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ABSTRACT 

 

 

Plant viruses are an important component of agro-ecosystems and the knowledge of impacts they 

can cause on their hosts, and on different vectors and non-vector herbivores associated with the 

hosts, is very crucial in devising sound management strategies for virus disease and vector 

control in the landscape. The interactions between these components, however, are difficult to 

predict and vary according to the system under investigation. In order to understand some of 

these interrelationships, different sets of experiments were carried out in three different 

pathosystems to look at the impacts of plant viruses on vector and non-vector herbivores. Firstly, 

in Sorghum mosaic virus (SrMV)-sorghum (Sorghum bicolor L.) pathosystem, we found that 

Melanaphis sacchari (Zehntner) was attracted to virus infected sorghum but the population was 

negatively affected upon feeding on virus infected sorghum. Moreover, M. sacchari unlike 

Myzus persicae (Sulzer), failed to transmit SrMV, and we state based on our results that M. 

sacchari is a non-vector of SrMV. In Cucumber mosaic virus (CMV) and Sunn-hemp mosaic 

virus (ShMV) infected cowpea (Vigna unguiculata (L.) Walp), oviposition by adult Chrysodeixis 

includens (Walker) and Spodoptera frugiperda (Smith) was negatively affected whereas S. 

frugiperda larva benefitted upon feeding on CMV-infected host tissue. In our study with Bell 

pepper endornavirus (BPEV) in bell pepper (Capsicum annuum L.), we observed that M. 

persicae preferred virus-free leaves and performed poorly on virus infected leaf tissues. The 

mixed results we obtained on the impacts of plant viruses in different systems suggest that it is 

difficult to draw a general conclusion and the interactions are complex, diverse, and virus-insect 

specific.



1 
 

CHAPTER 1: GENERAL INTRODUCTION 

 

 
Plant viruses are abundant in both natural and man-made ecosystems and upon infecting alter the 

physiological as well as the phenotypic characteristics of their host plants (Blua et al. 1994, Jeger 

et al. 2004, Agrawal et al. 2006). Moreover, plant viruses are obligate intracellular parasites that 

lack their own molecular machinery to replicate and therefore need to infect a plant to do so. 

Since their hosts are sessile, plant viruses need to employ different strategies to disperse within 

the landscape. The majority of plant viruses recruits biotic vectors for transmission to cause 

disease in agricultural crops (Whitfield et al. 2015). One of these biotic agents are insects, the 

largest group of plant virus vectors, that include aphids, thrips, leafhoppers, plant hoppers and 

whiteflies (Bragard et al. 2013).  

 Along with the changes plant viruses cause to their hosts, they also influence vector 

behavior (Eigenbrode et al. 2002, Ingwell et al. 2012) and population dynamics (Ajayi et al. 

1983, Alvarez et al. 2007). The effects of plant viruses on their vectors, however, are not 

predictable and depend upon factors such as the type of virus or mode of transmission. Aphid 

vectors performed better on plants infected by persistently transmitted viruses (Araya and Foster 

1987, Montllor and Gildow 1986, Fereres et al. 1989, Castle and Berger 1993, Jimenez-Martinez 

et al. 2004), whereas reduced performance of aphids was reported on the plants infected by non-

persistently transmitted virus (Mauck et al. 2010).  

 Although information abounds on the impacts of plant viruses on vector herbivores, plant 

virus and non-vector herbivore interactions have been poorly illustrated. Understanding these 

interactions is critical for developing pest management strategies in diverse and complex agro-

ecosystems since most insect herbivores do not serve as vectors under field conditions (Hu et al. 

2013). Only a few studies have documented the effects of plant viruses on non-vector herbivores 
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(Hare and Dodds 1987, Lin et al. 2008, Thaler et al. 2010, Mauck et al. 2010). Therefore, we 

sought to study the interactions between plant viruses, their potential vectors and non-vector 

herbivores on three distinct pathosystems with an aim to understand these complex 

interrelationships.  

 The first two data chapters of this dissertation (Chapter 3 and 4) focusses on Sorghum 

mosaic virus (SrMV) -grain sorghum (Sorghum bicolor L.) pathosystem. Sorghum mosaic virus 

(SrMV) (Family: Potyviridae, Genus: Potyvirus) is an important potyvirus that causes mosaic 

disease in sugarcane Saccharum officinarum L.), maize (Zea mays L.), sorghum, and other 

Poaceae species (Grisham et al. 2007, Xu et al. 2008). SrMV causes a reduction in grain and 

forage production in susceptible sorghum cultivars (Silva et al. 2012). Even though SrMV is 

more prevalent in sugarcane than sorghum in field conditions in Louisiana, there is a possibility 

of a host switch or expansion, like in the cases of other viruses historically related to sugarcane 

(Wei et al. 2016, de Souza 2017). Wei et al. (2016) reported that Sugarcane yellow leaf virus 

(SCYLV) (Luteoviridae: Polerovirus), a disease historically related with sugarcane, was detected 

in 41% of sorghum plants tested in Florida. Similarly, de Souza (2017) reported the incidence of 

JGMV (Johnson grass mosaic virus) infecting sorghum in Brazil. One of the potential vectors of 

SrMV, we presume, is Melanaphis sacchari, an important invasive pest in U.S. sorghum. M. 

sacchari was reported to transmit Sugarcane mosaic virus (SCMV) (Family: Potyviridae, Genus: 

Potyvirus) in sorghum (Singh et al. 2005). We hypothesized a similar mode of transmission of 

SrMV by M. sacchari in sorghum. Outbreaks of M. sacchari have caused tremendous economic 

loss as a direct pest to sorghum and hence its potential to vector plant viruses adds a new 

dimension to the injury it can inflict in crop production systems. Therefore, we designed 

experiments to study the potential of M. sacchari to vector and transmit SrMV in sorghum. We 
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compared the efficiency of M. sacchari to vector SrMV with a model vector of potyviruses, 

Myzus persicae (Sulzer). Additionally, we conducted electrical penetration graph (EPG) studies 

and characterized the feeding behavior of M. persicae and M. sacchari in order to determine if 

the differences in their feeding behaviors could correlate with their respective transmission 

efficiencies. We also designed experiments to understand the preference behavior of M. persicae 

and M. sacchari on SrMV-infected and non-infected sorghum. The life history traits of M. 

sacchari on SrMV-infected and non-infected sorghum was also studied.  

 Chapter 5 of this dissertation documents the study conducted on Cucumber mosaic virus 

(CMV) and Sunn-hemp mosaic virus (ShMV) infected cowpea (Vigna Unguiculata (L.) Walp) 

and the effects on two non-vector herbivores, soybean looper, Chrysodeixis includens (Walker) 

and fall armyworm, Spodoptera frugiperda (Smith). Both CMV and ShMV are important viruses 

that infect cowpea and cause mosaic symptoms, stunted growth, and eventual yield loss 

(Arogundade et al. 2009, Pio-Ribeiro et al. 1978). Unlike the earlier chapters which studied 

piercing-sucking herbivores and impacts of plant viruses on them in a relatively understudied 

pathosystem, here, we studied two economically important chewing herbivores in two well-

defined pathosystems, CMV and ShMV in cowpea. The effects of CMV and ShMV-infected 

cowpea on soybean looper and fall armyworm larval growth and adult oviposition preference 

was investigated.  

 The third pathosystem studied in this dissertation (Chapter 6) consists of a persistent 

virus, Bell pepper endornavirus (BPEV) in bell pepper (Capsicum annuum L.) and a common 

piercing sucking herbivore, green peach aphid. This is a unique pathosystem which includes a 

plant virus with no documented symptoms and no negative effects on the hosts which is present 

in almost all tested bell pepper cultivars (Valverde and Fontenot 1991). There is no known vector 
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of BPEV.  It is transmitted only vertically and is present at uniform concentrations in every 

tissue and at every developmental stage of the plants (Okada et al. 2011). BPEV-infected 

genotypes seemed to have been selected and introduced inadvertently in bell pepper growing 

regions. This selection for virus infected genotypes suggests that viruses might be providing a 

benefit to the hosts.  The benefits might include tolerance or resistance to biotic and abiotic 

agents and therefore a symbiotic relationship might have evolved between the virus and their 

host. Escalante (2017) reported that BPEV-infected lines of bell pepper were less severely 

affected by Pepper mild mottle virus (PMMoV) infection. Therefore, in order to understand if 

BPEV-infection provides any benefit to bell pepper hosts against a common pest, green peach 

aphid, we designed experiments to determine its host suitability and population dynamics on 

BPEV-infected and non-infected pepper plants.  

 As a synopsis, the overarching goal of the studies documented in this dissertation is to 

understand the effects of plant viruses on the behavior and performance of their potential vectors 

and non-vector herbivores.  
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CHAPTER 2: LITERATURE REVIEW 

 

 

2.1. Biology and life cycle of aphids 

Aphids are insects in the Superfamily Aphidoidea, Family Aphididae, in the Suborder 

Sternorrhyncha and the homopterous division of the Order Hemiptera. Aphids are small (1-10 

mm), soft bodied, and ovoid, with long antennae, piercing-sucking mouth parts, and a pair of 

cornicles (tubes pointing upward on the dorsal fifth abdominal segment), which secrete alarm 

pheromones (Brisson and Stern 2006). Distributed worldwide and with more than 4000 known 

species, aphids include many of the most important insect pests of agriculture in temperate 

regions (Minks and Harrewijn 1989, Dixon 1998). Aphids can be strictly monophagous, e.g. the 

grape phylloxera, Daktulosphara vitifoliae Fitch, to polyphagous, e.g. the green peach aphid, 

Myzus persicae Sulzer (Dixon 1987).  Aphids display polymorphism and can possess either 

apterous (wingless) or alate (winged) forms depending on their function and environmental 

conditions (Blackman and Eastop 2000, Williams and Dixon 2007).  

 There are two major types of life cycle of aphids depending upon how they utilize their 

host plants; most are autoecious or monoecious, living on one or a few species of plants of a 

particular genus (Eastop 1973), but about 10% are heteroecious, alternating between a primary 

host and one or more secondary hosts (Dixon 1987). Heteroecious aphid species live on one 

plant species during winter, known as a primary host, and migrate to an unrelated secondary host 

during summer (secondary host), migrating back to the primary host in autumn (Williams and 

Dixon 2007). Depending upon the mode of reproduction, the life cycle of aphids can be 

categorized as anholocyclic, in which all reproduction is parthenogenetic, or holocyclic, in which 

a sexually reproducing generation occurs at least once in a year (Dixon 1987). For heteroecious, 

holocyclic species, sexual morphs (androparae: sexual males that mate with sexual females and 
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oviparae: sexual females that oviposit eggs after mating with sexual males) are produced on the 

secondary host while mating occurs in association with the primary host where females oviposit 

(Miyazaki 1987). The eggs are usually cold tolerant (can tolerate temperatures up to -40 °C), 

overwinter on the primary host, and hatch in spring, giving rise to fundatrices (James and Luff 

1982, Williams and Dixon 2007). For example, M. persicae alternates between its primary hosts, 

usually Prunus sps. (Rosaceae) and secondary hosts, various herbaceous plants, in the areas of 

cold winters, thus displaying a heteroecious, holocyclic life cycle (Blackman 1974). The 

fundatrix is the most fecund aphid morph and produces numerous offspring through thelytoky 

(parthenogenesis that produce only females). Spring migrants then leave the primary host and 

move to secondary hosts, usually an abundant herbaceous plant where they produce numerous 

parthenogenetic generations and build a large population during summer (Williams and Dixon 

2007, Dixon 2012). Migration of heteroecious aphid species back to the primary host from 

secondary hosts is brought about by shortened day length and fall in temperature (Williams and 

Dixon 2007). Some aphid species, however, also exhibit plasticity in life cycles depending upon 

the climate or the availability of primary hosts. For example, M. persicae is anholocyclic in more 

temperate regions of its range while some Diuraphis noxia, though holocyclic in its native range, 

displays anholocyclic life cycles in its invaded range, North America (Williams and Dixon 

2007). Aphid species, if anholocyclic, do not produce sexual morphs but rather overwinter as 

parthenogenetic nymphs or adults (Williams and Dixon 2007, Dixon 2012).  

Aphids feed passively on vascular tissue contents (generally the phloem) via high 

pressure within the sieve elements. Their mouthparts consist of maxillae and mandibles 

elongated into a stylet bundle that penetrates plant tissues and reach the phloem, while the distal 

tip of the labium helps to guide stylet penetration from outside. Aphids are known to produce 
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two different types of saliva during feeding that mediate their interactions with plants (Miles 

1999). The first type, known as gel saliva, is dense and proteinaceous and is secreted during 

stylet movement through the apoplast.  It jells around the stylets, forming a stylet sheath to 

facilitate penetration, seal puncture sites on cell membranes, isolate plant tissues from mouth 

parts, and prevent plant reaction at the site of feeding (Felton and Eichenseer 1999). The second 

type is watery saliva which is secreted during cell penetration and ingestion. Once the stylets 

have reached the phloem, digestive and lytic enzymes are released and aphids start sucking plant 

photosynthates, leading to plant injury (Miles 1999).   

Injury by aphids can be categorized into direct and indirect injury. Direct injury occurs 

due to the removal of plant photosynthates and piercing of the plant foliage leading to 

deformation, necrosis, or stunting of the leaves (Breen and Teetes 1990, Kindler and Hammon 

1996, Blackman and Eastop 2000). This type of feeding often causes weakening and yellowing 

of the plant (Burd 1993, Blackman and Eastop 2000). Indirect injury is associated with sooty 

mold growth which leads to reduced photosynthetic ability or by vectoring of plant viruses 

(Quisenberry and Ni 2007).   

Aphids feed on plant sap which is a nutritionally unbalanced diet high in carbon. This 

leads to nitrogen deficiency in aphids. Aphids are known to possess the ability to synthesize 

amino acids and lipids from dietary sugars (Febvay et al. 1999). Small organic compounds like 

sugars and amino acids are principal components in phloem sap which require minimum 

digestive processing and increase assimilation efficiency of aphids. However, plant sap doesn’t 

provide all the required essential amino acids. In order to meet the requirements aphids lack in 

their diet, aphids have developed an obligatory symbiotic relationship with a gamma-

proteobacteria, Buchnera aphidicola Munson Baumann and Kinsey, hosted in the specialized 
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cells (mycetocytes or bacteriocytes) in the cytoplasm (Munson et al. 1991). These 

endosymbionts secrete essential amino acids to supplement the aphid diet (Douglas and Prosser 

1992, Douglas 1998, Douglas et al. 2001).  

Aphids possess a differentiated digestive system that includes a filter chamber, a structure 

that links the initial portion of the foregut (stomodeum) to the anterior portion of the hindgut 

(proctodeum). Incoming plant sap has a higher osmotic pressure than the hemolymph of aphids 

due to the higher concentration of dietary sugars (Douglas 2006). In order to prevent desiccation, 

the ingested sap is allowed to pass quickly and directly to the final portion of the digestive 

system, thereby circumventing the main absorptive portion of the midgut (Waterhouse 1957, 

Douglas 2006).  

2.2. Aphid transmitted viruses, their biology, and management 

Plant viruses must move from infected to healthy plants in order to survive and spread. Since 

they cannot move by themselves, plant viruses achieve this either by mechanical means or by 

exploiting biological vectors such as arthropods, nematodes, and fungi. Of all known plant virus 

vectors, the best described insect vectors are aphids, thrips, leafhoppers, plant hoppers, and 

whiteflies (Bragard et al. 2013). More than 190 aphid species out of 4,700 described species have 

been reported to transmit plant viruses (Remaudiére and Remaudiére 1997, Nault 1997). Most 

common vector species belong to genera Myzus, Acyrthosiphon, Aphis, and Macrosiphum 

(Kennedy et al. 1962). Plant viruses transmitted by aphids belong to about 19 virus genera 

comprising around 275 virus species, many of which cause diseases of major economic 

importance in agricultural crops (Nault 1997).   

 Virus transmission by aphids typically consists of four stages: i) acquisition- the process 

by which aphids acquire virus particles from the infected host upon feeding on them; ii) 
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retention- process by which virus particles are retained at specific sites within or on the vector; 

iii) latency- duration required by the virus particle to be infective after acquisition before which 

transmission cannot occur; and iv) inoculation- the process by which virus particles are released 

into the tissues of a healthy plant by the vector (Katis et al. 2007). Based on the time required for 

these four stages, three modes of transmission have been initially delineated; non-persistent, 

semi-persistent, and persistent transmission. Moreover, depending on whether the ingested virus 

particles circulate inside the body of vector before transmission or not, the mode of virus 

transmission has been broadly categorized into circulative and non-circulative transmission (Ng 

and Perry 2004).  

