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Abstract

The temporal and spectral characteristics of tonic-clonic seizures are investigated using a

neural field model of the corticothalamic system in the presence of a temporally varying con-

nection strength between the cerebral cortex and thalamus. Increasing connection strength

drives the system into* 10 Hz seizure oscillations once a threshold is passed and a subcrit-

ical Hopf bifurcation occurs. In this study, the spectral and temporal characteristics of tonic-

clonic seizures are explored as functions of the relevant properties of physiological connec-

tion strengths, such as maximum strength, time above threshold, and the ramp rate at which

the strength increases or decreases. Analysis shows that the seizure onset time decreases

with the maximum connection strength and time above threshold, but increases with the

ramp rate. Seizure duration and offset time increase with maximum connection strength,

time above threshold, and rate of change. Spectral analysis reveals that the power of nonlin-

ear harmonics and the duration of the oscillations increase as the maximum connection

strength and the time above threshold increase. A secondary limit cycle at* 18 Hz, termed

a saddle-cycle, is also seen during seizure onset and becomes more prominent and robust

with increasing ramp rate. If the time above the threshold is too small, the system does not

reach the 10 Hz limit cycle, and only exhibits 18 Hz saddle-cycle oscillations. It is also seen

that the time to reach the saturated large amplitude limit-cycle seizure oscillation from both

the instability threshold and from the end of the saddle-cycle oscillations is inversely propor-

tional to the square root of the ramp rate.

Introduction

Tonic-clonic seizures, formerly known as grand mal seizures, are the most frequently encoun-

tered generalized seizures [1]. These seizures have a tonic phase, which is characterized by an

initial increase in tone of certain muscles, followed by a clonic phase, which involves bilateral

symmetric jerking of the extremities [2]. Tonic-clonic seizures have markedly different pre-

and post-ictal electroencephalograms (EEG) and typically last 1 to 3 minutes. Primary general-

ized seizures, which is one of the most commonly seen seizures, begin simultaneously across

the whole cortex [1].
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A number of authors have investigated the mechanisms of seizures using the neural net-

work and neural field approaches [3–14]. Many authors have proposed that transitions

from healthy state to the seizure state occur via bifurcations upon changing physiological

parameters [3–9, 12, 13]. For example, depending on the instability region, increasing

excitatory connection strengths between cortex and thalamus drives the system into* 10

Hz and* 3 Hz seizure oscillations via a subcritical and supercritical Hopf bifurcation,

respectively, once a critical value (i.e., a threshold) is passed [3–9, 12, 13]. Results from in

vivo studies have also provided evidence that changes in corticothalamic and other con-

nection strengths can induce seizures [12, 15–20], which possibly occur due to changes in

GABAB mediated mechanisms underlying the reduction of the threshold for Ca2+ spikes

[1, 2], due to the effects of drugs, imbalance in osmotic pressure [20], or excess or defi-

ciency of neurotransmitters or neuromodulators [1, 2, 21]. Although many studies have

been done to analyze the transition mechanisms into seizure [3–7, 9, 12, 20, 22–28]. How-

ever, the detailed dynamics of generalized tonic-clonic seizure, including its dependence

to the changing profile of the corticothalamic connection strength have never been studied

in detail; a proper understanding of such features might help in developing seizure predic-

tion and control strategies. Surprisingly, the dependence of the spectral characteristics like

the frequencies of the oscillations on the parameters of the changing connection strength

have also not been studied, despite their potential to yield precursor signals of seizure

onset, for example.

In this study, we apply a widely used neural field model of the corticothalamic system to

study the dynamics of tonic-clonic seizures [3–5, 7, 8, 24, 29, 30]. Neural field theory (NFT) is

a continuum approach that predicts the average dynamics of large numbers of neurons [31,

32]. The specific model used here [33–36] has reproduced and unified many observed features

of brain activity based on the physiology, including evoked response potentials [37], activity

spectra [38], arousal state dynamics, age-related changes in the physiology of the brain [39],

and many other phenomena [3–5, 7, 8, 24, 29, 30, 40–42]. The above NFT model has also been

used in seizure studies [3–5, 7], where it has successfully unified features of tonic-clonic and

absence seizures [3–5, 7], and explain the dependence of the dynamics and interictal oscilla-

tions during absence seizures on the parameters of the changing connection strength between

the cortex and the thalamus [43, 44]. Previous studies have shown that a gradual increase of

the connection strength between the cortex and thalamus near the alpha instability boundary

shown in [8] in this model can initiate nonlinear dynamics whose characteristics closely

resemble those of tonic-clonic seizures as a result of a subcritical Hopf bifurcation that destabi-

lizes the* 10 Hz alpha resonance [3, 4, 24, 41]. Changes in other connection strengths also

introduce similar dynamics because of the universality properties of the Hopf bifurcation [12].

The general property and bifurcation mechanism of the resultant tonic-clonic seizure has

been studied in detail in [3]. However, the impact of underlying parameter changes of the cor-

ticothalamic connectivity strength on tonic-clonic seizure onset, dynamics, and termination

have not been studied in detail. In particular, an extensive study like [43] on the dependence

of the onset and termination of tonic-clonic seizure on the temporal form of the connection

strength is necessary to understand the variability in seizure events, such as difference in the

onset time and duration among different subjects, and to help lay the foundations for tonic-

clonic seizure control strategies. These analyses are also necessary to explain the changes in

harmonic structure seen in previous studies [45–47] during seizure, which might be helpful as

inputs to seizure prediction strategies. In short, the aims are to understand the effects of physi-

ological parameters on the temporal and spectral characteristics of seizure dynamics, including

saddle-cycle oscillations [24]. We note that there are also other plausible causes or routes to

tonic-clonic seizures (e.g., including effects of the cerebellum, basal ganglia, and hormones)
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[25, 27, 28, 48–53], but we retain our existing model to maintain compatibility with the experi-

mental results against which it has been verified in [3].

