behaviors
(Asensio et al., 2016; Wang et al., 2016; Pahng et al., 2017). Also,
it has been seen that a few days of PE increase oxygenation of
prefrontal cortex, improving mental health (Cabral et al., 2017).

EPIGENETIC MECHANISMS

Biological and psychological effects of PE could be partly
explained through epigenetic mechanisms. The term

“epigenetics,” coined by Waddington (1939), is based on a
conceptual model designed to account for how genes might
interact with their environment to produce the phenotype
(Waddington, 1939; Fernandes et al., 2017).

In particular, epigenetics is referred to all those mechanisms,
including functional modifications of the genome such as
DNA methylation, post-translational histone modifications (i.e.,
acetylation and methylation) and microRNA expression (Deibel
et al., 2015; Grazioli et al., 2017), which tend to regulate gene
expression, modeling the chromatin structure but maintaining
the nucleotide sequence of DNA unchanged.

The current literature clearly demonstrates that these
mechanisms are strongly influenced by different biological and
environmental factors, such as PE (Grazioli et al., 2017), which
determine the nature and the mode of epigenetic mechanisms
activation.

Epigenetics plays an essential role in neural reorganization,
including those that govern the brain plasticity (Deibel et al.,
2015). For example, a growing body of evidence indicates that
regulates neuroplasticity and memory processes (Ieraci et al.,
2015).

Several animal studies reveal how motor activity is able
to improve cognitive performances acting on epigenetic
mechanisms and influencing the expression of those genes
involved in neuroplasticity (Fernandes et al., 2017). The main
molecular processes that underlie the epigenetic mechanisms are
the following: through DNA methylation, histone modifications
and microRNA expression (Fernandes et al., 2017).

DNA methylation is a chemical covalent modification on the
cytosine of the double stranded DNA molecule. It has been
recognized that DNA methylation plays a key role in long-term
memory (Deibel et al., 2015; Kim and Kaang, 2017). In particular,
mechanisms related to DNA methylation relieve the repressive
effects of memory-suppressor genes to favor the expression of
plasticity-promoting and memory consolidation genes. Several
evidences showed that PE is able to coordinate the action of
the genes involved in synaptic plasticity that regulate memory
consolidation (Molteni et al., 2002; Ding et al., 2006).

Histone modifications are post-translational chemical
changes in histone proteins. They include histone
methylation/demethylation, acetylation/deacetylation, and
phosphorylation, all due to the activity of specific enzymes,
which modify the chromatin structure, thereby regulating gene
expression. It has been demonstrated that histone acetylation is a
requisite for long-termmemory (LTM) (Barrett andWood, 2008;
Fernandes et al., 2017). In animals, motor activity increases these
genetic mechanisms in the hippocampus and the frontal cortex,
improving memory performances in behavioral tasks (Cechinel
et al., 2016). Recently, following 4 weeks of motor exercise, it
has been evidenced an increasing of the activity of enzymes
involved in histone acetylation/deacetylation, the epigenetic
mechanisms that determine an enhancing in the expression of
BDNF (Maejima et al., 2018).

MicroRNAs (miRNAs) are small, single stranded RNA
molecules able to inhibit the expression of target genes.
They are widely expressed in the brain, participating in
epigenetic mechanisms and acting as regulators of numerous
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biological processes in the brain, ranging from cell proliferation,
differentiation, apoptosis, synaptic plasticity, and memory
consolidation (Saab and Mansuy, 2014). Recent evidences
demonstrate that PE canmitigate the harmful effects of traumatic
brain injury and aging on cognitive function by regulating the
hippocampal expression of miR21 (Hu et al., 2015) and miR-
34a (Kou et al., 2017). Furthermore, PE contributes to attenuate
the effects of stress-related increase in miR-124, involved in
neurogenesis and memory formation (Pan-Vazquez et al., 2015).

WHAT KIND OF PHYSICAL EXERCISE?

Sport psychology has suggested that the success or failure of
PE programs depends on several factors such as the intensity,
frequency, duration of the exercise, and whether the PE is done
in group or alone (Weinberg and Gould, 2015). These aspects are
important in terms of maintenance of PE practice and in order
to gain benefits for brain and behavior, and they are affected
by individual characteristics. Although such aspects have to be
taken into account when training is proposed, scientific reports
have evidenced different effects on cognitive functioning and
wellbeing if PE is performed in aerobic or anaerobic modality.

Aerobic exercise allows the resynthesis of adenosine—
triphosphate (ATP) by aerobic mechanisms, adjusting intensity
(from low to high intensity), duration (usually long), and oxygen
availability. The intensity depends on the cardiorespiratory effort
with respect to the maximum heart rate (HRmax) or the
maximum oxygen consumption (Vo2max), which determines
an increase in oxygen consumption with respect to the rest
condition. Examples of aerobic PE are jogging, running, cycling,
and swimming.