 Non-circulative transmission includes both non-persistent and semi-persistent modes of 

transmission. The majority of the aphid-vectored plant viruses are transmitted in a non-

circulative manner (Ng and Perry 2004, Fereres and Moreno 2009). Viruses transmitted in a non-

circulative fashion are lost upon molting by aphids. Non-persistent transmission is characterized 

by very short acquisition periods of a few seconds to minutes, retention period of few minutes to 

hours, and no latent period (Ng and Falk 2006). Also known as stylet-borne viruses because 

these viruses are retained in the insect stylet, non-persistently transmitted viruses only occur in 

aphids, not in other virus vectors (Ng and Falk 2006). Some examples of non-persistently 

transmitted viruses are potyvirus (type species: Potato virus Y), carlavirus (type species: 

Carnation latent virus), cucumovirus (type species: Cucumber mosaic virus), bromovirus (type 

species: Brome mosaic virus), caulimovirus (type species: Cauliflower mosaic virus) (Nault 

1997, ICTV 2017).  Non-persistent plant viruses have been suggested to employ one of two 

mechanisms of transmission: capsid-only or helper-dependent (Ng and Perry 2004, Ng and Falk 

2006, Bragard et al. 2013, Blanc et al. 2014). For example, Cucumber mosaic virus (CMV) 
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particles were shown to require only viral coat protein and conserved capsid surface domains for 

efficient transmission by M. persicae (Liu et al. 2002). Potyviruses encode a helper protein, 

helper component-proteinase (HC-Pro), which is made in the plant and has to be acquired by the 

aphid either during or before virus acquisition for transmission to occur (Raccah et al. 2001). 

HC-Pro facilitates virion retention in aphid stylets by acting as a bridge between potyvirus CP 

(capsid protein) and aphid proteins in the stylet (Blanc et al. 1998, Dombrovsky et al. 2007, Seo 

et al. 2010). Non-persistent viruses are found to be non-tissue specific (Hogenhout et al. 2008).  

 In semi-persistent transmission, acquisition of virus particles by the vectors occurs within 

minutes and particles are typically ingested in the foregut. These viruses are also known as 

foregut borne viruses. Acquisition periods for semi-persistent viruses’ range from minutes to 

hours, retention time from few hours to days, and latent periods are absent like that of non-

persistently transmitted viruses. Palacios et al. (2002) suggested that prolonged feeding by a 

vector might increase the transmission efficiency of these viruses. Although most of these 

viruses are foregut-borne, Cauliflower mosaic virus, was found to reside exclusively at the tip of 

aphid stylet (Uzest et al. 2007). Semi-persistent viruses are not found to be internalized in the 

vector gut but rather reside in chitin-lined areas of the foregut (Ng and Falk 2006). Viral CP is 

largely involved in virus acquisition and retention by the insect vector in semi persistent 

transmission (Ng and Zhou 2015). Some common examples of semi-persistently transmitted 

viruses are closterovirus (type species: Beet yellows virus), caulimovirus (type species: 

Cauliflower mosaic virus) (in part), crinivirus (type species: Lettuce infectious yellows virus) 

(Nault 1997, Hull 2002, ICTV 2017). 

Persistently transmitted viruses are almost always circulative, in which the ability to 

transmit virus is retained between molts. Circulative, persistent viruses require longer acquisition 
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periods than non-persistent viruses, lasting minutes to hours with retention times being the entire 

life of the insect and latent periods lasting days to weeks (Ng and Falk 2006). A latent period 

occurs between acquisition and inoculation, but once it has passed, the aphid can remain 

infective for life. Due to the phloem limited nature and the path they have to travel inside the 

host, these viruses have a longer acquisition and retention periods (Ng and Perry 2004). 

Transmission of circulative, persistent viruses from an infected plant to a healthy host plant 

through aphid vectors have been described to consist of four distinct processes: (1) 

ingestion/intake of the virus from infected plant to aphid’s alimentary canal lumen, (2) virus 

acquisition through aphid’s gut [Poleroviruses like Beet western yellows virus and Potato leafroll 

virus use posterior mid gut of M. persicae (Garret et al. 1993, Reinbold et al. 2001)) while 

viruses like Barley yellow dwarf virus in Sitobion avenae, Cereal yellow dwarf virus, Soybean 

dwarf virus in Aulacorthum solani and M. persicae are found to be internalized at hindgut 

(Gildow et al. 1994, Brault et al. 2005)], (3) virus retention in the tissues and hemocoel, and (4) 

transmission of virus particles through accessory salivary gland and into the phloem tissue of a 

new host plant (Gray and Gildow 2003). Virus particles have to overcome distinct barriers in 

order to circulate and move across the tissue of vector and this movement is brought about by the 

process of membrane mediated endocytosis and exocytosis. Different barriers to movement for 

virus particles across the body of vector for persistent, circulative transmission involve: a) 

midgut infection barrier, b) dissemination barrier, c) salivary glands escape barrier, and d) 

transovarial transmission barrier (Ammar 1994). The existence of these barriers accounts for the 

specificity of transmission of these viruses by different aphid species (Peiffer et al. 1997).  

Based on the ability of the virus to replicate in vector cells, circulative viruses are further 

categorized as propagative (eg. rhabdoviruses) or non-propagative (eg. luteoviruses, nanoviruses, 
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enamoviruses, poleroviruses). Circulative propagative viruses are capable of inducing disease in 

the vector but rarely do so because they multiply at a very low rate unlike in their host plant 

where they multiply exponentially, causing high levels of damage in a short period of time 

(Brault et al. 2010).  Plant rhabdoviruses are retained by the infected insect for life and the virus 

can also follow a transovarial route to reach the offspring (Redinbaugh et al. 2005).  

Insect vectors play an important role in deciding the host range of a plant virus. Distinct 

molecular interactions of virus and vector, genetic components of the vector, and host plant 

components ingested during feeding determine vector competency (Dietzgen 2016). Thus, 

controlling aphid vectors is a crucial management strategy for aphid-borne virus diseases in 

plants. Exploitation of resistance genes of the host to virus and/or vector in order to interfere 

with virus transmission, chemical control of the vectors, and integrated pest management are 

some of the most widely used strategies for controlling vector-borne virus diseases (Whitfield et 

al. 2015, Dietzgen 2016).  Potential approaches to disrupt insect transmission of plant viruses 

from virus acquisition by the vector and transport and delivery to a new host have been discussed 

in a review by Whitfield and Rotenberg (2015). Cultural control practices to minimize hosts for 

pathogens such as pruning, rogueing, and removal of volunteer crop plants can prevent uptake of 

pathogens by the potential vector. Use of reflective mulches and paints to repel vectors, 

protective row covers and barrier crops can help protect susceptible host plants from virus 

transmission by vectors (Halbert 2008). Though efforts to introduce natural enemies of virus 

vectors are underway, it has not been very successful at present (Halbert 2008). Regulatory 

measures like quarantines, strict sanitation measures in the field, and crop-free periods can also 

help to control vectored plant pathogens. Chemical control of vectors is an important strategy to 

limit spread of vectored plant pathogens (Broadbent 1957).  



15 
 

However, the effectiveness of insecticides in managing aphid vectored viruses greatly 

depends on the mode of transmission. Persistently and semi-persistently transmitted viruses 

require longer times for acquisition and have a longer latent period, which makes their 

management by insecticides more feasible than non-persistently transmitted viruses. Insecticides 

can be used to reduce vector populations or alter their behavior and thereby reduce virus 

transmission (Broadbent et al. 1956, Heinrich 1979, Perring et al. 1999). However, non-

persistently transmitted viruses are difficult to manage with insecticides because of their very 

short acquisition and inoculation periods that last for very few seconds (Broadbent et al. 1956, 

Perring et al. 1999). In addition, there have also been reports that insecticides cause irritation and 

induce greater vector activity which further exacerbates the spread of viruses (Shanks and 

Chapman 1965, Budnik et al. 1996). Non-colonizing aphids can also be important non-persistent 

virus vectors as these viruses are transmitted during brief, initial probes in the process of host 

selection (Perring et al. 1999). Hence, it is very difficult to expose these non-colonizing vectors 

to a lethal dose of insecticide to kill them rapidly and reduce spread (Broadbent 1969, 

Loebenstein et al. 1980, Maelzer 1986).  

The use of resistant cultivars has been effective to some extent to control viral diseases 

caused by non-persistently transmitted viruses which are difficult to control by other means 

(Walker et al. 1982, Hammond 1998). Many commercial crops have been bred for resistance to 

various viruses such as Papaya ringspot virus and Cucurbit mosaic virus in melons and potato 

viruses in potatoes (Berger and German 2001, Brown and Corsini 2001). Mineral and vegetable 

oils might inhibit non-persistent vector transmission of viruses by modifying the vector probing 

behavior responsible for transmission (Chavan 2015). The physico- and electrochemical 

properties of oils might affect insect feeding apparatus and inhibit sap sampling (Simmons et al. 
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1977). Different modalities of host plant resistance like antixenosis, antibiosis, and tolerance are 

being employed in resistance breeding against aphid vectors but these approaches are only 

suitable for persistent viruses, transmitted by colonizing aphids (Katis et al. 2007). Moreover, 

host-plant resistance tactic is further hindered by the rapid evolution of aphid populations, 

commonly referred as biotypes, which have overcome host-plant resistance (Katis et al. 2007) 

Biotype can be defined as “populations within an arthropod species that differ in their ability to 

utilize a particular trait in a particular plant genotype” (Smith 2005).  

2.3. Why aphids are efficient virus vectors?  
 

Aphids are far and away the most widespread and efficient vectors of plant viruses (Nault 1997). 

Certain characteristics of aphids during host selection process such as series of brief probes, 

minimum injury to plant tissues during feeding, and rapid dispersal in the event of host rejection 

predispose them to being very effective virus vectors (Brault et al. 2010). The host range of 

aphids and their life cycle characteristics such as autoecious or heteroecious, alate or apterae, 

colonizing or non-colonizing are also key components in determining the virus epidemiology and 

rate of spread of viruses (Katis et al. 2017). Migrant aphids primarily locate plant materials 

through visual cues especially color (Kennedy et al. 1959, Kring 1972). After alighting on plants, 

host recognition process initiates with the help of certain physical and chemical st imuli that are 

evaluated by various sensilla located on the head, antennae, tarsi and labium of aphids 

(Pettersson 1971, Tjallingii 1978, Backus 1988, Park and Hardie 2004). Aphids, upon tarsal 

contact with any solid surface, make brief probes (stylet insertions) as a behavioral reflex, 

regardless of whether the plant is a host or non-host species and even if there is the presence of 

deterrent cues (Powell et al. 1999). This behavior of aphids to initiate probing upon landing on 

any solid surface helps to explain their exceptional ability to transmit plant viruses. Moreover, 
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probing behavior is essential for aphids to assess internal plant chemistry during host plant 

selection process (Powell and Hardie 2000, Powell et al. 2006). Virions of non-persistent viruses 

are acquired and inoculated during these brief epidermal cell punctures (probes) (Powell 1991, 

Powell et al. 1992), which explains why non-persistent transmission is virtually exclusive to 

aphids. Aphid stylets lack chemoreceptors and hence aphids need to ingest plant sap through the 

maxillary food canal to allow chemosensory assessment by a gustatory organ in the pharyngeal 

area of the foregut (Wensler and Filshie 1969) and during this process, virus particles are 

ingested and acquired by aphids (Powell et al. 1995, Pirone and Perry 2002). This property of 

reflex probing and feeding behavior make aphids ideal agents to carry virus particles and rapidly 

spread them in the ecosystem.  

2.4. Effects of plant viruses on behavior and performance of vectors and non-vector 

herbivores 
 

Since most plant viruses are transmitted by insect vectors, their spread from plant to plant 

depends on the behavior and dispersal of their vectors (Ng and Falk 2006, Fereres and Moreno 

2009, Hogenhout 2008). Thus, plant viruses evolve mechanisms to modify the behavior of their 

vectors by inducing changes in the plant host in order to enhance virus transmission and spread. 

The effects of viruses on their vectors can be both indirect or plant mediated, or direct which 

occurs within the vectors after virus acquisition such as alterations in vector behavior, 

performance, or both, with implication for the spread and persistence of the pathogen in the host 

populations (Hurd 2003, Lefevre and Thomas 2008, Rajabaskar et al. 2014, Eigenbrode et al. 

2018). 

 There have been numerous instances of virus-vector-host interactions leading to positive, 

negative, and neutral effects on vectors. Some persistently transmitted plant viruses have been 

demonstrated to induce changes in the host plants that cause vectors to preferentially settle on 
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infected plants, with the potential for increased virus spread (Eigenbrode et al. 2002, Srinivasan 

et al. 2006, Alvarez et al. 2007, Mauck et al. 2018).  Alvarez et al. reported that Potato leafroll 

virus (PLRV) infected mature leaves of potato attracted more M. persicae than non-infected 

leaves. Moreover, it has also been shown that feeding preferences of insect vectors, after the 

acquisition of a virus, especially for non-persistently transmitted viruses, can be altered (Stafford 

et al. 2011, Ingwell et al. 2012, Rajabaskar et al. 2014). Rajabaskar et al. (2014) in their study on 

the potato-Myzus persicae- Potato leafroll virus pathosystem, found out that non-viruliferous 

aphids (aphids not carrying viruses) preferred plants infected with PLRV, whereas viruliferous 

aphids (aphids carrying viruses) preferred plants not infected with PLRV. Among non-

persistently transmitted virus pathosystems, vectors have been found to primarily settle on 

infected plants initially in some instances (Mauck et al. 2010, Mauck et al. 2014, Carmo-Sousa et 

al. 2016) while preference for non-infected plants by vectors have also been reported in some 

other pathosystems (Blua and Perring 1992a). Additionally, some neutral preference behavior by 

vectors have also been observed in some other non-persistently transmitted virus pathosystems 

(Blua and Perring 1992b, Castle et al. 1998, Hodge and Powell 2008, Boquel et al. 2012). It is 

notable to mention that same aphid species can react differently to virus infected plants 

depending upon the mode of virus transmission (Fereres and Moreno 2008).  

 In addition to altering vector preference and feeding behavior, virus induced changes in 

host plants affect the performance of arthropod vectors both positively (Araya and Foster 1987, 

Fereres et al. 1989, Jimenez-Martinez et al. 2004, Maris et al. 2004, Srinivasan et al. 2008) and 

negatively (Blua and Perring 1992, Garcia et al. 2000, Stumpf and Kennedy 2005). However, no 

effects of virus induced host changes on vector performance have been reported in some other 

instances (Wijkamp et al. 1995, Roca et al. 1997). Additionally, the results of those studies 
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suggest that there is an interesting pattern of variation on performance of vectors depending upon 

the mode of transmission. Performance of aphid vectors have been documented to increase on 

plants infected by persistently transmitted viruses (Araya and Foster 1987, Montllor and Gildow 

1986, Fereres et al. 1989, Castle and Berger 1993, Jimenez-Martinez et al. 2004), whereas 

reduced performance of aphids was reported on the plants infected by non-persistently 

transmitted virus (Mauck et al. 2010). Fereres et al. 1989 reported that Sitobion avenae (F.) had a 

shorter developmental time, greater fecundity and greater intrinsic rate of increase while feeding 

on Barley yellow dwarf virus (a persistently transmitted virus) infected wheat as compared to 

aphids feeding on non-infected plants. However, Wosula et al. (2013) reported that mixed 

infection of sweet potato cultivar Evangeline (Ipomoea batatas L.) with three potyviruses; Sweet 

potato feathery mottle virus (SPGMV), Sweet potato virus 2 (SPV2) and Sweet potato virus G 

(SPVG) positively affected the intrinsic rate of increase and the net reproductive rate of Myzus 

persicae. In contrast, Mauck et al. (2010) found that CMV-infected squash reduced population 

growth of its two aphid vectors; Aphis gossypii and Myzus persicae.   

 Although there is a copious amount of literature on the impacts of plant viruses on vector 

herbivores, the interactions between plant viruses and non-vector herbivores have been poorly 

documented. Increment in the growth of Leptinotarsa decemlineata (Say) larvae on Tobacco 

mosaic virus (TMV) infected tomato (Solanum lycopersicum L.) was reported by Hare and 

Dodds (1987). Similarly, the larval growth of Spodoptera exigua (Hubner) was higher on TMV-

infected tomato plants as compared to control plants (Thaler et al. 2010). However, no effects on 

the feeding or oviposition preference of corn earworm Helicoverpa armigera (Hubner) on 

tomato plants infected by Tomato mosaic virus was reported by Lin et al. (2008). In one study, 

Mauck et al. (2010) reported that Anasa tristis (DeGeer), preferred to lay more eggs on healthy 
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squash (Cucurbita pepo L.) plants as compared to CMV infected plants. Beillure et al. (2010) 

found that spider mite (Tetranychus urticae Koch) survival and oviposition was enhanced by 

Tomato spotted wilt virus (TSWV) infection on pepper plants (Capsicum annuum L.). However, 

fungus gnat (Bradysia sp.) females preferred to oviposit on non-infected rather than White clover 

mosaic virus infected white clover (Trifolium repens L.) plants, although fungus gnat larvae were 

only marginally affected by the virus (van Molken et al. 2012). Therefore, the effects of virus 

infection of the host plant on the behavior and fitness of non-vector herbivores is, at present, 

unpredictable.  It is evident that most insect herbivores under field conditions do not serve as 

vectors and hence, it is important to understand the effects of virus-infected plants on non-

vectors in order to devise efficient pest management tactics in the agro-ecosystems (Hu et al. 

2013).  

2.5. Use of electrical penetration graph for study of vector feeding behavior  
 

Understanding the feeding behavior of vectors is very important in order to elucidate virus 

transmission mechanism. Aphids, like any other piercing sucking insects, conduct plant 

recognition and acceptance behavior internally during stylet penetration in plant tissues (Powell 

et al. 2006). However, stylet penetration behavior cannot be observed directly but can be 

monitored using electrical penetration graph (EPG) technique (McLean and Kinsey 1964). EPG 

is an innovative approach which is useful in assessing stylet probing behavior of plant feeding 

insects, usually hemipterans such as aphids (McLean and Kinsey 1964). It is a simple system 

which consists of a host plant and a piercing-sucking insect attached through a wire in an 

electrical circuit, which is completed as soon as the mouthparts of the insect penetrates the plant. 