The outline of this paper is as follows: In the Results, we explore the general characteristics

of seizure as well as the dependence of seizure dynamics on the temporal variation of connec-

tion strength. In the Discussion, we provide a summary and discuss possible applications of

our outcomes and finally, in the Methods section, we present the corticothalamic neural field

model along with the temporal variation function and the numerical methods.

Results

In this section we investigate the dynamical characteristics of model tonic-clonic seizures as

well as the effects of the temporal variation of the corticothalamic connection strength, νse on

the dynamics. For the investigation of general characteristics, we keep a constant maximum

connection strength νmax, characteristic duration t2 − t1, and characteristic rise time Δ, and all

other parameters listed in Table 1.

To investigate the effect of the variation of νse on seizure dynamics we vary νmax, Δ, and t2 −

t1 individually by keeping all other parameters constant. Fig 1(a) shows the variation of νse
with time for the parameters values specified in Table 1.

General characteristics of tonic-clonic seizures

As in [43], three main regions are distinguished according to the dynamics of the cortical

activity ϕe (cortical excitatory field) as illustrated in Fig 1(b): Region I from 0–50 s is the pre-

ictal state when νse is too small to initiate seizure-like oscillations; Region II from 125–175 s is

the ictal state when νse is around its maximum value, νmax, and the system oscillates with

Table 1. Nominal parameters of the neural field model from [3].

Parameter Value Unit Meaning

νee 1.2 mV s Excitatory corticocortical connectivity

νei −1.8 mV s Inhibitory corticocortical connectivity

νes 1.4 mV s Specific thalamic to cortical connectivity

νre 0.2 mV s Cortical to thalamic reticular connectivity

νrs 0.2 mV s Specific to reticular thalamic connectivity

νse 1.0 mV s Cortical to specific thalamic connectivity

νsr −1.0 mV s Reticular to specific thalamic connectivity

νsn ϕn 2.0 mV Subthalamic input

Qmax 250 s−1 Maximum firing rate

θ 15 mV Mean neuronal threshold

σ 6 mV Threshold standard deviation

γe 100 s−1 Damping rate

α 60 s−1 Decay rate of membrane potential

β 240 s−1 Rise rate of membrane potential

t0 80 ms Corticothalamic return time (complete loop)

t1 100 s Center of the ramp rise

t2 200 s Center of the ramp fall

νmax 1.2 mV s Maximum value of νse

ν0 0.8 mV s Minimum value of νse

Δ 10 s Characteristic rise time

https://doi.org/10.1371/journal.pone.0230510.t001

PLOS ONE Dynamics of tonic-clonic seizure

PLOSONE | https://doi.org/10.1371/journal.pone.0230510 April 2, 2020 3 / 25

https://doi.org/10.1371/journal.pone.0230510.t001
https://doi.org/10.1371/journal.pone.0230510


Fig 1. Corticothalamic dynamics for temporally varying νse, with Δ = 20 s and rest of the parameters shown in Table 1. (a) Temporal
profile of νse varying from ν0 to νmax and back. Three different regions are identified as: I = pre-ictal state, II = ictal state, and III = post-
ictal state. (b) Cortical excitatory field ϕe vs. t, showing a 10 Hz spike-wave oscillation. Individual oscillations can not be distinguished on
this scale. (c) Zoom of ϕe at seizure onset. (d) Zoom of ϕe at seizure offset. (e) Power spectrum of ϕe in Region II. An arbitrary dB scaling is
used because clinical EEG recordings involve additional attenuation by structures between the cortex and the electrode, which we do not
model here.

https://doi.org/10.1371/journal.pone.0230510.g001
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maximum amplitude; and Region III from 250–330 s is the post-ictal state, where νse returns to

its baseline value, and oscillations start decreasing in amplitude until they completely cease.

Fig 1(c) and 1(d) show the zoomed seizure onset and offset, respectively, which are the tran-

sitions from Region I to II, and from Region II to III, respectively.

The normalized power spectrum in Region II is shown in Fig 1(e). Fig 1(e) shows a domi-

nant resonance at* 10 Hz with multiple harmonics in Region II, where power decreases

gradually with frequency.

The model of the brain is the same, but the key corticothalamic parameters place it in the

regime where a 10 Hz subcritical Hopf bifurcation occurs, rather than a 3 Hz supercritical one.

The new features include the existence of the saddle cycle, the different bifurcation types, the

different frequencies, and other features explored and discussed later in the paper.

Dynamics of seizure onset. Fig 1(b) shows that in Region I, the system remains in the

steady state because νse is below the bifurcation threshold. A small increase in ϕe due to the

increase of νse is also seen in this region. At t = tθ, which is the time at which νse crosses the

linear instability threshold, the fixed point loses its stability, and* 18 Hz oscillations appear.

The first few oscillations are too small to be distinguished on this scale, but their envelope

increases exponentially until t = tsc, when the trajectory spirals further outwards to a large

amplitude 10 Hz limit cycle, as seen in Fig 1(c); these 18 Hz oscillations are termed saddle-

cycle oscillations because they are due to a transient saddle cycle located between the stable

steady state and the stable large amplitude limit cycle attractor. The envelope of the 10 Hz

oscillations continues to increase from t = tsc until t = tlc, when the system reaches the large

amplitude limit cycle. At t� tlc, the amplitude of the oscillations overshoots because νse is still

rapidly increasing. Then, the amplitude of the oscillations increases gradually until νse = νmax

in Region II, then decreases. Fig 1(c) shows a clearer view of saddle-cycle oscillations, and

times tsc and tlc; where we define tlc to be the point of inflection. We note these results differ

strongly from the ones for absence seizures in Ref [43], where a* 3 Hz spike wave morphol-

ogy was seen via a supercritical Hopf bifurcation with no saddle cycles.