On the contrary, anaerobic exercise has high intensity, short
duration and unavailability of oxygen, determining the depletion
of the muscles’ ATP and/or phosphocreatine (PCr) reserves,
shifting the production of ATP, to anaerobic energy mechanisms,
lactacid or alactacid. Examples of anaerobic exercises are weight
lifting or sprint in 100m.

Robust literature demonstrated that chronic aerobic exercise
is associated with potent structural and functional neuroplastic
changes, with an improvement in cognitive functions (Colcombe
et al., 2006; Hillman et al., 2008; Erickson et al., 2009; Mandolesi
et al., 2017) and increased feeling of general wellbeing (Berger
and Tobar, 2011; Biddle et al., 2011) (Table 4).

Recently, growing evidence showed that acute aerobic
exercise, defined as a single bout of exercise, relates to
improved cognitive functions, especially prefrontal cortex-
dependent cognition (Tomporowski, 2003; Lambourne and
Tomporowski, 2010; Chang et al., 2011; Ludyga et al., 2016;
Basso and Suzuki, 2017). However, the effects of a single session
of exercise on cognitive functioning are generally small (Chang
et al., 2012). In this line, it was evidenced that even a single
bout of moderate-intensity aerobic exercise enhances, mood and
emotional states and improves the wellbeing in MDD individuals
(Bartholomew et al., 2005; Basso and Suzuki, 2017) (Table 4).

Beside frequency and duration over time, even the intensity
is a parameter to be considered when evaluating the PE effects.

TABLE 4 | Effects of physical aerobic exercise on cognitive functioning and

wellbeing.

Physical aerobic exercise

Chronic aerobic exercise

Several months

moderate/high intensity (%VO2max

40 to ≥60)

moderate duration (16–45min)

Acute aerobic exercise

Single bout of PE

moderate/high intensity (%VO2max

40 to ≥60)

with different protocols

Increasing in neuroplasticity

phenomena

Improvement in cognitive function

(especially memory and executive

functions)

Counteracts neurodegeneration

(to prevent, delay or treat cognitive

decline)

General wellbeing

Decreasing anxiety and depression

major positive effects (for

references see Tables 2, 3)

Enhances affective, mood, and

emotional states in healthy individuals

Improves the mood and wellbeing in

MDD individuals

Improvement in cognitive function

Small and/or debated positive

effects (Tomporowski, 2003;

Bartholomew et al., 2005;

Lambourne and Tomporowski, 2010;

Chang et al., 2011, 2012; Ludyga

et al., 2016; Basso and Suzuki, 2017)

It has been showed that moderate intensity exercise is related
to increased performance in working memory and cognitive
flexibility, whereas high-intensity exercise improves the speed of
information processing (Chang and Etnier, 2009). In this context,
it has been reported that peripheral BDNF was significantly
increased after high intensity exercise, but not after low-intensity
exercise (Hötting et al., 2016). In fact, it is evidenced that high-
intensity exercise provides greater benefit to cognitive functions
than low-intensity exercise in the elderly (Brown et al., 2012).

With regard to the psychological beneficial effects related
to PE, research has evidenced that major benefits in reduction
of anxiety and depression are determined by longer training
program (several months), as compared to shorter ones (some
days) for training session lasting over 30min. Moreover, anxiety
and depression reduction after aerobic exercise may be achieved
with exercise intensity between 30 and 70% of maximal heart
rate (Weinberg and Gould, 2015). To achieve positive mood
changes, an important role is played even by anaerobic activity,
such as yoga, or in all PEs in which there is rhythmic abdominal
breathing, enjoyment, rhythmic, and repetitive movements and
relative absence of interpersonal competition (Berger and Motl,
2001).

CONCLUSION

PE determines positive biological and psychological effects that
affect the brain and the cognitive functioning and promote
a condition of wellbeing. PE plays an important role in
counteract normal and pathological aging. Recent evidences
have shown that PE triggers potent neuroplastic phenomena,
partly mediated by epigenetic mechanisms. In fact, PE cause
profound alterations in gene expression and its protein products
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in the form of epigenomic manifestations (Fernandes et al.,
2017).

A growing body of literature indicates that both chronic and
aerobic PE can achieve similar benefits.

These results should lead to reflect on beneficial effects of PE
and to promote its use as a modifiable factor for prevention, to
improve cognitive abilities and to enhance mood.

Despite all these positive effects, it must be underlined that
PE should be tailored to the individual. In fact, even PE, when
excessive, can have a dark side, when PE becomes compulsive and
facilitates addictive behaviors.
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