Penetration activities generate electrical events inside the stylet canals or at its extremities 

(Tjallingii, 1988). Two different systems can be used, the AC system (McLean and Kinsey, 
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1964) and the DC system (Tjallingii 1988) and both the systems record the changes in electrical 

resistance due to the probing behavior of insects. The fluctuations in voltage and electrical 

resistance thus recorded as waveforms, which can be displayed on a computer monitor, are 

matched to specific feeding events. This technique provides detailed information regarding stylet 

activities, its tip position in plant (may it be intra or extracellular) on the basis of recorded signal 

potential (Tjallingii 1985). The major waveforms distinguished in EPG recordings consists of 

intercellular stylet activity, intracellular puncture by stylets, salivation on sieve element, feeding 

on phloem sieve element, xylem sap ingestion (Tjallingii and Esch 1993, Walker 2000).  

Moreover, distinctive characteristics of EPG waveforms produced by insect feeding has 

been categorized into three behavioral phases; i) pathway phase, ii) phloem or sieve element 

phase and iii) xylem phase (Reese et al., 2000; Tjallingii, 2006). Aphids conduct a series of 

activities during the pathway phase such as puncturing the cell, inserting into and withdrawing 

the stylet from the cell to locate and sample the sieve element which may serve to discriminate 

hosts from non-hosts (Jiang and Walker, 2001). The sieve element phase comprises a salivation 

period and phloem ingestion followed by salivation (Tjallingii, 2006). The xylem phase includes 

water intake by the aphids (Spiller et al., 1990).  EPG study also allows to locate plant factors 

affecting aphid feeding behavior based on stylet penetration rate (van Hoof 1958, Gabrys et al. 

1997). For example, shorter probes less than 30 seconds indicate factors in the epidermis causing 

stylet withdrawal whereas longer probes ranging from 30 seconds to 3 minutes indicate stylet 

withdrawal from mesophyll tissue (Gabrys et al. 1997, Schwarzkopf et al. 2013).  

The intracellular stylet punctures of epidermal and mesophyll cells by aphids prior 

reaching to phloem can be pictured as potential drops using EPG (Martin et al. 1997). Potential 

drop occurs due to the fluctuation in transmembrane potential in plant cells and are correlated 
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with brief (3-15 s) intracellular punctures (Tjallingii 1988). Each potential drop has been further 

characterized into 3 distinct phases; phase-I, II and III. Phase II has been considered as truly 

intracellular and further divided into 3 subphases, subphase II-1, II-2 and II-3 (Tjallingii 1985, 

Martin et al. 1997). Subphases II-1 and II-3, which have been correlated with the egestion and 

ingestion events by aphids, are further associated respectively with inoculation and acquisition of 

plant viruses, especially for non-persistent viruses (Powell et al. 1995, Martin et al. 1997, Powell 

2005). The frequency of potential drops generated in EPG monitor has also been reported to 

determine the transmission efficiency of an aphid species (Powell et al. 1991).  Powell et al. 

(1995) reported a relationship between presence of phase II-3 typical pulses and potyvirus 

acquisition, suggesting that these pulses might be reflecting an ingestion event. Collar et al. 

(1997) found that the probability of Potato virus Y (PVY) acquisition by Myzus persicae in 

pepper (Capsicum annuum L.) could increase with an increment in the number of pulses within 

phase II-3. It was suggested that the differences observed in the morphology and duration of 

phase II-3 of the potential drops produced by different aphid species could be correlated with 

differences in their transmission efficiencies (Collar et al. 1998).  

2.6. Study systems  

In order to understand the effects of plant viruses on the behavior and performance of vectors 

and non-vectors herbivores, we sought to study three different pathosystems with an aim to add 

insights to the limited depth of knowledge available, especially in the sector of plant-virus and 

non-vector herbivore interactions.  
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2.6.1. Sorghum mosaic virus (SrMV) in grain sorghum  

Sorghum: Importance, usage and production in the US 

Sorghum, Sorghum bicolor (L.) Moench, is the third largest cereal grain crop grown in the US 

after corn (Zea mays L.) and wheat (Triticum aestivum L.) (NASS, USDA 2017). Sorghum 

provides comparative advantages of drought tolerance, resistance to mycotoxins and fungi, and 

survivability in relatively harsher climatic conditions; making it one of the important cereal crops 

in the world (US Grains Council 2016). Sorghum was planted on 2.3 million hectares and 9.3 

million metric tons were harvested in 2017 (NASS, USDA 2017). The major sorghum 

production region in the US, also known as “Sorghum Belt”, runs from South Dakota to 

Southern Texas with top sorghum producing states being Kansas, Texas, Oklahoma, Colorado, 

and Arkansas respectively in 2017 (NASS, USDA 2018). In the US, nearly one third of the 

sorghum crop is used for renewable fuel production, 35% is used to produce animal feed, and 

42% is exported (U.S. Grain Council 2016). In 2016, US exported almost 80% of total sorghum 

exports in the world while China accounted for 82% of the world imports (USDA-FAS 2017).  

 A large number of native and invasive pests attack sorghum in the US leading to a 

significant reduction in grain yields. Some of the common insects that attack sorghum in the US 

are wireworms (Elateridae), corn leaf aphid (Rhopalosiphum maidis Fitch), sugarcane aphid 

(Melanaphis sachhari, Zehntner), greenbug (Schizaphis graminum Rondani), chinch bug (Blissus 

leucopterus Say), corn earworm (Helicoverpa zea Boddie), fall armyworm (Spodoptera 

frugiperda J.E. Smith), cutworm (Agrotis ipsilon Hufnagel), false chinch bug (Nysius raphanus 

Howard), grasshopper, sorghum webworm (Nola cereella Bosc), and spider mites 

(Tetranychidae) (K-state research and extension 2018).  
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Sugarcane aphid, its ecology and role in plant virus transmission  

Sugarcane aphid (Hemiptera: Aphididae) has a worldwide distribution and occurs commonly as a 

pest of sorghum and sugarcane (Saccharum officinarum L.) in tropical regions of the world 

(Singh et al. 2004). The host range of M. sacchari is largely confined to the species of a few 

genera: Sorghum, Saccharum. Oryza, Panicum and Pennisetum (Denmark 1988). However, 

incidence of sugarcane aphid infesting Setaria italica (L.) (Wilbrink 1922), Zea mays (L.) 

(Agarwala 1985), Cynodon dactylon (Wilbrink 1922) or Miscanthus chinensis (L.) (Setokuchi 

1973) have also been reported. Moreover, de Souza (2018) reported that M. sacchari larviposited 

and developed to adulthood on wheat (Triticum aestivum). M. sacchari is anholocyclic 

throughout most of its geographical range in tropical and sub-tropical regions but some sexual 

oviparae forms have been reported in India (David and Sandhu 1976). Moreover, monoecious, 

holocyclic forms have also been reported on sugarcane (Yadava 1966) and sorghum (David and 

Sandhu 1976).  

 The earliest detailed study of life history and biology of sugarcane aphid was reported on 

sorghum (van Rensburg 1973a, 1973b) and sugarcane (Setokuchi 1980). Sugarcane aphid 

colonies on sorghum consist of both apterae and alate individuals which are predominantly 

lemon-yellow colored and infest the abaxial surface of the basal leaves first and then move 

upwards. Some alates have been reported to possess patterned black markings along the dorsal 

sclerites (Blackman and Eastop 1984). Asexual reproduction is predominant with adults being 

viviparous females. However, sexual reproduction of sugarcane aphid on sorghum has also been 

reported (David and Sandhu 1976) but the environmental conditions favoring sexual 

reproduction is not clearly understood. Sugarcane aphid has four nymphal stadia and its life 

cycle completes in 4.3-12.4 days (Chang et al. 1982). Adults normally live for 10-37 days 
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depending on environmental conditions (van Rensburg 1973a). Adult females produce up to 68 

nymphs with an average of 34 nymphs in their lifetime (Meksongsee and Chawanapong 1985). 

Alate aphids have a short life expectancy and produce fewer nymphs as compared to apterae 

aphids (van Rensburg 1973a). Under screen-house conditions, sugarcane aphids are reported to 

produce an average of 56 generations annually (Chang et al. 1982). However, the life span and 

population density are affected by fluctuating temperatures and rainfall patterns (Chang et al. 

1982, de Souza 2018). De Souza (2018) reported that M. sacchari individuals reared in excised 

sorghum leaves reached adulthood faster at temperatures of 25 °C to 30 °C as compared to lower 

or higher temperatures. Similarly, M. sacchari females produced more nymphs (49.8) at 20 °C 

than at 15 °C (36.4 nymphs) and 25 °C (40 nymphs). M. sacchari females had the lowest 

nymphal production at 30 °C and 32 °C, 4.1 nymphs and 5.1 nymphs respectively (de Souza 

2018). Sugarcane aphid, though reported in Hawaii in 1896, was first documented in the 

continental US in Florida on sugarcane in 1977 (Mead 1978) and then in Louisiana in 1999 

(White et al. 2001). Aphid populations during these infestations would peak during summer and 

then subside by winter. Moreover, sugarcane aphid was considered a pest of sugarcane only until 

2013, when outbreaks of M. sacchari were observed causing economic damage on sorghum 

(Armstrong et al. 2015). Since the pest outbreak in 2013, many sorghum producing regions in the 

US have experienced higher infestations of sugarcane aphid while populations have remained 

moderate on sugarcane (Medina et al. 2017). This sudden change in the pest status of sugarcane 

aphid from a minor pest of sugarcane to a major pest of sorghum led to mainly two different 

hypotheses regarding the recently observed population of sugarcane aphid; i) introduction of a 

new biotype specialized on sorghum or ii) host preference shift in pre-existing sugarcane aphid 

populations (Nibouche et al. 2018). However, Nibouche et al. (2014) reported that there was a 
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limited genetic diversity in the sugarcane aphid populations across the US. Recently, Nibouche 

and colleagues (2018) published a report stating that a new invasive genotype which has a low 

genetic diversity and consists of a dominant clonal lineage, MLL-F, is responsible for the rapid 

spread and infestation in the sorghum growing regions of the US after 2013. They used 

microsatellite markers and COI sequencing to evaluate the genetic diversity of sugarcane aphid 

populations collected pre (during 2007-2009) and post 2013 (2013-2017) and found that both 

populations are genetically distinct (Nibouche et al. 2018).  

 Since its first detection in sorghum near Beaumont, Texas, in June 2013, sugarcane aphid 

has expanded its geographic range rapidly, reaching 24 US states by 2018 (EDDSMaps 2018). 

Populations of sugarcane aphid are now commonly encountered on sorghum plants from 

emergence to harvest. Rapid and widespread growth of sugarcane aphid on sorghum in North 

America has been associated with several factors such as overwintering survival on ratoon and 

remnant sorghum or perennial alternate hosts like Johnson grass, wind-aided long-distance 

dispersal of alate individuals (Bowling et al. 2016). The aphids overwinter in Southern Texas and 

can be swept up north with increasing temperatures (Michaud 2016, Bowling et al. 2016).  In the 

US, observations in the field indicate that sugarcane aphid is predominantly anholocyclic, 

parthenogenic and viviparous (Bowling et al. 2016). The population of sugarcane aphid can be 

100% females, mature in 4 to 12 days and reproduce asexually producing between 34-to-96 

nymphs per individual depending upon temperature and nutrition (Singh et al. 2004). 

Accelerated population growth can be observed during warm and dry weather, a commonly 

encountered climatic conditions in majority of sorghum producing regions in North America 

(Bowling et al. 2016). Sugarcane aphids feed by sucking on the sap of sorghum plants. 

Symptoms of feeding include purpling of leaves, chlorosis, and then ultimate necrosis of plant 
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leaves. Effects of feeding depends upon the level and stage at which the infestation occurs. 

Earlier infestation before booting might actually kill young plants while later infestation during 

panicle initiation can prevent proper grain fill, resulting in a reduction of grain yield. Moreover, 

indirect effects can occur due to excretion of honey dew in excess by a large population that 

promotes sooty mold growth and leads to reduction in photosynthetic ability of the plants. In 

addition to that, losses during harvesting have also been reported due to sticky residue coating 

the inside of the combine and making it difficult for the machine to separate out the seed from 

the stalk and leaves, leading grain to ride over and be lost on the ground (Villanueva et al. 2014, 

Bowling et al. 2016).  

 The effects of sugarcane infestation on sorghum have been estimated in terms of both 

direct and indirect loss. In Louisiana, 27% reduction in sorghum yield was reported in 2014 

(Kerns et al. 2015). Kerns et al. (2015) estimated a 22% reduction in harvest speed with more 

than 40 hours of pauses due to machinery breakage. An estimated total impact of $7.6 million 

due to sugarcane aphid was reported in 2014 in Louisiana alone, with damaging infestations 

present in 85% of the grain sorghum acreage in the state (Brewer and Gordy 2016). Total 

sorghum acreage in Louisiana decreased by 33% in 2018 (lowest planted in 56 years) as 

compared to 2017 while area harvested was reduced by 31% (USDA, NASS 2018).  

 Besides the direct injury due to feeding and honey dew secretion, sugarcane aphids have 

also been found to vector Millet red leaf virus (MRLV) (Pei and Hsu 1958, Black and Eastop 

1984), a persistently transmitted plant virus and Sugarcane yellow leaf virus (ScYLV), a semi-

persistently transmitted virus (Schenck and Leherer 2000). Schenck and Lehrer (2000) reported a 

73.5% transmission of ScYLV by a single M. sacchari to wheat. Transmission of Sugarcane 

mosaic virus (SCMV), a non-persistently transmitted potyvirus by sugarcane aphids have been 
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reported in many instances (Bhargava et al. 1971, Kondaiah and Nayudu 1984, Setokuchi and 

Muta 1993, Singh et al. 2005, Deshmukh 2008). Yang (1986) reported that both sugarcane aphid 

and corn leaf aphid (Rhopalosiphum maidis Fitch) transmitted Sugarcane mosaic virus (SCMV) 

successfully between sorghum, corn, and sugarcane. Although sugarcane and sorghum are the 

preferred hosts, the host range of virus transmission by M. sacchari is more extensive and it 

includes ScYLV transmission in wheat, rice (Oryza sativa L.), oats (Avena sativa L.), and barley 

(Hordeum vulgare L.) (Schenck and Lehrer 2000). Successful transmission of ScYLV by a 

group of 10 to 13 M. sacchari individuals was also reported in maize (Zea mays L.) (ElSayed 

2013).  

Sorghum mosaic virus: host range, potential vectors and symptomatology 

Sorghum mosaic virus (SrMV) (Family: Potyviridae, Genus: Potyvirus) is a single stranded RNA 

virus consisting of a flexuous filamentous particle c. 750 nm long (Koike and Gillaspie 1976, 

Jilka 1990). SrMV displays distinctive symptoms on differential hosts depending upon different 

strains such as severe chlorosis and necrosis (strain I), mild mottle and mild mosaic (strain H), 

and severe red-leaf symptoms (strain M) (Tippett and Abbott, 1968), and causes yield losses in 

sugarcane, maize, and sorghum as high as 50%  (Grisham et al., 2007, Xu et al. 2008). 

Transmission and spread of SrMV to sugarcane in the field has been primarily attributed to aphid 

vectors and infected stalk cuttings with mechanical inoculation being important in the 

greenhouse and laboratory research (Rott et al. 2008, Xu et al. 2008). SrMV is not known to be 

seed transmitted in sorghum (Koike and Gillaspie, 1976). Hence, vector transmission remains the 

only viable option for SrMV transmission in sorghum fields. SrMV was originally mistaken as a 

strain of Sugarcane mosaic virus (SCMV) (Family: Potyviridae, Genus: Potyvirus) owing to 

their very similar host ranges, similar symptom expression in many hosts, common aphid 
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vectors, and serological interrelatedness (Shukla et al., 1992).  However, molecular studies have 

shown that SCMV and SrMV are genetically diverse and now SrMV is considered a separate 

virus (Shukla 1992, Yang and Mirkov 1997, Chen 2002).  Though numerous studies have 

documented the transmission efficiency of SCMV by different species of aphids on sorghum 

(Singh et al. 2005), there have been no studies on the transmission efficiency of SrMV by 

different species of aphids feeding on sorghum because SrMV had been, until recently, thought 

to be a strain of SCMV. Therefore, the potential vectors of SrMV are unknown. Singh et al. 

(2005) reported the transmission of SCMV by different species of aphids from sorghum to 

sorghum at different efficiencies; A. gossypii (30%), M. sacchari (30%), M. persicae (50%), and 

R. maidis (70%). However, owing to the very close interrelatedness between SCMV and SrMV, 

a similar mode of transmission between these two viruses by different species of aphids can be 

hypothesized.  

2.6.2. Cucumber mosaic virus and Sunn-hemp mosaic virus in cowpea  

Cucumber mosaic virus (CMV) is a type member of genus Cucumovirus, belongs to virus family 

Bromoviridae and infects more than 1200 plant species in over 100 families of monocots and 

dicots worldwide (Palukaitis et al. 1992, Zitter and Murphy 2009). Described for the first time in 

in cucumber (Cucumis sativus L.) in 1916, it is now known to infect many agricultural and 

horticultural crops in both temperate and tropical climates worldwide (Zitter and Murphy 2009). 