Dynamics of seizure offset. In Fig 1(d), we see that the amplitude of the oscillations

decreases gradually from its peak during the ramp down of νse. More specifically, at t = tlc2,

when νse crosses the offset bifurcation threshold νlc2 = 0.98 mV s [3], the large limit cycle loses

stability and the oscillation amplitude decreases steeply to approach the stable steady state in

Region III.

Differences between onset and offset dynamics. Comparing Fig 1(c) with Fig 1(d), we

see that νθ> νlc2, as expected for transitions due to a subcritical Hopf bifurcation. This is fur-

ther seen in Fig 2, where we see that the system bifurcates from the fixed point at νse = νθ and

reaches the saturated large amplitude attractor at νse = νlc. As νse decreases, the large amplitude

attractor becomes unstable at νse = νlc2 and the system returns toward the fixed point.

Analytical prediction of onset and offset transition times. Paralleling the analytic pre-

diction of the characteristic time required to develop absence seizures [43], we next predict

characteristic tonic-clonic onset and offset times.

For ν(t)� νθ, the oscillation amplitude A obeys

dA

dt
� C nðtÞ � ny½ �A; ð1Þ

where C is a constant, and ν(t) is the instantaneous value of νse. Because νse only varies with

time t, we can make the approximation ν(t) − νθ� c(t − tθ) near the threshold, when the oscil-

lation starts at Aθ. This yields

A ¼ Ay exp ½cðt � tyÞ
2
=2�: ð2Þ
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with c ¼ CdnðtÞ=dtjt¼ty
; then A = Alc at t = tlc

exp
cðtlc � tyÞ

2

2

� �

¼ Alc

Ay

; ð3Þ

tlc � ty ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dnðtÞ=dtjt¼ty

q ; ð4Þ

where k = [(2/C)ln(Alc/Aθ)]
1/2. Similar analysis predicts that the transition time tlc − tsc from

the saddle-cycle attractor to the larger limit cycle also follows this scaling.

The decrease of oscillation amplitude during the ramp down period can be approximated

as

dA

dt
� �C0 nðtÞ � nlc2½ �A; ð5Þ

dA

dt
¼ �C@ t � tlc2½ �A; ð6Þ

where C0 and C@ are constants, and tlc2 is the offset bifurcation threshold as mentioned in pre-

vious sections. This yields

ln A=Alc2ð Þ ¼ �C@

2
ðt � tlc2Þ

2

; ð7Þ

which indicates a superexponential decrease during seizure offset.

Dynamics during ictal state plateau. Fig 3 shows the phase space trajectory of ϕe for the

default parameters in Table 1, except Δ = 2 s, which we use to see the saddle-cycle more clearly.

Fig 3(a) shows the trajectory of ϕe on the ϕe—dϕe/dt plane. In the left edge of the figure, we see

the evolving fixed point, which first appears as straight line and then moves towards the right

with increasing νse. Once the system crosses the linear instability threshold, the fixed point

becomes unstable and the trajectory spirals out to a large amplitude limit cycle attractor via the

unstable saddle-cycle. The amplitude of the large attractor increases gradually until νse = νmax,

Fig 2. Hysteresis between seizure onset and offset. (a) νse vs. ϕe. Black color shows the variation of ϕe during ramp up, i.e. during
onset, and gray color shows the variation of ϕe during ramp down, i.e. during offset. (b) A schematic diagram of the hysteresis. Solid
lines show stable states and dashed lines show unstable ones.

https://doi.org/10.1371/journal.pone.0230510.g002
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then decreases until νlc2, where it becomes unstable and the system spirals back to the stable

fixed point; no saddle-cycle is seen during the inward spiral. Three segments of the trajectory

are shown in Fig 3(b)–3(d), to clarify these dynamics. Fig 3(b) shows ϕe spiraling outward

from the steady state to the saddle-cycle with amplitude� 30 s−1. Fig 3(c) shows the outward

spiral from the transient saddle cycle to the limit cycle attractor with amplitude� 90 s−1. Fig 3

(d) shows the inward spiral during ramp down of νse.

Fig 4 shows the dynamic spectrum of ϕe from Fig 1(b). A sudden appearance of 10 Hz oscil-

lation with multiple harmonics at t = tθ is seen. These harmonics resemble with the harmonics

seen in [3], both experimentally and theoretically. The power of the harmonics decreases with

harmonic number and their duration decreases slightly. We find a frequency broadening dur-

ing the seizure onset at* 113.5 s, due to the rapid change of the amplitude of the oscillations.

Fig 3. Phase space trajectory of ϕe for Δ = 2 s, and rest of the default parameters as in Table 1. (a) Trajectory from
from t = 5 s to t = 295 s. Initial small straight line labeled with FP corresponds to the evolving fixed point; small dark
gray segment labeled with SC corresponds to the saddle-cycle attractor; black segment labeled with LC corresponds to
the large amplitude limit cycle attractor. The fixed point and center of the clockwise limit cycle trajectory move from
left to right during ramp up and right to left during ramp down. (b) Trajectory from t = 104 s to t = 107 s. (c)
Trajectory from t = 114.5 s to t = 150 s. (d) Trajectory from t = 200 s to t = 295 s.

https://doi.org/10.1371/journal.pone.0230510.g003
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Frequency broadening of the first few harmonics during seizure offset is also seen, and there is

a slight frequency drop.

Dynamics of corticothalamic seizure propagation. Fig 5(a) and 5(b) show the time series

of the fields ϕr during onset and offset, respectively. Similarly, Fig 5(c) and 5(d) show the time

series of the fields ϕs during onset and offset.

From these plots we observe that (i) during onset ϕr reaches much higher amplitudes than

ϕe; and, (ii) the ratio between the amplitude of the small oscillations that develop after crossing

the bifurcation and the amplitude of the saturated limit cycle is smaller for ϕe than it is for ϕr
and ϕs.

In order to study the interplay among ϕe, ϕr, and ϕs in more detail, we plot their limit cycle

phase space trajectories and time series at νse� νmax in Fig 6. Fig 6(a) and 6(b) show the time

series and phase space trajectory of ϕe, respectively. Fig 6(c) and 6(d) show the time series and

phase space trajectory of ϕr, respectively. A t0/2 time shift between the peaks of ϕe and ϕr is

seen due to the propagation delay between these populations. We also see a wide minimum

between two successive peaks of ϕr. The phase space in Fig 6(d) shows similar trajectory to Fig

6(d), but with greater amplitude. Fig 6(e) and 6(f) show the time series and phase space of ϕs,

respectively, and they show an equal amplitude but wider peak than Fig 6(c) and 6(d). Fig 6

shows that all three fields exhibit slightly different trajectories, with the higher amplitudes of ϕr
and ϕs near the maximum firing rate.

Close examination of Fig 6 reveals the signal flow through the populations. A peak of ϕe
reaches ϕr and ϕs simultaneously t0/2 later. The peak of ϕe coincides approximately with the

bottom of the trough of ϕr, and a positive excitation with the maximum firing rate appears,

which suppress ϕs. This suppression then reduce the excitation of ϕe a time t0/2 later and

causes an exponential decay. A negative perturbation to ϕe results, which then propagates to

the thalamus again and reduces the excitation of ϕr after a further time t0/2, which allows a

positive excitation of ϕs almost immediately. This positive excitation then flows to ϕe and ini-

tializes the next cycle of the loop. Unlike the absence seizure case [43], the loop provides direct

positive feedback in a single pass, whereas the feedback is negative in the absence case and two

passes through the loop are required to yield overall positive feedback, thereby reducing the

frequency of the instability [8].

Fig 4. Dynamic spectrum for νmax = 1.2 mV s with the parameters in Table 1. AHanning window of 600 data
points, an overlap of 200 points, and sampling frequency of 200 Hz was used. The color bar shows the dB scale.

https://doi.org/10.1371/journal.pone.0230510.g004
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At the cellular level, the imbalance between inhibitory and excitatory conductances induced

by blocking synaptic and voltage-gated inhibitory conductances, or by activating synaptic and

voltage-gated excitatory conductances, incorporates the positive feedback, which leads to sei-

zures [21, 54]. Seizures are suppressed by the opposite manipulations: increasing inhibition or

decreasing excitation [21, 54].

Impact of temporal variation of νse on seizure dynamics

In this section, we investigate the effects of the temporal variation of νse on the model seizure

dynamics by varying the maximum connection strength νmax, duration t2 − t1, and rise time Δ,
holding all other parameters at the values in Table 1.

We first analyze the impact of the variation of νse on the overall dynamics of ϕe, as shown in

Fig 7. For νmax = 1 mV s in Fig 7(a), ϕe increases with νse as shown in Fig 16, then returns

smoothly to the initial steady state value as νse returns to ν0. Fig 7(b) and 7(c) show that

increasing νmax, yields periodic oscillations of increasing magnitude as corticothalamic feed-

back strengthens; oscillations also start earlier and are damped away later because the system

crosses onset threshold earlier and offset threshold later for higher νmax. However, the system

does not return to its initial steady state for νmax > 1.542 mV s; instead it moves to the high fir-

ing steady state of Fig 16.

Fig 7(d)—7(f) show the effects of varying ramp width Δ from 2 s to 60 s. Fig 7(d) shows that

for the step-like variation of νse for Δ = 2 s, the oscillations rapidly reach maximum amplitude

Fig 5. Time series of fields during seizure onset and offset:(a) ϕr at seizure onset. (b) ϕr at seizure offset. (c) ϕs at seizure
onset. (d) ϕs at seizure offset.

https://doi.org/10.1371/journal.pone.0230510.g005
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after the transition to the large amplitude attractor and also decrease sharply from their maxi-

mum to the initial steady state once the system crosses the threshold during ramp down. Fig 7

(e) and 7(f) show that the slower ramp for larger Δ implies that the amplitude of the oscilla-

tions during seizure onset and offset decreases more gradually.

Fig 7(g)–7(i) show the effects of variation of the characteristic time t2 − t1 from 20 s to 100

s. As expected, the duration of seizure oscillations increases with t2 − t1.

Seizure onset time. Fig 8 quantifies the effects of νmax and Δ on seizure onset. We do not

revisit the variation with t2 − t1 because its effects were already discussed in the previous

subsection.

Fig 8(a) shows that tθ decreases with increasing νmax, because the system reaches νθ earlier

for a higher νmax. Fig 8(b) shows the variation of tθ with Δ. For Δ < 10 s, tθ increases slightly

with Δ, because due to the high rate of change, νse rapidly approaches its maximum, crossing

all the bifurcation values. At longer Δ � 10 s, the temporal profile of νse becomes smooth and

Fig 6. Mid-seizure limit cycle dynamics of ϕe, ϕs, and ϕr from t = 149.7 s to t = 150 s with other parameters as in
Table 1. (a) Time series of ϕe at νse� νmax. (b) Phase space trajectory of ϕe. (c) ϕr at νse� νmax. (d) Trajectory of ϕr. (e)
ϕs at νse� νmax. (f) Trajectory of ϕs. P and R are successive minimums and Q is the intermediate maximum.

https://doi.org/10.1371/journal.pone.0230510.g006
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flat topped like Fig 1(a) and νse gradually ramps up to the bifurcation point, so the system

crosses the threshold later for a larger Δ, resulting in a decrease in tθ.