CMV has one of the extensive host range among plant viruses, and possesses a large number of 

isolates (Zitter and Murphy 2009, Jacquemond 2012). Moreover, CMV is an important model 

system for research due to some salient features such as easy mechanical transmissibility and 

strong virus accumulation in infected hosts, which allows for easy purification (Palukaitis et al. 

1992, Jacquemond 2012).  
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 CMV virions are icosahedral particles 29 nm in diameter and its genome is composed of 

three single stranded positive sense RNAs (Jacquemond 2012). CMV was first reported in 

cowpea (Vigna unguiculata (L.) Walp.) by Robertson (1966) in Nigeria (Abdullahi et al. 2001).  

Symptoms of CMV infection in cowpea consist of leaf curl, leaf distortion and green mosaic, 

blistering, and a zipperlike roughness along the main veins (Zitter and Murphy 2009).  

 Sunn-hemp mosaic virus (ShMV) is a type member of genus Tobamovirus and family 

Virgaviridae and infects many crops in the Family Leguminosae (Boswell and Gibbs 1983). 

Previously known as a strain of Tobacco mosaic virus, Kassanis and Varma (1975) re-designated 

this virus as Sunn-hemp mosaic virus. ShMV virions are rod-shaped particles 300 nm long and 

its genome is composed of a single stranded positive sense RNA (Kassanis and Varma 1975). 

Symptoms of ShMV infection in cowpea consists of severe mosaic, puckering, blistering and 

malformation of leaves with enations on the underside of the leaves (Lister and Thresh 1955).  

 Both CMV and ShMV are non-persistently transmitted by aphids and their effects on 

non-vector herbivores are poorly understood. Both CMV and ShMV infect cowpea plants 

causing mosaic symptoms, stunted growth, and eventual yield loss (Arogundade et al. 2009, Pio-

Ribeiro et al. 1978). However, the effects of these viruses on non-vector herbivores of cowpea 

are unknown. Two common non-vector herbivores in cowpea, soybean looper and fall 

armyworm, were chosen to study the effects of CMV and ShMV infection on their performance 

and growth.  

 Soybean looper, Chrysodeixis includens (Walker) [Lepidoptera: Noctuidae], is an 

important polyphagous pest which feeds on many agronomic and vegetable crops and is known 

to infest 31 different hosts (Herzog 1980, Moonga and Davis 2016). It is one of the most 

important and difficult pests to manage owing to their ability to consume massive amounts of 
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foliage (Mascarenhas and Boethel 1997). Similarly, fall armyworm, Spodoptera frugiperda 

(Smith) [Lepidoptera: Noctuidae], is also an important crop defoliator which displays a very 

wide host range feeding on more than 80 species in 23 families (Pashley 1988) including many 

grasses and crops such as alfalfa (Medicago sativa L.), soybean, corn, rice, sorghum, sugarcane, 

and cotton (Walton and Luginbill 1916, Hinds and Dew 1951). Historically, fall armyworm has 

been one of the primary pests of field corn in southern Unite States. (Pitre and Hogg 1983, 

Buntin 1986). A study to understand the effects of CMV and ShMV-infected cowpea on soybean 

looper and fall armyworm larval growth and oviposition preference by adults was conducted and 

results are discussed in this dissertation.  

2.6.3. Bell pepper endornavirus in bell pepper  

Plant viruses maintain a parasitic relationship with its hosts and incur negative effects to their 

hosts usually causing diseases except for some viruses, called persistent viruses, which do not 

exhibit apparent symptoms (Roossinck 2010). Plant viruses within families Amalgaviridae, 

Chrysoviridae, Endornaviridae, Partitiviridae, and Totiviridae are listed within persistent plant 

viruses (Chen et al. 2016, Fukuhara et al. 2012, Sabanadzovic and Valverde 2011, Sabanadzovic 

et al. 2009).   

 Endornaviruses belong to the genus Endornavirus in the family Endornaviridae and 

infect a wide variety of hosts including plants, fungi and oomycetes (Hacker et al. 2005, Okada 

et al. 2013, Li et al. 2014). Endornaviruses are currently categorized into two genera based on 

their genome size and unique domains; Alphaendornavirus, which infect plants, fungi and 

oomycetes, and Betaendornavirus, which infect ascomycete fungi (Adams et al. 2017). Many 

economically important crops such as beans, cereals, cucurbits, and peppers are infected by 

endornaviruses (Pfeiffer 1998, Coults 2005, Valverde and Gutierrez 2007). Generally, only 
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select cultivars of these crops have been shown to be infected by endornaviruses except for bell 

pepper (Capsicum annuum L.) and melon (Cucumis melo L.) in the US, which have been 

reported to be infected almost 100% (Valverde et al. 1990, Okada et al. 2011, Sabanadzovic et 

al. 2016). Many genotypes of common bean (Phaseolus vulgaris L.) have been reported to be 

doubly infected by two endornaviruses, Phaseolus vulgaris endornavirus 1 (PvEV1) and 

Phaseolus vulgaris endornavirus 2 (PvEV2) (Okada et al. 2013, Khamkhum et al. 2015). Plants 

infected by endornaviruses are normal phenotypically and do not display any characteristic viral 

symptoms (Okada et al. 2011, Song et al. 2013). In addition to plants, several species of fungi are 

also reported to be infected by endornaviruses such as Alternaria brassicola, Helicobasidium 

mompa, and Tuber aestivum (Osaki et al. 2006, Stielow et al 2011, Shang et al. 2015).  

 Endornaviruses have a single, linear double stranded RNA genome (9.8-17.6 kbp), are 

generally transmitted at a high rate only through seeds, and are present in a very low copy 

number (Moriyama et al. 1996, Horiuchi and Fukuhara 2004, Valverde and Gutierrez 2007). 

Endornaviruses lack both coat protein and movement proteins and are solely comprised of naked 

RNA (Roossinck et al. 2011). Endornaviruses contain only one open reading frame which 

normally encodes a single polypeptide, presumed to be processed by virus-encoded proteinases 

(Okada et al. 2011). Genomes of all completely sequenced endornaviruses consist of conserved 

motifs of RNA-dependent RNA polymerase and viral RNA helicases (Gibbs et al. 2000).  

BPEV (Bell pepper endornavirus), like other endornaviruses, shows no typical viral 

disease symptoms on bell peppers (Aguilar-Melendez et al. 2009). BPEV infected plants lack 

apparent symptoms and virus cannot move cell-to-cell but are found at constant concentrations in 

every tissue and at all developmental stages of plants (Okada et al. 2011). Endornaviruses 

possibly interact with plant hosts in many ways: i) parasitic, using host resources for their 
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replication, ii) mutualistic, a possibility looking at the high rate of vertical transmission from 

parent to progeny suggesting a selection for the endornavirus infection, or iii) commensalistic, 

benefitting the virus while no effects on their hosts (Herschlag 2017).  

BPEV in bell peppers were reported to be present in all tested bell pepper cultivars by 

Valverde and Fontenot (1991). It appears that plant breeders, oblivious of the presence of 

endornaviruses in the germplasm, favored endornavirus-infected genotypes, suggesting an 

inadvertent selection and introduction of virus infected genotypes in bell pepper growing 

regions. Since BPEV is transmitted vertically and is present at constant concentrations in almost 

all commercial bell pepper cultivars, it may be providing a benefit to the host. One of the 

possible benefits that endornaviruses render to the host might include tolerance or resistance to 

biotic and abiotic agents. Therefore, endornaviruses may have evolved a symbiotic relationship 

with their hosts to tolerate stresses. Thus, a study looking at the possible benefit of BPEV to bell 

pepper in coping with a biotic agent, green peach aphid, was conducted and discussed in this 

dissertation. 
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CHAPTER 3: THE FEEDING BEHAVIOR AND VECTOR POTENTIAL OF 

MELANAPHIS SACCHARI IN TRANSMITTING SORGHUM MOSAIC VIRUS TO 

SORGHUM 

 

 

3.1. Introduction  

 

Aphids are known to differ in their ability to transfer plant viruses depending upon the species, 

environmental conditions, and the nature of virus (Ng and Perry, 2004). This ability, also known 

as transmission efficiency, is defined as the frequency with which a single aphid can transmit a 

plant virus under standard conditions (Gibbs and Gower 1960, Gildow et al. 2008). Studies have 

suggested that transmission efficiency varies among aphid species, biotypes, life stages, different 

strains of a viruses, and their host plants (Gill 1970, Gibson et al. 1988, Boiteau et al. 1998, 

Davis et al. 2005, Cervantes and Alvarez 2011, Mello et al. 2011, Mondal et al. 2015).  Gill 

(1970) reported that Rhopalosiphum maidis (Fitch) nymphs were more efficient in transmitting 

an isolate of Barley yellow dwarf virus than adults in oats (Avena sativa). Mondal et al. (2015) 

reported that green peach aphid (Myzus persicae Sulzer) transmitted three strains of Potato virus 

Y (PVYNTN, PVYo and PVYN: O) at different efficiencies among strains and at a greater efficiency 

than bird cherry oat aphid (Rhopalosiphum padi L.). The differences in transmission efficiency 

of Bean yellow mosaic virus among two pea aphid (Acyrthosiphon pisum Harris) biotypes was 

reported earlier by Sohi and Swenson (1964). Moreover, non-colonizing aphids are reported to 

be more important vectors of non-persistently transmitted viruses (Racah et al. 1985, Summers et 

al. 1990, Peters et al. 1990).  

 Sugarcane aphid, Melanaphis sacchari (Zehntner), is an important invasive pest in the 

US sorghum (Sorghum bicolor L.). Historically, sugarcane aphid has been listed under at least 

two names, Aphis sacchari (Zehntner) (Zimmerman 1948), and Longiunguis sacchari (Zehntner) 

(Eastop 1965). Moreover, various genera were synonymously used for Melanaphis Van der Goot 
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(1917) such as Yezabura Matsumura (1917), Geoktapia Mordovilko (1921), Nevsikia 

Mordovilko (1932), Piraphis Borner (1932), Masraphis Soliman (1938), Schizaphideilla Hille 

Ris Lambers (1939), and Longiunguis Van der Goot (1977) (Eastop and Hille Ris Lambers 1976, 

Singh et al. 2004). Roy Chaudhari and Banerjee (1974) named sugarcane aphid as M. sacchari 

(Zehntner), a name commonly used in literature since then. Sugarcane aphid has been reported to 

vector and transmit different plant viruses at different efficiencies. Millet red leaf virus (MLRV), 

a persistently transmitted plant virus was found to be transmitted by M. sacchari to fox millet 

(Setaria italica L.) at 20% transmission efficiency (Pei and Hsu 1958). Similarly, Schenck 

(2000) reported that M. sacchari could transmit Sugarcane yellow leaf virus (SCYLV), a semi-

persistently transmitted virus, to wheat (Triticum aestivum L.) with a transmission efficiency of 

73.5%. Sugarcane mosaic virus (SCMV), a non-persistently transmitted virus, was found to be 

vectored and transmitted at 30% transmission efficiency by M. sacchari to sorghum (Singh et al. 

2005). Reports by Kondaiah and Nayudu (1984) stated a transmission efficiency of 65.0% for 

SCMV by M. sacchari to sorghum variety “Rio”. Also, transmission efficiency of SCMV by 

different species of aphids has been documented on sorghum (Singh et al. 2005) but there have 

been no studies on the transmission of SrMV by aphids feeding on sorghum, because SrMV had 

been, until recently, thought to be a strain of SCMV. Singh et al. (2005) reported the 

transmission of SCMV by different species of aphids from sorghum to sorghum at different 

efficiencies; Aphis gossypii (Glover.) (30%), M. sacchari (Zehntner) (30%), Myzus persicae 

(50%) and Rhopalosiphum maidis (Fitch) (70%).  

 Mosaic symptoms in sugarcane are attributed to a complex of five related but distinct 

species of potyviruses: Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Maize 

dwarf mosaic virus (MDMV), Johnsongrass mosaic virus (JGMV) and Zea mosaic virus 
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(ZeMV) (Handley et al. 2001, Rott et al. 2008). Among these viruses, only SCMV and SrMV are 

reported to infect sugarcane and are thus regarded as the causal agents of sugarcane mosaic 

(Grisham 2000, Rott et al. 2008). Sugarcane mosaic, historically, has been a serious disease 

problem and caused a near collapse of the sugarcane industry in Louisiana after being 

superimposed to already established diseases such as Pythium root rot and red rot in the 1920s 

(Abbott 1960).  

 Most of the aphid-borne potyviruses infecting different members of Poaceae including 

sugarcane, until recently, were thought to be either sugarcane mosaic or maize dwarf virus 

(Grisham 1994). However, speciation of potyviruses based on amino-acid sequence homology 

and serological relationships of the coat proteins have allowed categorization of previous 

included strains of Sugarcane mosaic virus or Maize dwarf virus into four distinct viruses: 

SCMV, JGMV (Johnson grass mosaic virus), SrMV (Sorghum mosaic virus) and MDMV 

(Maize dwarf mosaic virus) (Shukla et al. 1989, Shukla and Teakle 1989, Ford et al. 1989, 

McKern et al. 1990).  

 Sorghum mosaic virus (SrMV) (Family: Potyviridae, Genus: Potyvirus) is an important 

potyvirus that causes mosaic disease in sugarcane, maize, sorghum, and other Poaceae species 

(Grisham et al. 2007, Xu et al. 2008). In susceptible sorghum cultivars, mosaic causes reduction 

in grain and forage production, and displays distinctive symptoms depending upon different 

strains such as severe chlorosis and necrosis (strain I), mild mottle and mild mosaic (strain H), or 

severe red-leaf symptoms (strain M) (Tippett and Abbott 1968, Silva et al. 2012). SrMV, though 

it infects various grain crops and grasses, is more prevalent in sugarcane than sorghum in field 

conditions in Louisiana (Dr. Jeff Hoy, personal communication). However, in the United States, 

Sugarcane yellow leaf virus (ScYLV) (Luteoviridae: Polerovirus), a disease historically related 
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with sugarcane, was detected in 41% of sorghum plants tested in Florida (Wei et al. 2016). 

Moreover, de Souza (2017) reported the incidence of JGMV infecting sorghum in Brazil. 

Therefore, there is a possibility of a host switch or host expansion by viruses historically 

infecting sugarcane into other related crops and grasses.  

 Understanding the feeding behavior of aphids is crucial in elucidating virus transmission. 

Before feeding is initiated, aphids select a host in a complex process involving different stimuli 

and responses (Fereres and Moreno 2009). Antennae of aphids bear many sensilla which are 

used in chemoreception of leaf surfaces (Park and Hardie 2004). In addition, the tips of the 

proboscis in aphids have tactile receptors that scan surfaces of potential hosts and allow them to 

distinguish the outline of veins, preferred feeding sites of aphids (Tjallingii 1978b). Aphids then 

probe into the plant with the help of their stylet mouth parts. Mouth parts of aphids consist of 

maxillae and mandibles which are elongated into a stylet bundle that facilitates the penetration of 

plant tissue and reach the phloem whereas the tip of the labium helps to guide stylet penetration 

(Forbes 1977).  

Aphids produce two different types of saliva during feeding that mediate their 

interactions with plants which are watery and jelling saliva (Miles 1989). During the process of 

plant tissue penetration, aphids usually discharge a salivary sheath that jells around the stylets 

forming a stylet sheath to facilitate penetration, seal puncture sites on cell membranes, isolate 

plant tissues from mouth parts, and prevent plant reaction at feeding sites (Pollard 1973, Felton 

and Eichenseer 1999). The salivary sheath commonly ends in the phloem specifying that aphids 

feed on the sieve element contents (Pollard 1973). Watery saliva is secreted during cell 

penetration and ingestion by aphids. If the aphids come up against resistant cultivars or non-

hosts, they tend to cease feeding shortly after phloem penetration, withdraw their stylets, and 



54 
 

abandon the plant; indicating that phloem sap of non-hosts or resistant plants is nutritionally 

unsuitable (Dixon 1998).  

 Aphids usually feed within the plant tissues, an opaque food substrate, and cannot be 

observed directly. Therefore, special techniques are required to study their feeding behaviors 

(Walker 2000). The most important advancement in the development of specific techniques to 

study feeding behavior was the development of electronic feeding monitor by McLean and 

Kinsey (1964). This technique was modified and improved by Tjallingii (1985) and is currently 

named as electrical penetration graph (EPG) technique. Most of the advances since 1960s in 

hemipteran feeding behavior have been accomplished through the use of EPG technique (Walker 

2000).  Two types of EPG systems have been devised, those that McLean and Kinsey originally 

developed use AC (alternating current) circuitry and are referred to as AC EPG systems (Kinsey 

and McLean 1987, Backus and Benett 1992), and those that came as a modification to the 

original monitor by substituting AC circuitry with DC (direct current) circuitry and referred to as 

DC EPG systems (Tjallingii 1985). The changes occurring in electrical resistance in the probing 

insect and the plant is measured by both EPG systems. Moreover, DC EPG system also measures 

voltage changes originating in the plant and probing insect along with changes in resistance.  

(Tjallingii 1978a).  