Dynamic spectrum. In this section we discuss the effects of changing the temporal profile

of νse on the power spectrum of ϕe and use its evolution to further clarify the occurrence of

transient saddle cycles.

Fig 9(a) shows the dynamic spectrum for νmax = 1.05 mV s. During the seizure, we observe

a peak at approximately* 10 Hz with several harmonics. We also find lower frequency

drop and broadening during seizure onset and offset as in Fig 4. Fig 9(b) shows that for νmax

= 1.15 mV s, harmonics have greater duration and power than Fig 9(a). The frequency

broadening is a manifestation of the uncertainty principle, which means, mathematically the

frequency content of a rapidly changing nonsinusoidal signal will broaden in order to be

able to localize the signal in time. During the change, the system simply does not have a

precisely defined frequency, whether or not a Fourier transform is actually applied to result-

ing data. Fig 9(c) shows that for νmax = 1.55 mV s, there is no oscillation after t = 143.52 s,

because the system moves into the high firing steady state after this time. A detailed investi-

gation shows that the power of the peaks increases significantly with νmax and t2 − t1, but

decreases slightly with Δ, especially at higher order harmonics. A small peak around 205 s

shows that the system returns to the initial steady state via small oscillation after it crosses

the offset bifurcation.

Fig 7. Time series for different temporal profiles of νse, with other parameters as in Table 1. (a) ϕe vs. t for νmax = 1 mV s. Individual oscillations
cannot be distinguished. (b) νmax = 1.05 mV s. (c) νmax = 1.25 mV s. (d) Δ = 2 s. (e) Δ = 20 s. (f) Δ = 60 s. (g) t2 − t1 = 20 s. (h) t2 − t1 = 40 s. (i) t2 − t1 = 60
s.

https://doi.org/10.1371/journal.pone.0230510.g007
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Characteristic transition times. In this section we test the analytic prediction made in

earlier sections. Fig 10(a) shows tlc − tθ vs. (dνse/dt)
−1/2. A least-squares fit to these data yields

tlc � ty ¼ aðdnse=dtÞ
�
1

2 � b;
ð8Þ

with a = (0.042 ± 0.004) V1/2 s and b = (0.9 ± 1.4) s, which is consistent with Eq (4). Fig 10(b)

shows (dνse/dt)
−1/2 vs. tlc − tsc. A least-squares fit yields

tlc � tsc ¼ a0ðdnse=dtÞ
�
1

2 þ b0;
ð9Þ

with a0 = (0.003 ± 0.001) V1/2 s and b0 = (0.0 ± 0.2) s, which has the same scaling as Eq (4). The

fitting also shows that, despite the different bifurcation mechanisms, both onset transitions fol-

low the same scalings as the onset transition of absence seizures [43].

Fig 10(c) shows ln(A/Alc2) vs. (t − tlc2)
2 for Δ = 10 s, which follows Eq (7) until the ampli-

tudes of the oscillations start to decrease super-exponentially towards the steady state. A least-

squares fit to the linear decrease yields

lnðA=Alc2Þ ¼ �a@ðt � tlc2Þ
2 � b@: ð10Þ

with a@ = (0.0116 ± 0.0002) s−2 and b@ = (0.018 ± 0.004). The figure shows that the decrease of

the envelope follow the linear fit for a relatively short time, after which the decrease becomes

steeper. By using Eqs (2) and (3), it can be also shown that decrease within the linear region

also follows the same scaling as Eq (4).

Saddle cycle. Previously, we mentioned the presence of a small amplitude*18 Hz tran-

sient saddle cycle. The system orbits there for few seconds, then spirals out towards the large

amplitude limit cycle attractor. However, this saddle-cycle is not observed in all cases, for

example, a colose zoom near the onset of all subfigures of Fig 7 will show that the small

Fig 8. Effects of temporal variation of νse on seizure onset with parameters as in Table 1. (a) tθ vs. νmax. (b) tθ vs. Δ.

https://doi.org/10.1371/journal.pone.0230510.g008
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amplitude saddle-cycle oscillations like Fig 1(c) are only prominent in Fig 7(c) and 7(d). Here,

we explore the dependence of the transient saddle-cycle oscillations on νmax and Δ.
Fig 11 shows the variation of saddle-cycle oscillations with respect to νmax, with other

parameters as in Table 1. Fig 11(a) shows the phase space trajectory for νmax = 1.15 mV s. No

saddle-cycle attractor is seen in this figure. Fig 11(b) shows the trajectory for νmax = 1.25 mV s.

A small saddle-cycle attractor is seen between the fixed point and the large amplitude attractor.

Fig 11(c) and 11(d) show the trajectories for νmax = 1.35 mV s and 1.45 mV s, respectively. The

transient saddle cycle increases in size with νmax. A similar investigation shows that similar

Fig 9. Dynamic spectrum vs. νmax for the parameters in Table 1. The power density of the harmonics is calculated
using a Hanning window of 600 data points, an overlap of 200 points, and sampling frequency of 200 Hz, the color bar
at top shows the dB scale. (a) Dynamic spectrum for νmax = 1.05 mV s. (b) νmax = 1.15 mV s. (c) νmax = 1.55 mV s.

https://doi.org/10.1371/journal.pone.0230510.g009
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Fig 10. Dependence of seizure transition times on (dνse/dt)
−1/2 with the default parameters as in Table 1 and Δ ranges from 2 s to 50 s. (a)

tlc − tθ vs. (dνse/dt)
−1/2; (b) tlc − tsc vs. (dνse/dt)

−1/2, and (c) ln(A/Alc2) vs. (t − tlc2)
2 for Δ = 10 s and time ranges from 190 s to 250 s. Error bar

represent uncertainties of the least-squares fits. Points with no error bars are not considered for the least-squares fit.

https://doi.org/10.1371/journal.pone.0230510.g010
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phenomena occur when Δ is varied, with the transient saddle cycle being most prominent for

small Δ, completely disappearing for Δ ≳ 20 s.

To understand the relation between the saddle-cycle oscillation and rate of change of νse
more clearly, we calculate the power spectrum for different νmax and Δ. Fig 12(a) shows the
variation of the power spectrum with νmax. For a small νmax, there is no peak around 18 Hz,

but a peak at approximately 18 Hz appears when νmax � 1.2 mV s and becomes more promi-

nent and strong with increasing νmax. Fig 12(b) shows that the power of the peak around 18 Hz

decreases with Δ and disappears for Δ ≳ 20 s.

These results imply that the presence of saddle-cycle oscillations depends on the rate of

change of of νse. Fig 13 illustrates the presence or absence of saddle-cycle oscillations for 236

different combinations of νse and Δ as a function of the value of dνse/dt. When dνse/

dt< 7 × 10−3mV, there are no saddle-cycle oscillations; for dνse/dt> 9 × 10−3 mV, the system

always exhibits saddle-cycle oscillations; while for 7 × 10−3≲ dνse/dt≲ 9 × 10−3mV, there is a

narrow mixed region where the presence of transient saddle cycle cannot be predicted solely

from the rate of change of νse.

Fig 11. Effects of variation of νmax on saddle-cycle with rest of the parameters as in Table 1. (a) Phase space trajectory for νmax = 1.15
mV s. (b) Trajectory for νmax = 1.25 mV s. (c) Trajectory for νmax = 1.35 mV s. (d) Trajectory for νmax = 1.45 mV s.

https://doi.org/10.1371/journal.pone.0230510.g011
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In order to see why transient saddle cycle is only seen for high dνse/dt, we show the time

evolution of 10 Hz and 18 Hz frequency peaks for Δ = 2 s and Δ = 50 s in Fig 14 during seizure

onset with other parameters as in Table 1. In Fig 14(a), for Δ = 50 s and dνse/dt = 0.003 mV, the

10 Hz peak always rise faster than the 18 Hz peak, and hence, always has more power and

dominates the spectrum; no saddle cycle is seen in the trajectory. On the other hand, in Fig 14

(b), for Δ = 2 s and dνse/dt = 0.03 mV, the 18 Hz peak rises faster than the 10 Hz peak during

onset so there is a* 2 s window in which the 18 Hz peak dominates and hence, the system is

seen to exhibit saddle-cycle oscillations during onset in Fig 1, after which the 10 Hz peak dom-

inates. Now, since, νθ is a the bifurcation threshold and does not depend on the temporal pro-

file, but νlc depends on the temporal profile and the time to reach the 10 Hz limit cycle (i.e., tlc

Fig 12. (Color online) Variation in the power of the saddle-cycle oscillations with rest of the parameters in Table 1. (a) Power spectrum vs. νmax.
(b) Power spectrum vs. Δ. Legends show the corresponding values of νmax and Δ.

https://doi.org/10.1371/journal.pone.0230510.g012

Fig 13. Dependence of saddle-cycle oscillations on dνse/dt. Gray crosses show the presence of a saddle-cycle and
black crosses show its absence.

https://doi.org/10.1371/journal.pone.0230510.g013
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− tθ), we conclude that νlc is the parameter that defines the existence of the transient saddle

cycle. The system will exhibit transient saddle cycle oscillation only if νsc> νlc at tsc.

Discussion

We have used an established neural field model of the corticothalamic system [3] to study the

dependence of tonic-clonic seizures on the temporal profile of a corticothalamic connection

strength νse that induces seizures. The effects of varying other connection strengths can also be

qualitatively predicted using these outcomes because they will exhibit similar dynamics due to

the universality properties of the Hopf bifurcation. Also, our temporal variation of connection

strength is an approximation to what seems to occur in living systems, but is an improvement

over previous piecewise linear functions with discontinuous derivatives [3]. The parameters

and the shape of Eq (20) could be customized in the future using experimental data. The key

outcomes are:

1. The system exhibits* 10 Hz limit cycle oscillations once the connection strength crosses

the bifurcation threshold of νθ = 1.025 mV s, which is the characteristic frequency of tonic-

clonic seizure via a subcritical Hopf bifurcation. The system returns to the resting equilib-

rium when the connection strength decreases below the offset threshold, νlc2 = 0.98 mV s.

The difference in onset and offset bifurcation values causes hysteresis; consistent with previ-

ously published results that used piecewise linear variation of νse, rather than the present

more realistic continuous gradual variation.

2. For Vmax≳ 1.542 mV, the system moves to another steady state near maximum firing rate

and only returns to the initial steady state once νse returns below an offset threshold.

Fig 14. Temporal variation of frequency peaks during seizure onset; black solid line shows the* 18 Hz peak; gray dashed line shows the* 10 Hz
peak with parameters from Table 1. (a) Δ = 50 s; (b) Δ = 2 s.

https://doi.org/10.1371/journal.pone.0230510.g014
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3. The amplitude of ϕe increases with the maximum connection strength, νmax, because an

increase of the connectivity strength increases the strength of the positive feedback loop

between the cortex and the thalamus.