The EPG monitor consists of two electronic components, a voltage source and an input 

resistor which are connected electrically by the help of an output and an input receptacle (Backus 

and Benett 1992). The output receptacle and input receptacle is directly connected to the voltage 

source and the input resistor respectively (Walker 2000). The insect and the plant complete the 

circuit in EPG system by connecting a wire from the output to the plant and input to the insect 

(Walker 2000). The input receptacle makes contact with the insect by connecting to a thin gold 
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or platinum wire (2.5 to 25 μm in dia.) which is glued to the insect’s dorsum with a small drop of 

electrically conducive adhesive such as silver paint. The wire glued to the insect’s back is thin 

and flexible enough to allow insects to move freely during feeding. The output wire is connected 

with the plant through copper wire inserted in the potting mixture.   

 As EPG consists of a host plant and a piercing-sucking insect attached in an electrical 

circuit through a wire, the circuit is completed as soon as the mouthparts of insect penetrates the 

plant. Penetration activities generate electrical events inside the stylet canals or at its extremities 

(Tjallingii 1988). The alterations in voltage and electrical resistance are recorded as waveforms, 

and displayed on a computer monitor. These waveforms are matched to specific feeding events. 

Aphid behaviors recorded by EPGs can be categorized as probing (stylets inserted inside the 

plant tissue) and non-probing. Different activities within probing such as intercellular stylet 

activity, intracellular puncture, salivation in sieve elements, feeding on phloem sieve elements, 

and xylem ingestion can be recognized as distinct waveform patterns (Tjallingii and Esch 1993, 

Walker 2000). Waveforms generated by a typical DC monitor can be listed as nonpenetration or 

nonprobing (NP), stylet pathway phase (A, B, C, potential drop (pd), and F), sieve element phase 

(X, E1, and E2) and xylem phase (G) (van Helden and Tjallingii 2000).  Moreover, distinctive 

characteristics of EPG waveforms produced by aphid feeding can be categorized into three 

behavioral phases: pathway phase, phloem or sieve element phase and xylem phase (Reese et al. 

2000, Tjallingii 2006). During pathway phase, aphids conduct activities such as puncturing the 

cell, inserting into and withdrawing the stylet from the cell to locate and sample the sieve 

element (Jian and Walker 2001). The phloem phase consists of a salivation period and phloem 

ingestion (Tjallingii 2006). Water intake by aphids occurs during xylem phase (Spiller et al. 

1990).  
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 Intracellular stylet punctures of epidermal and mesophyll cells by aphids prior to reaching 

phloem can be envisioned as potential drops (pds) using EPG (Powell et al. 1995). Fluctuation in 

transmembrane potential in plant cells cause potential drops and these are correlated with brief 

(3-15 s) intracellular punctures (Tjallingii 1988). Each potential drop is further delineated into 3 

distinct phases; phase-I, II and III. The first phase (I) occurs during the initial puncture of the 

membrane and includes the drop of potential to intracellular signal level; second phase (II) 

consists of the maintenance of this potential while the third phase (III) represents the return of 

the potential to its original extracellular level which is supposedly caused by the withdrawal of 

the stylet from the plasma membrane (Powell et al. 1995). Among these three phases, phase II is 

considered as truly intracellular and further sub-divided into 3 sub-phases, sub-phase II-1, II-2, 

and II-3 (Tjallingii 1985, Martin et al. 1997). Sub-phases II-1 and II-3 are correlated with 

egestion and ingestion events and further linked respectively, with inoculation and acquisition of 

plant viruses, especially for non-persistently transmitted viruses (Powell et al. 1995, Martin et al. 

1997, Powell 2005).  

 Transmission of non-persistently transmitted viruses has been correlated with various 

activities during potential drop and subsequent phases within the potential drop. Puncture of cell 

membrane during the penetration of epidermis (potential drops) were linked with transmission of 

two potyviruses, Beet mosaic virus (BMV) and Potato virus Y (PVY) (Powell 1991). Powell et 

al. (1992) reported a positive correlation between frequency of potential drops and transmission 

efficiency of PVY by two aphid species, Brachycaudus helichrysi Kltb (15%) and 

Drepanosiphum platanoidis Schrank (1%). Moreover, a relationship between presence of phase 

II-3 typical pulses (archlets) and acquisition of potyvirus was reported, suggesting that these 

pulses might be indicating an ingestion event (Powell et al. 1995). Collar et al. (1997) reported 
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that the probability of PVY acquisition in pepper (Capsicum annuum L.) by Myzus persicae 

could increase with an increase in the number of archlets within phase II-3. The differences 

observed in the morphology and duration of phase II-3 of the potential drops were also suggested 

to correlate with transmission efficiencies of different aphid species (Collar et al. 1998).   

 Since 2013, outbreaks of M. sacchari have caused economic loss to sorghum in the US 

and its potential to vector plant viruses adds a new dimension to the injury it can cause in crop 

production systems. Once established, a colony in the sorghum field can grow exponentially and 

as many as 10,000 individuals have been reported on a single plant in south Texas (Bowling et 

al. 2016). The sheer numbers of individuals of M. sacchari pose a huge risk for virus disease 

epidemics even if the efficiency of virus transmission is very low in field conditions. Since 

various studies suggest M. sacchari to be a vector of plant viruses (Pei and Hsu 1958, Kondaiah 

and Nayudu 1984, Schenck 2000, Singh et al. 2005), we decided to study the transmission ability 

of SrMV by M. sacchari to sorghum. Owing to very close interrelatedness between SCMV and 

SrMV, we hypothesized a similar mode of transmission between these two viruses by different 

species of aphids. Thus, we designed laboratory experiments to understand the potential of M. 

sacchari to vector SrMV in sorghum. Virus transmission efficiency of sugarcane aphid was 

studied in comparison to a model vector for potyviruses, the green peach aphid. Finally, we 

conducted EPG studies to characterize the stylet penetration behaviors of M. sacchari and M. 

persicae on virus-infected and non-infected sorghum cv. Rio to determine if there are differences 

in behaviors that could correlate with their respective transmission efficiencies of SrMV. 
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3.2. Materials and Methods 

 

3.2.1. Aphid colony  

 

Sugarcane aphids used in these experiments were from a colony, designated as LSU-SCA14, 

founded from a single apterae field collected from sorghum at the Louisiana State Agricultural 

Center, Dean Lee Research Station, Alexandria, LA in July 2014 by J. A. Davis. The colony was 

maintained on Pioneer 85G85, a sorghum hybrid resistant to greenbug (Pioneer Hi-Bred 

International, Inc., Johnston, IA), planted in plastic pots 10 cm in diameter containing sterile 

potting mix (Miracle-Gro Organic Choice Garden Soil, Marysville, OH) and 5g Osmocote 

(14:14:14), a slow releasing fertilizer (The Scotts Company, Marysville, OH). The plants were 

grown in growth chambers (Percival Scientific, Perry, IA) maintained at 25 ± 2 °C, 50 ± 5% RH 

and a photoperiod of 14:10 (L: D). The sugarcane aphid colony was maintained under laboratory 

conditions in screened cages at room temperature (20-22 °C) and a 14:10 (L: D) photoperiod.  

 A single apterous M. persicae collected from eggplant (Solanum melongena L.) in 2009 

was used to establish the green peach aphid colony. This colony was maintained in screened 

cages (30 x 30 x 30 cm, constructed using Plexiglass plastic sheet and fabric made of nylon 

mesh) and reared on mustard (Brassica juncea L.) cv. Tendergreen (W. Atlee Burpee and Co., 

Warminster, PA), under laboratory conditions at room temperature (20-22 °C) and a 14:10 (L: D) 

photoperiod. Mustard plants were planted in plastic pots 10 cm in diameter (Dillen Products, 

Middlefield, OH) containing sterile potting mix (Miracle-Gro Organic Choice Garden Soil, 

Marysville, OH) and 5g Osmocote (14:14:14) (The Scotts Company, Marysville, OH) and grown 

in growth chambers (Percival Scientific, Perry, IA) maintained at 25 ± 2 °C, 50 ± 5% RH and a 

photoperiod of 14:10 (L: D). A cohort of 5 to 10 aphids was placed on fresh plants to set up a 

new colony every 2 to 3 weeks.  
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3.2.2. Virus source and maintenance 

SrMV infected sorghum cv. Rio, tested via RT-PCR (Reverse Transcription- Polymerase Chain 

Reaction), was obtained from the Sugarcane Pathology Laboratory (Department of Plant 

Pathology and Crop Physiology, LSU, under the direction of Dr. J. Hoy) and the virus source 

was maintained in the greenhouse through mechanical inoculation. Mechanical inoculation was 

carried out by grinding leaf tissues from infected plants showing mosaic symptoms in extraction 

buffer (0.01 M phosphate buffer with pH 7.0 and 1.0% sodium sulphite) at the ratio of 1:2 

(weight by volume) by using a mortar and pestle. A foliar abrasive, 400 mesh carborundum 

powder (Fisher Scientific, Hampton, NH) was dusted on healthy plants at the 3-4 leaf stage 

(approx. 2 weeks after sowing) before inoculation. Then, an absorbent cotton ball dipped in virus 

extracted buffer solution was used to gently rub leaves of healthy test plants. After inoculation, 

plants were allowed to grow and symptoms were observed and tissue were tested with DAS-

ELISA (Double Antibody Sandwich- Enzyme Linked Immunosorbent Assay) as per 

manufacturer’s protocol (Kit No. DEIAPV254, Creative Diagnostics, Shirley, NY, USA). Non-

symptomatic plants as well as plants testing negative through ELISA were discarded. Non-

infected host plants (control) used for the EPG experiments were inoculated with virus extraction 

buffer only (sham-inoculated). 

3.2.3. Test plants 

 

Sorghum cv. Rio, a susceptible and differential host for SrMV (Tippett and Abbott 1968), was 

used for the experiments. Sorghum seeds were sown in plastic pots 10 cm in diameter (Dillen 

Products, Middlefield, OH) containing sterile potting mix (Miracle-Gro Organic Choice Garden 

Soil, Marysville, OH) and 5g Osmocote (14:14:14) (The Scotts Company, Marysville, OH) and 

maintained in the green house at 22 to 28 °C and varying RH 21 to 98%. Plants were grown 

inside tent-like cages 61 x 61 x 61 cm in dimension (Bugdorms, BioQuip Products, Inc., USA) in 
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order to ensure no cross transmission. Sorghum plants at 3-leaf stage (approximately 2 weeks 

after sowing) were used as the test plants.   

3.2.4. Transmission efficiency assay 

Two aphid species, M. sacchari and M. persicae were tested for their ability to transmit SrMV. 

Adult apterae (wingless) aphids were removed from their respective colonies using a camel’s 

hair paint brush and placed in petri dishes (10 x 1.5 cm diameter) (Fisherbrand Petri Dishes, 

Fisher Scientific Co. LLC, Hampton, NH) lined with moist filter paper. Aphids were allowed a 

pre-acquisition fast of two hours prior to transmission assays. Aphids were gently moved to the 

adaxial surface of the youngest fully expanded and symptomatic leaf of the source plant and 

given an acquisition access period (AAP) of 5 minutes. During the AAP, aphids were observed 

probing with the help of a handheld magnifying glass and only those aphids that were recognized 

as probing on the leaf surface by arrestment activity and characteristic body posture as described 

by Gray and Banerjee (1999) were used for the inoculation assays. Aphids were then transferred 

to the youngest fully expanded leaf of an individual test plant. Aphids were given an inoculation 

access period (IAP) on each test plant unbound for 24 h. After IAP, feeding was terminated 

me°hanically by removing each aphid from the plant and manually crushing it. Test plants were 

transferred to the green house, sprayed with safer insecticidal soap and maintained inside cages 

(Bugdorms, BioQuip Products, Inc., USA) in order to avoid cross-contamination by escapees or 

naturally occurring potential vectors. Test plants were observed for symptom expression for 4 

weeks following inoculation and leaf tissues were collected for virus testing through DAS-

ELISA. Each species of aphid was tested singly or in groups of 3 or 5. Twenty-five plants were 

used per aphid species per treatment and each experiment was repeated 4 times. As a control 

check for virus transmission, starved non-viruliferous aphids were tested as above except the 
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source plant was a sham-inoculated one. 

3.2.5. Virus detection 

Virus detection was performed by double-antibody sandwich enzyme-linked immunosorbent 

assay (DAS-ELISA) using polyclonal kits according to the manufacturer’s protocols (Creative 

Diagnostics, Shirley, NY, USA). Absorbance was measured at 405 nm with a Thermo Multiskan 

MCC Type 355 Microplate Reader (Fisher Scientific, Hampton, NH, USA).  Plants were deemed 

positive if optical density readings were greater than mean of negative controls (non-infected 

plants) added to three times their standard deviation (Sutula et al. 1986, Davis et al. 2008). 

3.2.6. Electrical Penetration Graph experiments 

To study probing behavior of M. sacchari and M. persicae on virus infected and sham inoculated 

plants, EPG experiments were conducted in a Faraday cage using a Giga 4-8 DC EPG amplifier 

with one Giga Ohm input resistance and an AD conversion rate of 100 Hz (Wageningen 

Agricultural University, Wageningen, The Netherlands) running only the first four channels. A 

DAS-710 Digital Acquisition Card (Keithley Instruments, Inc., Cleveland, OH) converted analog 

signals to digital which were visualized and recorded using WinDaq/Lite software (DATAQ 

Instruments, Inc., Akron, OH). Adult apterous aphids were removed from their respective 

colonies with the help of a fine camel’s hair brush and placed in petri dishes (10 x 1.5 cm 

diameter) (Fisherbrand Petri Dishes, Thermo Fisher Scientific Inc., Pittsburgh, PA) lined with 

moist filter paper. Aphids were starved for 2 hours, just as in vector efficiency tests, prior to 

subjecting them to EPG. A 2-cm length of 18 µm gold wire (GoodFellow Metal Ltd. Cambridge, 

UK) was attached to the dorsum of the aphid with the help of silver conductive paint (Pelco 

Colloidal Silver no. 16034, Ted Pella, Inc., Redding, CA). Two test plants (one infected and 

symptomatic, and another sham inoculated) were placed randomly within the Faraday cage. 
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Next, two aphids (each a different species) were placed on the adaxial surface of two separate 

individual leaves on each plant; comprising of total 4 aphids per experiment. The feeding 

behavior was recorded for 30 minutes per aphid. The experiment was repeated 30 times; 30 

aphids each per host type. Each set of aphids were given a fresh set of plants during each 

replication. Variables associated with intracellular stylet penetration behaviors, reported to be 

responsible for virus transmission, were recorded and evaluated. The variables evaluated were: 

time to first probe, duration of first probe, mean probe duration, total probe duration, number of 

probes per aphid, time to first potential drop (pd), pd duration, duration of sub phases (II-1, II-2, 

and II-3), number of archlets in subphase II-3 per pd, number of pds with archlets per probe, 

number of pds per probe, and total pd duration per aphid.  

3.2.7. Data analysis  

 

The transmission efficiency (TE) of each aphid species was estimated as number of infected test 

plants divided by total number of plants tested and expressed in terms of percentage as described 

by Davis et al. (2005). For groups of 3 and 5 aphids, the maximum likelihood estimator (MLE) 

was used (Venette et al. 2002). MLE was estimated as 1 - (1 - y/x)1/m, where y was the number of 

test plants positive for SrMV, x was the total number of test plants, and m was the number of 

aphids used per test plant. Confidence intervals (CI) for MLE were calculated using Microsoft 

Excel add-in PooledInfRate Version 3.0 (Biggerstaff 2006). Feeding behavior data were not 

normally distributed and were analyzed using a non-parametric statistical test 

(Wilcoxon/Kruskal-Wallis test) using JMP software from SAS (JMP Pro 14, SAS Inc, Cary, 

NC). 

 

 



63 
 

3.3. Results 

 

3.3.1. Transmission efficiency assays  

 

Sugarcane aphid failed to transmit SrMV singly or in groups (Table 3.1). None of the test plants 

inoculated with sugarcane aphid showed characteristic mosaic symptoms and the diagnostic test 

through DAS-ELISA were negative for all the samples tested. Green peach aphid transmitted 

SrMV at 8.2% efficiency (single aphid), 4.5% (groups of 3) and 4.2% (groups of 5). Green peach 

aphid was a more efficient vector of SrMV than sugarcane aphid. There was no transmission of 

SrMV from non-infected acquisition sources.  

Table 3.1. Sugarcane aphid and green peach aphid Sorghum mosaic virus (SrMV) transmission 
tests. 
 

a Tested in groups of 3, 5 or as individuals. 
b Number of groups. 
c 95% Confidence intervals of SrMV infection rates. 

 

 

 

 

 

 

Aphid species Single/groupa Nb Source %SrMV + CIc  

M. sacchari Single 25 Non-infected 0.0 …  

 Single 100 Infected  0.0 …  

 Group of 3 25 Non-infected  0.0 …  

 Group of 3 97 Infected 0.0 …  

 Group of 5 25 Non-infected  0.0 …  

 Group of 5 100 Infected 0.0 …  

M. persicae Single  25 Non-infected 0.0 …  

 Single 98 Infected  8.2 3.9 to 14.8  

 Group of 3 25 Non-infected 0.0 …  

 Group of 3 100 Infected  4.5 2.5 to 7.4  

 Group of 5 25 Non-infected 0.0 …  

 Group of 5 99 Infected  4.2 2.6 to 6.3  
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3.3.2. Stylet penetration behaviors on SrMV-infected and sham-inoculated host plants by 

two aphid species 

Nonparametric Wilcoxon/Kruskal-Wallis tests revealed that the following stylet penetration 

behaviors by M. persicae and M. sacchari on SrMV-infected and sham-inoculated sorghum cv. 

Rio were statistically significant; probe duration (χ2
 = 10.6387, df = 3, P = 0.0138), number of 

probes per aphid (χ2
 = 17.8409, df = 3, P = 0.0005), time to first pd (χ2

 = 10.9605, df = 3, P = 

0.0101), pd duration (χ2
 = 30.0188, df = 3, P < 0.0001), pd subphase II-1 duration (χ2

 = 86.3774, 

df = 3, P < 0.0001), pd subphase II-2 duration (χ2
 = 19.0466, df = 3, P = 0.0003), pd subphase II-

3 duration (χ2
 = 27.7253, df = 3, P < 0.0001), number of archlets in subphase II-3 per pd (χ2

 = 

63.0108, df = 3, P < 0.0001), number of pds with archlets per probe (χ2
 = 52.0851, df = 3, P < 

0.0001), number of pds per probe (χ2
 = 14.7002, df = 3, P = 0.0021), and total pd duration per 

aphid (χ2
 = 7.9929, df = 3, P = 0.0462) (Table 3.2). Other variables evaluated were not 

statistically different among treatments. 

 Each pair comparisons among treatments for the variables that were statistically 

significant was conducted using Wilcoxon post hoc test. The following stylet penetration 

behaviors were significantly different among aphid species on SrMV-infected sorghum; number 

of probes per aphid (P = 0.0271), time to first pd (P = 0.0144), pd duration (P < 0.0001), pd 

subphase II-1 duration (P < 0.0001), pd subphase II-3 duration (P = 0.0003), number of archlets 

in subphase II-3 per pd (P < 0.0001), number of pds with archlets per probe (P < 0.0001), and 

total pd duration per aphid (P = 0.0284). Other variables evaluated were not statistically different 

among aphid species on SrMV-infected host (Table 3.2).  

 On non-infected (Sham-inoculated) sorghum cv. Rio, following stylet penetration 

behaviors were significantly different among two aphid species: average probe duration (P = 

0.0037), number of probes per aphid (P = 0.0005), time to first pd (P = 0.0102), pd subphase II-1 



65 
 

duration (P <0.0001), number of archlets in subphase II-3 per pd (P < 0.0001), and number of 

pds with archlets per probe (P = 0.0014). Other variables evaluated were not statistically 

different among aphid species on non-infected host (Table 3.2). While comparing the stylet 

penetration behavior of M. persicae among virus infected and non-infected hosts, there were 

statistically significant differences in three parameters: mean duration of pd subphase II-2 was 

higher on non-infected hosts as compared to infected hosts (P = 0.0006), mean number of pds 

with archlets per probe was higher on infected hosts (P < 0.0001), and mean number of pds per 

probe was also higher on infected hosts (P < 0.0001) (Table 3.2).  

Table 3.2. Stylet penetration behaviors of Myzus persicae and Melanaphis sachhari on SrMV 
infected and sham-inoculated sorghum cv. Rioa, b. 
 

a Means followed by same letter within columns are not statistically significant (P > 0.05, Wilcoxon test). 
b Duration measured in seconds and counts in numbers.  

  

 Similarly, EPG parameters with statistically significant differences while comparing M. 

sacchari stylet penetration behavior among infected and non-infected hosts were probe duration 

 

EPG parameters 

 

M. persicae 

 

 

Sham-inoculated           SrMV-infected  

 

M. sacchari 

 

 

Sham-inoculated               SrMV-infected 

Wilcoxon/Kruskal-

Wallis 

(Prob > Chisq) 

Time to first probe 96.495 ± 46.026 a 132.291 ± 41.167 a 186.724 ± 46.026 a 182.986 ± 41.167 a 0.3682 

Duration of first Probe 82.100 ± 46.739 a 134.553 ± 43.585 a 126.122 ± 46.739 a 103.639 ± 41.805 a 0.3422 

Probe duration 114.219 ± 24.492 a 172.373 ± 24.933 a 296.619 ± 34.045 b 169.814 ± 28.878 a 0.0138 

Total probe duration 651.046 ± 88.940 a 758.439 ± 79.551 a 795.478 ± 84.801 a 535.569 ± 78.006 a 0.1318 

No. of probes/aphid 5.700 ± 0.514 a 4.542 ± 0.469 b 2.727 ± 0.490 c 2.957 ± 0.479 c 0.0005 

Time to first pd 342.364 ± 95.999 a 334.299 ± 84.926 a 712.795 ± 95.999 b 582.339 ± 91.073 b 0.0101 

Pd duration 5.130 ± 0.147 a 4.973 ± 0.144 a 4.955 ± 0.150 a 4.170 ± 0.162 b < 0.0001 

Pd II-1 duration 1.420 ± 0.036 a 1.485 ± 0.035 a 1.135 ± 0.036 b 1.069 ± 0.040 b < 0.0001 

Pd II-2 duration 1.438 ± 0.049 a 1.244 ± 0.047 b 1.510 ± 0.048 a 1.199 ± 0.053 b 0.0003 

Pd II-3 duration 2.235 ± 0.124 a 2.029 ± 0.119 a 2.089 ± 0.121 a 1.515 ± 0.134 c < 0.0001 

No. of archlets in II-3/pd 1.174 ± 0.125 a 1.099 ± 0.117 a 0.055 ± 0.020 b 0.151 ± 0.046 b < 0.0001 
No. of pds with 

archlets/probe 0.400 ± 0.069 a 1.000 ± 0.107 b 0.066 ± 0.093 c 0.182 ± 0.089  ac < 0.0001 

No. of pds/probe 1.113 ± 0.247 a 2.032 ± 0.334 b 2.179 ± 0.355 b 1.766 ± 0.343 b 0.0021 

Total pd duration/aphid 31.268 ± 4.244 a 31.142 ± 4.147 a 28.186 ± 4.147 a 18.249 ± 4.055 b 0.0462 
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(P = 0.0134), total probe duration (P = 0.0426), pd duration (P = 0.0070), duration of pd 

subphase II-2 (P = 0.0107), duration of pd subphase II-3 (P = 0.0012), and total pd duration per 

aphid (P = 0.0181) (Table 3.2).  

 

3.4. Discussion 
 

SrMV is not reported to be seed transmitted in sorghum and therefore, vector transmission 

remains the only viable option in sorghum fields (Koike and Gillaspie 1976, Rott et al. 2008, Xu 

et al. 2008). SrMV is naturally more prevalent in sugarcane in field conditions (Rice 2018) and 

no severe problem due to SrMV has been reported in sorghum. However, the compendium of 

sorghum diseases published by the American Phytopathological Society (2nd edition, 2000) states 

“SrMV is reported from the Gulf Coast States, where it is a primary problem in sorghum grown 

near sugarcane”. Sugarcane aphid is a colonizing aphid in sorghum and has recently been 

expanding its geographic range in the United States since its outbreak in grain sorghum in 2013 

(Bowling et al. 2016). However, based on suction trap catches, Lagos-Kutz et al. (2018) have 

reported that sugarcane aphids appear to arrive late in the growing season in the northern states 

and hence are currently only a minor pest at those locations. Though earlier reports had 

demonstrated sugarcane aphid’s ability to transmit potyviruses, especially Sugarcane mosaic 

virus (Bhargava et al. 1971, Kondaiah and Nayudu 1984, Setokuchi and Muta 1993, Singh et al. 

2005, Deshmukh 2008), we failed to detect SrMV transmission by sugarcane aphid both singly 

or in groups under laboratory conditions. However, transmission efficiencies have been reported 

to vary among aphid species, biotypes within a species, life stages, different strains of a virus, 

and their host plants (Gill 1970, Gibson et al. 1988, Boiteau et al. 1998, Davis et al. 2005, 

Cervantes and Alvarez 2011, Mello et al. 2011, Mondal et al. 2015). Based on our results, we 
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state that sugarcane aphid is a non-vector of SrMV in sorghum. Thus, there appears to be no 

indication that sorghum growers need to be concerned about indirect damage that sugarcane 

aphid can cause in sorghum through transmission of SrMV.  

Green peach aphid, however, was able to successfully transmit SrMV in sorghum in our 

study, hence, green peach aphid is a vector of SrMV in sorghum. The transmission efficiency of 

SrMV by green peach aphid (4.2 to 8.2%) in our experiments was rather low for a model vector 

but it is still comparable to other reports for potyviruses.  For example, M. persicae was reported 

to transmit PVY with a varying efficiency of 4.7 to 71.1% (Cervantes and Alvarez 2011, Davis 

et al. 2005, Mondal et al. 2015); Soybean mosaic virus at 18.6%, Alfalfa mosaic virus at 5 to 

19% (Symmes and Perring 2007); and Sweet potato feathery mottle virus (SPFMV) at 0 to 18 % 

(Wosula et al. 2012). Green peach aphid is a non-colonizing aphid in grain sorghum and is rarely 

found in sorghum fields but is abundant in sugarcane (Singh et al. 2005, Blackman and Eastop 

2006). Therefore, green peach aphid could spread SrMV from sugarcane to sorghum and within 

sorghum fields. Even though the results under laboratory conditions indicate that green peach 

aphid is a more efficient vector of SrMV than sugarcane aphid, the importance of a vector in 

field conditions is decided based on its propensity, which measures both vector efficiency and 

abundance (Irwin and Ruesink 1986). Moreover, non-persistent transmission of viruses is best 

accomplished by non-host aphid species like M. persicae, which are known to be capable of 

causing severe mosaic epidemics in sugarcane. In addition to that, the incidence and increase of 

virus disease also depends on the number of migrating aphid vectors passing through the 

landscape. Therefore, the ability of M. persicae to cause SrMV disease epidemiology on 

sorghum fields should not be underestimated. In our feeding behavior studies using EPG, we 

found that M. persicae and M. sacchari differed in stylet penetration behaviors on sorghum 
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regardless of the infection status of the host. On infected hosts, M. persicae had higher numbers 

of probes within 30 minutes of experimental duration as compared to M. sacchari. Numbers of 

brief and frequent probes are an important characteristic in virus transmission by aphids, 

especially for non-persistently transmitted viruses (Powell 1991, Collar and Fereres 1998). 

Moreover, intracellular punctures by the stylet, associated with potential drop in EPG, are 

necessary for both acquisition and inoculation of non-persistent viruses (Powell 1991). In our 

experiment, we found that M. persicae required less time to produce intracellular punctures (i.e. 

potential drop) than M. sacchari which can play a significant role in virus transmission, 

especially during inoculation of non-persistently transmitted viruses which are short lived. Also, 

the frequency of potential drop has been reported to determine the transmission efficiency of a 

given aphid species (Powell et al. 1992, Collar et al. 1997). However, no significant differences 

in the frequency of potential drop were observed among two aphid species in our study. M. 

persicae produced a longer duration of pd than M. sacchari on SrMV-infected host. Mean 

duration of potential drop subphase II-1 and II-3, associated respectively with inoculation and 

acquisition of non-persistently transmitted viruses, and number of archlets in subphase II-3 of 

potential drops were significantly higher for M. persicae than M. sacchari.  Consistent with our 

results, Collar and Fereres (1998) had earlier reported that longer II-3 subphase and presence of 

archlets were positively correlated with increased transmission efficiency of PVY  by different 

aphid species in pepper (Capsicum annuum L.). However, Symmes et al. (2008) reported that 

shorter duration of pd was significantly related to successful acquisition of Zucchini yellow 

mosaic virus by M. persicae in melon (Cucurbita pepo L.) which contrasts our results.  

 Some of the significantly different stylet penetration behaviors among two aphid species 

feeding on virus-infected hosts were also observed to differ significantly on non-infected host in 
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our studies. Significantly higher numbers of probes were recorded by M. persicae than M. 

sacchari even on non-infected hosts. Similarly, longer durations of potential drops were 

produced by M. persicae than M. sacchari. A higher number of archlets were also produced by 

M. persicae than M. sacchari upon feeding on non-infected hosts. Therefore, it can be speculated 

that certain behavioral characteristics of some aphid species dispose themselves to be a better 

vector than others.  

 Upon comparing the probing behavior of M. persicae on virus infected and non-infected 

hosts, we found that significantly higher numbers of potential drops per probe as well as higher 

numbers of potential drops with archlets per probe were produced on infected hosts than on non-

infected hosts. This behavior has a direct implication on virus transmission and spread as 

potential drop and archlets within potential drop are necessary waveforms for virus acquisition 

and inoculation especially for non-persistently transmitted viruses. Although this experiment was 

not designed to study the modification of vector behavior by plant virus, it is possible that SrMV 

might be altering the behavior of M. persicae through virus mediated changes in the host 

physiology and phenotype to enhance its spread. However, there were no significant differences 

in aforementioned behaviors of M. sacchari, a non-vector of SrMV.   

 Our findings demonstrate that transmission of SrMV differs among two aphid species; M. 

sacchari and M. persicae. The knowledge of transmission of SrMV from sorghum to sorghum by 

these two species is essential to precisely estimate the risk of transmission with respect to aphid 

species composition in sorghum fields. Our EPG results suggest that by virtue of producing a 

higher number of probes during feeding, a longer potential drop duration with longer subphases 

II-1 and II-3, higher number of archlets during subphase II-3, and quicker to reach the first 

potential drop; M. persicae possesses an ability to successfully transmit SrMV from sorghum to 
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sorghum while M. sacchari lacks it. Further virus transmission studies including other aphid 

species common in sorghum fields such as corn leaf aphid (Rhopalosiphum maidis Fitch), yellow 

sugarcane aphid (Sipha flava Forbes), or green bug (Schizaphis graminum Rodani) are required 

in order to fully understand the epidemiology of SrMV disease in sorghum fields.  
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CHAPTER 4: THE PREFERENCE BEHAVIOR AND LIFE HISTORY TRAITS OF 

MELANAPHIS SACCHARI ON SORGHUM MOSAIC VIRUS-INFECTED AND NON-

INFECTED SORGHUM 

 

 

4.1. Introduction 

 

Being obligate intracellular parasites and lacking their own molecular machinery, viruses require 

to infect a plant in order to replicate. Moreover, since plants are sessile, plant viruses need to 

employ strategies in order to move from one plant to another for dispersal in the landscape. The 

majority of plant viruses causing disease in agricultural crops depend on biotic vectors for 

transmission (Whitfield et al. 2015). Insects are the largest group of plant virus vectors which are 

comprised of aphids, thrips, leafhoppers, plant hoppers and whiteflies (Bragard et al. 2013). 

However, not all insects act as vectors for all plant virus-host pathosystems. Host selection by 

the vector is an important, complex process that involves different stimuli and responses (Fereres 

and Moreno 2009). The host selection process, especially for aphids, has been described in these 

steps: 1) visual and chemical attraction to a host plant, 2) alighting and initial assessment of the 

plant surface 3) probing on epidermis and mesophyll tissue, 4) stylet pathway activity, 5) sieve 

element puncture and salivation, and 6) phloem acceptance and sustained ingestion (Powell et al. 

2006). The plant may be rejected by the insect at any of these stages after the evaluation of 

physical and/or chemical cues (Powell et al. 2006).  

 Physiological status of a plant can influence each of these steps, and because infection by 

virus alters the physiology of the plant, it can also change insect host selection process (Castle et 

al. 1998, Mauck et al. 2010, Dader et al. 2017). The first step in the host recognition process, 

attraction to a host plant, is an important initial event in the sequence with greater implications 

for virus transmission by vectors. Even though aphids have the tendency to land on and probe 

non-hosts, which is an integral part of the epidemiology of many aphid transmitted plant virus 



77 
 

diseases, the preference for a particular host before and after acquiring a virus plays a role in 

altering plant virus spread in the crop ecosystem (Blua and Perring 1992, Eigenbrode et al. 2002, 

Powell et al. 2006, Ingwell et al 2012, Rajabaskar et al. 2014). For example, some plant viruses 

have been reported to induce changes in host plants that cause potential aphid vectors to 

preferentially settle on virus infected plants (Castle et al. 1998, Eigenbrode et al. 2002, Jimenez-

Martinez et al. 2004, Srinivasan et al. 2006, Alvarez et al. 2007, Mauck et al. 2010). In other 

cases, virus infected plants that are inferior hosts to the vectors seem to deter them (Blua and 

Perring 1992).  

Most of the studies delineating attraction and feeding preferences of vectors, however, 

have focused on persistently and semi-persistently transmitted viruses while studies focusing on 

non-persistently transmitted viruses are limited. Mauck et al. (2010) reported that Cucumber 

mosaic virus (CMV), a non-persistently transmitted virus, infected squash (Cucurbita pepo L.) 

was initially attractive to Aphis gossypii Glover and Myzus persicae (Sulzer) due to the volatile 

organic compounds (VOCs) emitted by the infected squash plants. Earlier, Eckel (1990) had 

shown that aphids were more attracted to Tobacco etch virus infected tobacco plants (Nicotiana 

tabacum L.) than non-infected plants. Carmo-Sousa et al. (2014) reported that winged A. 

gossypii were attracted initially to CMV-infected cucumber plants (Cucumis sativus L.) but 

dispersed later to mock-inoculated plants under free choice assays.  