4. Because increasing the maximum connection strength νmax increases the amplitudes of the

oscillations, it increases the power and the characteristic number of harmonics. The power

of the harmonics also increases with the seizure duration t2 − t1, but decreases slightly with

the ramp duration Δ.

5. The characteristic transition times required to reach the saturated limit cycle oscillation

from the seizure threshold or the end of the saddle-cycle oscillations to the steady state are

predicted and verified numerically to be inversely proportional to the square root of the

rate of change of the connection strength.

6. The system can also show transient* 18 Hz saddle-cycle oscillation at the beginning of the

seizure for high dνse/dt before moving to the 10 Hz attractor. These saddle-cycles become

more prominent as dνse/dt increases; a system with dνse/dt< 7 × 10−3 mV never exhibits

saddle-cycles, whereas one with dνse/dt> 9 × 10−3 mV always does.

Overall, the present study enables the varying spectral and temporal characteristics of sei-

zures to be related to underlying physiological changes of the brain, such as changes in the

connection strength between the cortex and the thalamus. The outcomes can potentially be

used to help explain the variability of seizure onset properties and seizure frequency across

subjects by examining the temporal and spectral characteristics of seizure [55, 56]. It may thus

be possible to constrain the physiological properties of the corticothalamic connection

strength dynamics of a subject by comparing the wave properties of seizure oscillations, such

as amplitude, and frequency, with theory. A better understanding of the physiological proper-

ties of corticothalamic connection strength might also constrain changes in levels of neuro-

transmitters or neuromodulators. Real-time fitting of the theoretical dynamics to observed

waveforms may also be feasible, leading to the possibility of implementing feedback control

systems based on the dynamics. Connection strengths can be manipulated experimentally,

with varying degrees of specificity, via agonists and antagonists of various neuromodulators,

for example, which directly affect synaptic communication. A well known example is the kin-

dling of some types seizures via administration of penicillin. Conversely, antiepileptic medica-

tions likely tend to normalize synaptic strengths and more detailed model explorations could

help to better target such interventions. Outcomes related to the seizure onsets and saddle-

cycle oscillation might also contribute to improved seizure prediction algorithms. Finally,

using this model, it is also possible to predict the impact of varying other connection strengths

than the corticothalamic one, both via the universality properties of the Hopf bifurcation [3]

and through direct simulations.

Methods

In this section, we present a brief description of the corticothalamic neural field model used,

along with the form of temporal variation of corticothalamic coupling strength [3, 4, 8].

Corticothalamic field model

To investigate the dynamics of tonic-clonic seizure, we use the neural field model of the corti-

cothalamic system seen in Fig 15. In this study we use the same analytical model of [43], but in

different parametric regime suitable to study the tonic-clonic seizure. The neural populations

are denoted as: e = excitatory cortical; i = inhibitory cortical; s = thalamic relay neurons; r =
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Fig 15. Schematic diagram of the corticothalamic model system. The neural populations shown are cortical
excitatory (e), inhibitory (i), thalamic reticular (r), thalamic relay (s), and n = external inputs. The parameter νab
quantifies the connection to population a from population b. Inhibitory connections are shown with dashed lines.

https://doi.org/10.1371/journal.pone.0230510.g015

PLOS ONE Dynamics of tonic-clonic seizure

PLOSONE | https://doi.org/10.1371/journal.pone.0230510 April 2, 2020 19 / 25

https://doi.org/10.1371/journal.pone.0230510.g015
https://doi.org/10.1371/journal.pone.0230510


thalamic reticular nucleus; and n = external inputs. The dynamical variables within each neural

population a are the local mean cell-body potential Va, the mean rate of firing at the cell-body

Qa, and the propagating axonal fields ϕa. The firing rates Qa are related to the potentials Va by

the response function

Qaðr; tÞ ¼ S½Vaðr; tÞ�; ð11Þ

where S is a smooth sigmoidal function that increases from 0 to Qmax as Va increases from −1
to1, with

SðVaÞ ¼
Qmax

1þ exp½�pðVa � yÞ=s
ffiffiffi

3
p

�
; ð12Þ

where θ is the mean neural firing threshold, σ is the standard deviation of this threshold, and

Qmax is the maximum firing rate [3, 8].

In each neural population, firing rates Qa generate propagating axonal fields ϕa that approx-

imately obey the damped wave equation [3, 8]

Da�aðr; tÞ ¼ Qaðr; tÞ; ð13Þ

where the spatiotemporal differential operator Da is

Da ¼
1

g2a

@2

@t2
þ 2

ga

@

@t
þ 1� r2ar2; ð14Þ

where γa = va/ra is the damping rate, ra and va are the characteristic range and conduction

velocity of axons of type a, andr2 is the Laplacian operator. The smallness of ri, rs, and rr
enables us to set γa’1 except for a = e. The cell-body potential Va results after postsynaptic

potentials have propagated through the dendritic tree and then been summed as their resulting

currents charge the soma. For excitatory and inhibitory neurons within the cortex, this is

approximated via the second-order delay-differential equation [8]

DaVaðr; tÞ ¼ nae�eðr; tÞ þ nai�iðr; tÞ þ nas�sðr; t � t
0
=2Þ; ð15Þ

where a = e, i and the temporal differential operator is given by

Da ¼
1

ab

d2

dt2
þ 1

a
þ 1

b

� �

d

dt
þ 1: ð16Þ

The quantities α and β in Eq (16) are the inverse decay and rise times, respectively, of the cell-

body potential produced by an impulse at a dendritic synapse. Note that input from the thala-

mus to the cortex is delayed in Eq (15) by a propagation time t0/2. For neurons within the spe-

cific and reticular nuclei of the thalamus, it is the input from the cortex that is time delayed, so