 Preference for virus infected plants by aphids has been ascribed to the yellowing of 

infected plant tissue, a visually more attractive coloration for aphids (Ajayi and Dewar 1983, 

Eckel and Lampert 1996). Virus induced changes in plant quality like amino acid content in 

phloem (Ajayi 1986, Blua et al. 1994) or soluble carbohydrate in leaves (Fereres et al. 1990) 

might influence behavioral responses of potential vectors but only after sap sampling. Moreover, 
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VOCs released by virus infected plants also influence the host selection behavior of aphids 

(Eigenbrode et al. 2002, Jimenez-Martinez et al. 2004, Mauck et al. 2010).  

 Once an aphid alights on the plant surface, a complex process involving different stimuli 

and responses ensues during its decision to colonize a plant (Powell et al. 2006). The aphid 

makes successive superficial probes and uses gustatory cues to differentiate between hosts and 

non-host plants. The plants infected with viruses induce changes in plant tissues which might 

elicit different results such as a combination of preferential settling and enhanced vector 

performance on infected hosts, neutral effects, or rapid dispersal and reduced vector performance 

on infected host depending upon different virus-vector-host combinations (reviewed in 

Eigenbrode et al. 2018). Generally, vectors feeding on persistently transmitted virus infected 

hosts have been reported to be positively affected and have a greater nymphal survival, adult 

fecundity, or increased growth rate (Fereres et al. 1989, Castle and Berger 1993, Srinivasan and 

Alvarez 2008) while vectors feeding on hosts infected by non-persistently transmitted viruses are 

found to be negatively affected due to poor quality of the hosts and disperse rapidly from the 

host instead of settling and sustained feeding on the host (Mauck et al. 2010). Semi-persistently 

transmitted viruses are alike in their effects on vector performance and behavior to persistently 

transmitted virus (Eigenbrode et al. 2018). It seems beneficial for persistently transmitted viruses 

to increase fitness of the aphids by increasing quality of the hosts as a strategy to lengthen 

feeding and ensure virus acquisition while non-persistently transmitted viruses would benefit 

from rapid dispersal of the aphids following brief probing/feeding as they are short-lived. 

However, nymphs of M. persicae were reported to have matured faster, and adults weighed more 

and produced more off springs on Turnip mosaic virus (TuMV) infected Chinese cabbage 

(Brassica rapa L.) (Hodgson 1981). Similarly, increased fitness of M. persicae was also detected 
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on TuMV-infected tobacco (Nicotiana tabacum L.). Moreover, aphid population parameters 

have also been reported to be affected by the nature of the infected hosts, depending upon 

whether the host is infected singly or mixed-infected. Wosula et al. (2013a) reported a 

significantly higher intrinsic rate of increase and the net reproductive rate in M. persicae reared 

on mixed virus infected sweet potato plants (infected by Sweet potato feathery mottle virus 

(SPFMV), Sweet potato virus G (SPVG), and Sweet potato virus 2 (SPV2)) compared to 

SPFMV-infected or non-infected plants. Some neutral effects have also been reported in few of 

the cases. CMV (P1 isolate)-infected pepper had neutral effects on M. persicae population as 

compared to population on healthy pepper plants (Mauck et al. 2014). Similarly, no significant 

differences were observed on development of thrips (Frankliniella occidentalis Pergande) upon 

feeding on Tomato spotted wilt virus-infected and non-infected Datura stramonium L. plants 

(Wijkamp et al. 1996).  

 The effect of plant viruses on the preference behavior and development of their vectors, 

therefore, is not uniform and varies depending upon the mode of transmission of virus. 

Moreover, very little research has focused on how herbivores and plant pathogens interact on a 

shared host-plant. Since M. sacchari populations are active in sorghum and rapidly expanding 

throughout the sorghum producing regions of the US, it is likely that aphids might encounter 

previously SrMV-infected plants and the information regarding how M. sacchari responds to 

virus infected sorghum is critically lacking. Here, we designed experiments to understand the 

preference behavior of two aphid species; M. persicae, a proven vector of Sorghum mosaic virus 

(SrMV), and M. sacchari, a non-vector of SrMV in our studies (chapter 3, this dissertation), on 

SrMV-infected and sham-inoculated sorghum. Sorghum is a host for M. sacchari while a non-

host for M. persicae. The effects of SrMV on life history traits of M. sacchari were also studied.  
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4.2. Materials and Methods 
 

4.2.1. Virus source and maintenance  

Sorghum mosaic virus (SrMV-H) infected sorghum cv. Rio, confirmed through RT-PCR 

(Reverse Transcription- Polymerase Chain Reaction) test in Sugarcane Pathology Laboratory 

(Department of Plant Pathology and Crop Physiology, LSU, under the direction of Dr. J. Hoy), 

was obtained from the Sugarcane Pathology Laboratory and was maintained in the green house 

through mechanical inoculation. For mechanical inoculation, symptomatic leaf tissues were 

ground in extraction buffer (0.01 M phosphate buffer with pH 7.0 and 1.0% sodium sulphite) at 

the ratio of 1:2 (weight by volume) using a mortar and pestle and were applied with an absorbent 

cotton to healthy leaves of plants at the 3-4 leaf stage, previously dusted with 400 mesh 

carborundum powder (Fisher Scientific, Hampton, NH). After inoculation, plants were allowed 

to grow, symptoms were observed, and tissue were tested with DAS-ELISA (Double Antibody 

Sandwich- Enzyme Linked Immunosorbent Assay) as per manufacturer’s protocols (Kit No. 

DEIAPV254, Creative Diagnostics, Shirley, NY, USA). Non-symptomatic plants as well as 

plants testing negative through ELISA were discarded.  

4.2.2. Aphid colonies 

Sugarcane aphids used in the experiments were obtained from LSU-SCA14 colony, founded 

from a single apterous M. sacchari collected from sorghum field at the Louisiana State 

Agricultural Center, Dean Lee Research Station, Alexandria, LA in July 2014 by Dr. J. A. Davis. 

The colony was maintained on Pioneer 85G85, a sorghum hybrid resistant to greenbug (Pioneer 

Hi-Bred International, Inc., Johnston, IA), grown in plastic pots of 10 cm diameter containing 

sterile potting mix (Miracle-Gro Organic Choice Garden Soil, Marysville, OH) and 5g Osmocote 

(14:14:14), a slow releasing fertilizer (The Scotts Company, Marysville, OH). The plants were 
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maintained in growth chambers (Percival Scientific, Perry, IA) at 25 ± 2 °C, 50 ± 5% RH and a 

photoperiod of 14:10 (L: D). The colony was maintained in screened cages under laboratory 

conditions at room temperature (20-22 °C) and a 14:10 (L: D) photoperiod.  

 Green peach aphids used in the experiment were obtained from a colony established from 

a single apterous M. persicae collected from eggplant (Solanum melongena L.) in 2009. The 

colony was maintained in screened cages (30 x 30 x 30 cm, constructed using Plexiglass plastic 

sheet and nylon mesh fabric) and reared on mustard (Brassica juncea L.) cv. Tendergreen (W. 

Atlee Burpee and Co., Warminster, PA), under laboratory conditions at room temperature (20-22 

°C) and a 14:10 (L: D) photoperiod. Mustard plants were planted in plastic pots 10 cm in 

diameter (Dillen Products, Middlefield, OH) containing sterile potting mix (Miracle-Gro Organic 

Choice Garden Soil, Marysville, OH) and 5g Osmocote (14:14:14) (The Scotts Company, 

Marysville, OH) and grown in growth chambers (Percival Scientific, Perry, IA) maintained at 25 

± 2 °C, 50 ± 5% RH and a photoperiod of 14:10 (L: D). A cohort of 5 to 10 aphids was placed 

using a paint brush on fresh plants every 2 to 3 weeks to establish a new colony.  

4.2.3. Host plants 

Sorghum cv. Rio was used as the host plant for both preference and feeding bioassays. Sorghum 

seeds were sown in plastic pots 10 cm in diameter (Dillen Products, Middlefield, OH) containing 

sterile potting mix (Miracle-Gro Organic Choice Garden Soil, Marysville, OH) and 5g Osmocote 

(14:14:14) (The Scotts Company, Marysville, OH) and maintained in the greenhouse at 22 to 28 

°C with varying RH. SrMV infected host plants were maintained by mechanical inoculation at 3-

4 leaf stage. Non-infected host plants (control) used for the experiments were inoculated with 

virus extraction buffer only (sham-inoculated). Plants were grown inside tent-like cages 61 x 61 

x 61 cm in dimension (BugDorms (Catalog No. 1462W), BioQuip Products, Inc., USA) in order 
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to ensure no cross transmission. Plants were carried to the laboratory for preference bioassay 

experiments after 3 weeks of mechanical inoculation and after allowing sufficient time for the 

virus infected plants to develop characteristic mosaic symptoms.  

4.2.4. Dual-choice test bioassays  

Host plant selection preference of apterous non-viruliferous M. sacchari and M. persicae were 

examined using a dual choice bioassay arena. The arena consisted of a petri dish (15 x 1 cm 

diameter) (Fisherbrand Petri Dishes, Thermo Fisher Scientific Inc., Pittsburgh, PA) with two 

notches, each 7cm long and 2 cm wide, cut across the diameter to insert plant leaves from two 

but opposite directions (Fig 4.1). A gap 1-cm long is left at the center between two notches so 

that the leaves do not touch each other. The notch is open at the top so that aphids can move 

freely and feed on the preferred leaf surface while the bottom is closed with no see-um netting 

fabric for aeration. A small-hole (approximately 0.5 cm in diameter) was drilled towards the 

edge of the plate, equidistant from two notches, in order to insert and hold a 2 ml micro-

centrifuge tube that contained and released the aphids at the beginning of the experiment.  

Two plants, a virus infected and a sham-inoculated plant (approximately 4-5 weeks old) 

were placed on two sides of the arena. A single upper leaf from both plants were inserted into the 

arena through respective notches on each side. Thirty adult apterous aphids were removed from 

their respective colonies with the help of a fine camel’s hair brush and placed in a 2 ml micro-

centrifuge tube. After a starvation period of 2 h inside the micro-centrifuge tube, the tube was 

opened in order to let the aphid climb to the choice arena and make a preference decision. The 

arena was covered with the lid and sealed with parafilm (Parafilm, Pechiney Plastic Packaging, 

Menasha, WI). The aphids were observed after 0.5 h, 1 h, 2 h, 4 h, and 24 h and the number of 

aphids observed in each leaf segment were counted during each observation period. The earlier 
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observations were aimed at examining the initial preference while later observations were made 

in order to understand the overall movement of aphids across the treatments. The experiment was 

conducted in a windowless room with diffuse artificial lighting under laboratory conditions at 

room temperature (20-22 °C) and a 14:10 (L: D) photoperiod. The positions of plants were 

varied during each replication to avoid continuous placing of one treatment on one side of the 

arena. The experiment was replicated 20 times and the sample sizes were consistent with 

previously published studies including similar experiments (Mauck et al. 2010, Carmo-Sousa et 

al. 2014). The proportion of aphids responding to either treatments were compared using a 

generalized linear mixed model assuming a binomial distribution with a logit link function in 

SAS (Proc Glimmix, SAS Institute version 9.4, Cary, NC) as described in previous published 

studies (Ingwell et al. 2012, Rajabaskar et al. 2014). The time variable examined observations 

made at different intervals after release using a repeated measures design. Treatment means were 

separated by the Tukey-HSD test (α = 0.05). Aphids not located on either plant leaf in an arena 

were considered non-responsive and excluded from the analysis. 

 

Fig. 4.1. Showing the experimental setup of the dual choice bioassay (left) and a close-up of the 
arena (right). 
 
4.2.5. Life table studies 

The life table studies of M. sacchari on two different hosts, SrMV-infected and sham-

inoculated sorghum cv. Rio was conducted and aphid life history traits were compared on the 
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host plants using excised leaves. The leaf sections approximately 3 cm x 2 cm (length x 

breadth) in dimension were excised from the host plants grown and maintained in the green 

house as described above and placed in 30 ml Solo cups (Dart Container Corporation, Mason, 

MI). The cups were filled previously with 12-15 ml agarose solution (0.1% w/v) (RM3001-

500G Agar Powder Extra Pure, HiMedia, Einhausen, Germany) as described by De Souza 

(2018). Leaf sections from young leaves (and symptomatic in case of infected host treatment) 

were placed with abaxial surface upward on top of the agarose solution. Agarose solution 

avoided dehydration of the leaves and prevented aphids from escaping the leaf surface 

(Sampaio et al. 2001). The leaf sections were replaced every 3-4 days. The experiment was 

conducted at a constant temperature of 25 °C in climate regulated chambers (Model I-41VL, 

Percival scientific, Perry, IA). A single apterous adult aphid was placed on the leaf section 

with the help of a fine hair paint brush and allowed to larviposit for 24 h. After 24 h, the adult 

aphid along with all nymphs but one were removed, leaving only one nymph in the cup. All 

single first instar nymphs were the cohort for that treatment for the duration of the experiment. 

There were 45 nymphs per cohort and the experiment was repeated three times for both 

treatments. The cohort was examined every 24 h for deaths, change of instars, and number of 

nymphs produced per day until death for all individuals. Life table parameters were calculated 

for each host plant as described by Birch (1948). Age-specific survival (lx) and fecundity (mx) 

of aphids were calculated for each host. Net reproductive rate, R0, defined as the product of 

age-specific survival and age-specific fecundity was calculated using the formula R0 = ∑ lx mx, 

where lx is the proportion of live females on a given day, and mx is the mean number of births 

by female on that day. The intrinsic rate of increase, rm, was calculated as, ∑ 𝑒−𝑟𝑚𝑙𝑥 𝑚𝑥 = 

1. Finite rate of increase was calculated as,  = 𝑒𝑟𝑚
.  
Mean generation time was calculated as, 
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𝑇𝐺 = ln R0/rm, and doubling time was calculated as, DT = ln (2)/rm.  Jackknifing procedure was 

used to estimate rm standard error. Jackknifing is based on recombining the original data, 

calculating the pseudo-values for each recombined original data and estimating the mean 

value and standard error of rm from the frequency distribution of pseudo-values (Meyers et al. 

1986). Pseudo-values of rm were used to estimate the values for net reproductive rate, finite 

rate of increase, mean generation time and population doubling time and these variables were 

analyzed by one-way analysis of variance in SAS (Proc Glimmix, SAS Institute version 9.4, 

Cary, NC). Treatment means were separated by the Tukey-HSD test (α = 0.05). The biological 

variables (days to reproductive adult, reproductive period, longevity, progeny per female, and 

progeny per female per day) were analyzed using a randomized block design. Proc Glimmix 

procedures in SAS 9.4 (SAS institute Inc., 2013, Cary, NC) were used for all the datasets and 

Tukey-HSD at 0.05% significance allowed us to compare the least square means differences 

among treatments for each variable. Age-specific survivorship and fecundity graphs were 

plotted using Excel (Microsoft Excel Ver. 3, 2013).  

4.3. Results 

4.3.1. Dual-choice test bioassays 

 

Aphid preference behavior experiments in the dual-choice arena showed that apterous M. 

sacchari preferred SrMV-infected sorghum plants at early stages (0.5 h) (F = 8.02, P = 0.0073). 

However, no significant differences were observed in mean proportion of aphids among 

treatments during later stages (1 h, 2 h, 4 h and 24 h after release) (P > 0.05). The proportion of 

aphids observed on SrMV-infected leaf segments were constantly higher than on sham-

inoculated leaf segment although differences were not significant after first observation (0.5 h) 

(P > 0.05) (Fig. 4.2). On the other hand, M. persicae apterous adults didn’t show any particular 



86 
 

preference among treatments in our studies (P > 0.05). Comparatively lower proportions of M. 

persicae adults were observed in either of the treatments as compared to M. sacchari although 

the experiment was not designed to test this difference. The proportion of M. persicae observed 

on sham-inoculated leaf segment didn’t vary throughout the observation periods (Fig. 4.3). 

However, M. persicae tended to prefer sham-inoculated leaf segment at earlier observations (0.5 

h), although no significant differences among treatments were observed. The proportion of M. 

persicae observed was greater on SrMV-infected leaf segment at 1 h and 2 h mark than on sham-

inoculated leaf, but the difference was not statistically significant (P > 0.05). Aphids tended to 

move away from the SrMV-infected leaf segment after 2 h of release, as illustrated by the 

decreased proportion of aphids observed on the infected leaf segment (Fig 4.3).  

 
 
Fig. 4.2. Mean proportion of responding apterous M. sacchari adults observed on SrMV-infected 
and sham-inoculated sorghum plants under dual-choice assays at 0.5 h, 1 h, 2 h, 4 h and 24 h 
after aphid release. *Significant differences according to Tukey-HSD test (P < 0.05).  
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Fig. 4.3. Mean proportion of apterous M. persicae adults present on SrMV-infected and sham-
inoculated sorghum plants under dual-choice assays at 0.5 h, 1 h, 2 h, 4 h and 24 h after aphid 
release. No significant differences among treatments according to Tukey-HSD test (P > 0.05).  
 
4.3.2. Life table analysis 

 

M. sacchari cohorts evaluated in the laboratory through feeding bioassays on SrMV-infected and 

sham-inoculated sorghum showed statistically significant differences for some of the biological 

variables (Table 4.1). No significant differences were found in days to reproductive adults. 