DaVaðr; tÞ ¼ nae�eðr; t � t
0
=2Þ þ nas�sðr; tÞ þ nar�rðr; tÞ þ nan�nðr; tÞ; ð17Þ

where a = s, r. The connection strengths are given by νab =Nab sab, whereNab is the mean num-

ber of synapses to neurons of type a from type b and sab is the strength of the response in neu-

rons a to a unit signal from neurons of type b. The final term on the right-hand side of Eq (17)

describes inputs from outside the corticothalamic system. In order to simplify the model we

only include the connections shown in Fig 15, so only 10 of the possible 16 connections

between the four neural populations are nonzero [8]. We also assume the random intracortical

connectivity and the number of connections between populations is proportional to the num-

ber of synapses [57, 58]. This random connectivity assumption provides Nib = Neb for all b, so

νee = νie, νei = νii and νes = νis[40].
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Setting all spatial and temporal derivatives in Eqs (12)–(17) to zero determines spatially uni-

form corticothalamic steady states. The steady state firing rate, �ð0Þ
e of ϕe is then given by [29]

S�1ð�ð0Þ
e Þ � ðnee þ neiÞ�ð0Þ

e ¼ nesSfnse�ð0Þ
e þ nsrS½nre�ð0Þ

e þ ðnrs=nesÞðS�1ð�ð0Þ
e Þ � ðnee þ neiÞ�ð0Þ

e Þ� þ nsn�
ð0Þ
n g: ð18Þ

The properties of steady states in the corticothalamic model have been studied extensively in

[8, 29], and we use the outcomes to identify the stable and unstable regions of the steady state.

Fig 16 shows the steady state dependence of �ð0Þ
e on νse with other parameters as in Table 1. It is

seen that there are two stable steady state solutions: one corresponds to low mean firing rate

and another to very high mean firing rate [29]. The low firing steady state was identified with

normal states of brain activity in previous studies [8, 36]. The low firing-rate fixed point loses

its stability at νse = νθ. A steep increase in �ð0Þ
e is seen near νi because the increasing νse push the

sigmoid from its minimum by increasing the nse�
ð0Þ
e in Eq (18), which results in an increase of

the gain between the thalamus and the cortex. With further increase of νse, the system eventu-

ally moves to a steady state with near-maximum firing rate. This high firing steady state is

beyond the scope of our model because it will lead to effects such as hypoxia, which are not

included here.

Temporal ramping

Brain activity propagates via the coupling of the various neuronal populations. Previous stud-

ies have shown that a gradual ramp-up of the coupling strength between the neuronal popula-

tions can lead from a stable steady state to periodic seizure oscillations [3, 43]. It is also seen

that the dynamical and spectral characteristics of the resultant seizure-like oscillations depend

Fig 16. (Color online) Steady states solution of the corticothalamic system for the variation of νse for tonic-clonic
seizure. Black lines and the letter ‘S’ represent the stable steady state, and red lines and the letter ‘U’ represent the
unstable steady states. Here νθ is the threshold value when the stable steady state becomes unstable. The inset shows
zoomed view of the area around νθ.

https://doi.org/10.1371/journal.pone.0230510.g016
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on the physiological properties of the ramp of the coupling strength, such as, the maximum

amplitude of the ramp, ramp rate, and characteristic duration [43].

In this paper, we ramp the coupling strength νse from an initial value ν0 to a maximum

value νmax and back to see the impact of the ramp characteristics on tonic-clonic seizures, with

[43]

nse ¼ n
0
þ ðnmax � n

0
Þ f ðtÞ � fmin

fmax � fmin

� �

; ð19Þ

f ðtÞ ¼ tan�1
t � t

1

D

� �

� tan�1
t � t

2

D

� �

; ð20Þ

where t is the time. The ramp rise is centered on t1, and the ramp fall is centered on t2, and Δ is

the characteristic rise time. Now, 0� f(t)� π, so we normalize by dividing by fmax − fmin as

seen in Eq (19), where fmax and fmin are the maximum and minimum values of f(t) actually

encountered in a given instance.

Numerical methods

We use NFTsim [59], which is a publicly available neural field software, to solve Eqs (11)–(17)

numerically for the spatially uniform case in which ther2 term in Eq (14) is zero. To vary νse
temporally, we use Eqs (19) and (20). This involves solving ordinary delay differential equa-

tions, because there is a propagation time delay t0/2 between the different neural populations

present in Eqs (15) and (17). Hence, a fourth-order Runge-Kutta integration is employed to

solve these equations, with an integration time step of 10−4 s and store time histories of the

delay terms t0/2 into the past.

Because extensive comparisons with experiment have demonstrated that the normal brain

operates close to stable fixed points [3, 8, 29, 40, 42], we start our simulations from a corti-

cothalamic steady state with low firing rate. However, because of the delay time t0/2, we must

specify these initial steady-state conditions to apply for times −t0/2< t� 0.

We use the parameters in Table 1 as the initial parameters, which are taken from [3] with ν0
= 0.8 mV s in all cases. A constant input νsn ϕn = 2 mV is used and no external noise is applied

in the simulations as the seizure onset occurs spontaneously. Simulations are 300 s long, and

we record the output time series every 5 ms. For all simulations, we use the default parameters

shown in Table 1 unless otherwise specified. The default parameters we used are the corre-

sponding parameter set of [3] for tonic-clonic seizure which push the system into the vicinity

of alpha instability. For the dynamic spectrum and power spectrum analysis, we employ the

FFT (fast Fourier transform) algorithm with a Hanning window of 600 data points with an

overlap of 200 points and sampling frequency of 200 Hz.
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