Similarly, differences were not detected in reproductive period (the amount of time in which the 

female remained reproductively active). However, aphids fed on sham-inoculated sorghum leaf 

tissues had a greater longevity (average lifespan from day one until death) than those fed on 

SrMV-infected leaf tissues (F = 4.27, P = 0.04) (Table 4.1). Similarly, statistically significant 

differences were observed in two reproductive variables, progeny per female (F = 5.67, P = 

0.031) and progeny per female per day (F = 12.45, P = 0.0005), where aphids performed better 

upon feeding on sham-inoculated leaf tissue.  
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 Among the population parameters evaluated, intrinsic rate of increase (rm) was higher in 

the sham-inoculated treatment as compared to SrMV-infected treatment. There were no 

significant differences in other parameters calculated (Table 4.1).  

 Age-specific survival rate (lx) was higher throughout the duration of experiment on sham-

inoculated sorghum as compared to SrMV-infected sorghum (Fig. 4.4). Similarly, age-specific 

fertility rate was also higher on sham-inoculated sorghum (Fig. 4.5).  

Table 4.1. Life-table parameters (mean ± SE) of M. sacchari on SrMV-infected and sham-
inoculated sorghum. Values followed by different letters in a row are significantly different by 
the Tukey-HSD test (α = 0.05).  
 
 
Parameters 

Host plant  
Sham-inoculated SrMV-infected 

Biological parameters 
Days to reproductive adult 
Reproductive period 
Longevity 
Progeny per female 
Progeny per female per day 
(mx) 
 
Population parameters 
Intrinsic rate of increase (rm) 

 
6.8 ± 0.2 a 
10.5 ± 0.5 a 
18.7 ± 0.8 a 
53.3 ± 2.4 a 
4.9 ± 0.2 a 

 
 
 

0.393 ± 0.008 a 

 
6.9 ± 0.2 a 

10.8 ± 0.5 a 
16.0 ± 0.8 b 
46.7 ± 2.6 b 
3.9 ± 0.2 b 

 
 
 

0.370 ± 0.010 b 
Net reproductive rate (R0) 38.1 ± 10.2 a 27.9 ± 6.8 a 
Finite rate of increase (λ) 1.48 ± 0.03 a 1.45 ± 0.07 a 
Doubling time (DT) 
Mean generation time (GT) 
 

1.6 ± 0.1 a 
9.3 ± 0.5 a 

 

1.7 ± 0.3 a 
8.9 ± 0.8 a 
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Fig. 4.4. Age-specific survivorship of M. sacchari on SrMV-infected and sham-inoculated 
sorghum. 
 

 
Fig. 4.5. Age-specific fertility rate of M. sacchari on SrMV-infected and sham-inoculated 
sorghum. 
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4.4. Discussion 
 

The transmission and spread of plant viruses depend upon virus-vector relationship and this 

relationship can be regulated by the virus in order to acquire an adaptive advantage (Blua and 

Perring 1992). Plant viruses have been demonstrated to induce specific changes in plant volatiles 

emission and change the physiology and morphology of the plant (Bosque-Perez and Eigenbrode 

2011, Mauck et al. 2012). In addition to that, nutritional conditions of the plant infected by the 

virus and altered plant defense mechanisms in infected plants might also modulate virus-vector 

relationships (Blua et al. 1994, Mauck et al. 2010). 

 The spread of aphid-transmitted viruses, as indicated by numerous models, is enhanced if 

vectors favorably settle and feed on plants infected with virus as compared to non-infected plants 

(Sisterson 2008). Previous studies have demonstrated that both visual and olfactory signals 

emitted by the plant can change alter aphid behavior in discriminating infected or non-infected 

plants (Eigenbrode et al. 2002, Medina-Ortega et al. 2009, Mauck et al. 2010). Generally, 

infected plants become more attractive to vectors across pathosystems but the consistency of the 

effects is highly variable among pathogens and pathosystems (Eigenbrode et al. 2018). Vector 

behavior studies, however, have generally concentrated on pathosystems containing persistently 

transmitted viruses. Regardless, for a consistent acceleration of virus spread, the vectors settling 

on infected plants need to feed on them until they have acquired the virus and move to non-

infected plants (Roosien et al. 2013).  

 In our studies with SrMV-sorghum pathosystem and its interaction with a potential 

vector, M. persicae, we found that apterous M. persicae didn’t show a particular preference for 

either virus infected or sham inoculated leaves. We found no significant differences in the 

proportion of aphids observed at different time intervals after release among virus infected or 
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sham-inoculated leaf segments. Though the differences were statistically non-significant, a 

decrease in proportion of aphids on virus infected leaf segments was observed at later time 

periods, even reaching lower than aphids observed on sham-inoculated leaf segments towards the 

end of the experimental period (Fig. 4.3). Although we did not test the presence of virus in 

aphids during the experiment, the decreasing trend might suggest a proposed generalization of 

rapid emigration behavior of aphids carrying non-persistently transmitted viruses from infected 

source (Mauck et al. 2012). It is worth mentioning that even a small change in vector activity can 

have large effects on the spread of non-persistently transmitted viruses (Madden et al. 2000). 

Non-preference to a particular host (infected vs non-infected) by a vector in our study, however, 

is consistent with previous results documented by Fereres et al. (1999) on two non-persistently 

transmitted viruses, PVY and Soybean mosaic virus (SMV), where no preference among virus 

infected and non-infected soybean (Glycine max L.) and pepper (Capsicum annuum L.) plants by 

M. persicae and Rhopalosiphum maidis (Fitch) were reported. On the contrary, M. sacchari, a 

non-vector of SrMV (Chapter 3, this dissertation), interestingly, preferred SrMV infected 

sorghum than sham-inoculated in the earlier stages of our experiment (0.5 h after release). The 

mean proportion of aphids observed in later time points however, were not statistically 

significant among treatments. Prior studies suggested that preference of aphids to different host 

plant species might also affect their host selection behavior (Srinivasan et al. 2006). The host 

plant used in our studies, sorghum, is a non-host of M. persicae whereas it is a much preferred 

host of M. sacchari. This was evident by failed attempts of life table assays we conducted for M. 

persicae on sorghum where the cohorts couldn’t survive more than 1-2 days (data not shown). 

Moreover, the proportion of M. persicae observed in either of the treatment leaves in choice 

bioassay was very low as compared to the experiment on M. sacchari choice bioassay. The 
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proportion of M. sacchari aphids observed on SrMV-infected leaves didn’t fluctuate greatly and 

remained consistently higher than on sham-inoculated leaves throughout the experimental 

duration (Fig. 4.1). These observations suggest that apterous M. sacchari behavior might have 

been influenced by virus initially and were attracted to virus-infected leaves. However, there is 

no evidence to suggest that the behavior of M. sacchari was affected upon feeding on virus 

infected leaves as the proportion of aphids observed on infected leaves remained consistent and 

didn’t fluctuate rapidly throughout the experimental duration. It is not surprising for virus to 

have no effects on M. sacchari behavior upon feeding on virus infected leaves since it is a non-

vector of SrMV.  

 Besides the direct manipulation of the vector behavior before and after feeding, some 

viruses are also known to change the appropriateness of host plants for aphid vectors and thus 

affect the growth and development of their vector herbivores. The majority of the published 

report indicates that virus-infected plants are better hosts than virus-free plants in terms of vector 

growth rates, reproduction, and longevity (Fereres et al. 1989, Castle and Berger 1993, Blua et 

al. 1994, Jimenez-Martinez et al. 2004, Srinivasan et al. 2008). However, some negative effects 

on vectors have also been reported (McIntyre et al. 1981, Donaldson and Gratton 2007, Jimenez-

Martinez et al. 2009). In our study, we examined the potential interaction between a plant virus 

and an insect pest sharing the same host plant species through feeding bioassay experiment in the 

laboratory. We found that SrMV negatively affected the longevity and population growth rates of 

M. sacchari. Intrinsic rate of increase was negatively affected on M. sacchari cohorts fed on 

SrMV-infected leaf tissue. Age-specific survival rate was consistently higher on aphids fed on 

sham-inoculated leaf tissue as compared to SrMV-infected ones (Fig. 4.3). Here, we report the 

first evidence of effects of plant viruses on the growth, development, and reproduction of M. 
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sacchari in laboratory conditions. In addition, our findings will also help to add some insights 

into a limited pool of information regarding the effects of non-persistently transmitted viruses on 

aphid herbivores. Our findings have implications both for aphid populations in the sorghum 

fields and for patterns of transmission of SrMV. Even though sorghum is a non-host for M. 

persicae and their populations are rarely seen on sorghum fields, non-persistent transmission is 

best accomplished by non-host aphid species like M. persicae, which are known to be capable of 

causing severe mosaic epidemics in sugarcane. Moreover, the incidence and increase of virus 

disease also depends on the number of migrating aphid vectors passing through the landscape. 

Therefore, the ability of M. persicae to cause SrMV disease epidemiology in sorghum fields 

should not be underestimated. However, the neutral preference of M. persicae in our experiment 

(SrMV-infected versus sham-inoculated leaf), in contrast to a general observation for non-

persistently transmitted viruses, bodes well for low rates of increase in SrMV-disease incidence 

on sorghum fields.  

 The findings of this study contribute toward elucidating the complex interrelationships 

that occur among sorghum, its associated virus (SrMV), and M. sacchari. Even though 

mechanisms for decreased population growth rate is unclear, life table analyses indicate that 

decreased survivorship on infected sorghum may result in decreased aphid performance in the 

field. Lower population growth rates could lengthen the duration of time aphid populations in the 

field are below economic threshold thus reducing the extra losses incurred by aphids. In addition, 

the slower population growth would enable natural enemies to efficiently minimize aphid 

populations. Besides M. sacchari, many other aphid species such as corn leaf aphid 

(Rhopalosiphum maidis Fitch), yellow sugarcane aphid (Sipha flava Forbes), and green bug 

(Schizaphis graminum Rodani) frequently visit sorghum fields in the US. Understanding the 
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efficiency of all these aphid species to transmit SrMV in sorghum and the effects of this virus on 

their behavior and performance is crucial in predicting the incidence and severity of SrMV-

disease occurrence on sorghum fields. Moreover, an understanding of mechanisms of direct 

impacts of plant viruses on aphids may initiate novel avenues for the management of aphid 

populations in sorghum fields.  
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CHAPTER 5: IMPACTS OF CUCUMBER MOSAIC VIRUS AND SUNN-HEMP MOSAIC 

VIRUS ON FEEDING, GROWTH AND OVIPOSITION PREFERENCE OF TWO NON-

VECTOR HERBIVORES 
 

 

5.1. Introduction 
 

Plant viruses are rampant in both natural and artificial ecosystems and infections by plant viruses 

alter the phenotypic as well as the physiological characteristics of their host plants (Blua et al. 

1994, Jeger et al. 2004, Agrawal et al. 2006).  These changes ultimately affect vector behavior by 

attracting non-viruliferous vectors to virus infected plants for virus acquisition and spread 

(Eigenbrode et al. 2002, Ingwell et al. 2012) and vector population dynamics by supporting 

vector population growth (Ajayi et al. 1983, Alvarez et al. 2007). Virus-vector-host interactions 

can be positive, negative, or neutral. Plant viruses have been known to increase the attractiveness 

of their host plants by changing their physical and chemical appearance (Eigenbrode et al. 2002, 

Mauck et al. 2010). Moreover, it has also been shown that feeding preferences of insect vectors, 

after virus acquisition, can be altered (Stafford et al. 2011, Ingwell et al. 2012, Shrestha et al. 

2012, Rajabaskar et al. 2014). Rajabaskar et al. (2014) found that non-viruliferous Myzus 

persicae aphids preferred potato (Solanum tuberosum L.) plants infected with Potato leafroll 

virus whereas viruliferous aphids preferred uninfected plants. In addition, virus induced changes 

in host plants affect the fitness of arthropod vectors both positively (Fereres et al. 1989; Jimenez-

Martinez et al. 2004; Maris et al., 2004; Srinivasan et al. 2008) and negatively (Blua and Perring 

1992, Garcia et al. 2000; Stumpf and Kennedy 2005, Shrestha et al. 2012). Shrestha et al. (2012) 

demonstrated that fewer potentially viruliferous Frankliniella fusca (Hinds) eggs developed into 

adults and also required longer developmental time, insinuating a negative effect on fitness due 

to the presence of virus. No effects of virus induced host changes on vector fitness have been 

reported in some other instances (Wijkamp et al. 1996; Roca et al. 1997). 
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However, the interactions between plant viruses and non-vector arthropod herbivores 

have been poorly studied. Hare and Dodds (1987) reported an improvement in Leptinotarsa 

decemlineata (Say) survival on Tobacco mosaic virus (TMV) infected tomato. Similarly, the 

growth of Spodoptera exigua (Hubner) caterpillars increased on TMV-infected tomato (Solanum 

lycopersicum L.) plants as compared to control plants (Thaler et al. 2010). In one study, tomato 

plants infected by Tomato mosaic virus did not affect the feeding or oviposition preferences of 

corn earworm, Helicoverpa armigera (Hubner) (Lin et al. 2008). Spider mite survival and 

oviposition was enhanced by Tomato spotted wilt virus (TSWV) infection on pepper plants 

(Belliure et al. 2010). Mauck et al. (2010) reported that Anasa tristis (DeGeer), a non-vector 

herbivore, preferred to lay more eggs on healthy squash plants as compared to CMV infected 

plants.  Alternatively, fungus gnat females preferred to oviposit on non-infected rather than 

White clover mosaic virus infected white clover plants, although fungus gnat larvae were only 

marginally affected by the virus (van Molken et al. 2012). Hence, the impact of virus infection of 

the host plant on the behavior and fitness of non-vector herbivores is difficult to predict at 

present.    

Soybean looper, Chrysodeixis includens (Walker) [Lepidoptera: Noctuidae], is an 

important polyphagous pest and one of the most important and difficult pests to manage owing to 

their ability to defoliate rapidly (Herzog 1980, Mascarenhas and Boethel 1997, Moonga and 

Davis 2016)). Similarly, fall armyworm, Spodoptera frugiperda (Smith) [Lepidoptera: 

Noctuidae], is also an important crop pest which has a very wide host range including many 

grasses, cereal crops, vegetable crops and cotton (Pashley 1988, Walton and Luginbill 1916, 

Hinds and Dew 1951). Fall armyworm has been one of the primary pests of field corn in 

southern US historically (Pitre and Hogg 1983, Buntin 1986).  
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Cucumber mosaic virus (CMV) is the type member of genus Cucumovirus and family 

Bromoviridae, infecting more than 1200 plant species worldwide (Palukaitis et al. 1992). CMV 

is an important model for research owing to its easy mechanical transmissibility, strong virus 

accumulation in infected hosts, and the largest host range of any virus (Palukaitis et al. 1992). 

Sunn-hemp mosaic virus (ShMV) is a type member of genus Tobamovirus and family 

Virgaviridae and infects many crops in the Family Leguminosae (Boswell and Gibbs 1983). 

CMV and ShMV are both non-persistently transmitted by aphids and their effects on non-vector 

herbivores are not clearly understood. Both these viruses infect cowpea and cause mosaic 

symptoms, stunted growth, and eventual yield loss (Arogundade et al. 2009, Pio-Ribeiro et al. 

1978).  However, the impacts these viruses can incur on non-vector herbivores of cowpea are 

unknown. Therefore, greenhouse and laboratory experiments were conducted to determine the 

effects of Cucumber mosaic virus and Sunn-hemp mosaic virus infected cowpea on soybean 

looper and fall armyworm.  

5.2. Materials and Methods 
 

5.2.1. Insect colonies 

The soybean looper colony used in this study was MR08 which was collected from soybean 

fields at the Macon Ridge Research Station (Winnsboro, LA) in 2008 (Brown, 2012).  The 

colony was maintained by rearing larvae in 30 ml plastic cups (2-3 larvae/cup) on 10 ml artificial 

diet (Southland Products, Lake Village, AR). The rearing room was maintained at 28.5 °C, 50% 

R.H., and 14:10 (L: D) photoperiod. After pupation, pupae were reared in 3.8 L plastic 

containers (United States Plastic Corp, Lima, Ohio) with 25-30 g vermiculite (Sun Gro, 

Bellevue, WA). At the center of each containers, two 30 ml cups containing cotton wadding 

saturated in 10% honey solution were placed as supplementary diets for adults (Mascarenhas and 
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Boethel 2000). Paper towels cut in strips (8 x 20 cm) surrounded the inside of each containers 

and were used as oviposition sheets for the adults (Jensen et al. 1974). The oviposition sheets and 

honey solution were replaced every 2-3 days and egg sheets were kept in plastic bags until larval 

hatching (Chen 2018).  

 Fall armyworms used in this study were Bt-Susceptible biotype (genotype aabb) obtained 

from Corn Entomology Laboratory (Department of entomology, LSU under the directin of Dr. F. 

Huang). Genotype aabb was generated using an F2 screen of two-parent family lines of S. 

frugiperda derived from a field population collected from non-Bt maize fields in Franklin Parish, 

Louisiana in 2016 (Dr. Huang, personal communication). The larvae were reared on meridic diet 

(Ward’s Stonefly Heliothis diet, Rochester, NY) in 30-ml plastic cups (Fill-Rite, Newark, NJ) 

until the pupal stage under room conditions and pupae were placed in 3.8-L paper containers for 

adult emergence, mating, and oviposition as described by Niu et al. (2013).   

5.2.2. Virus source and maintenance 

Inoculum for both the viruses, CMV and ShMV, were obtained from the Sweet Potato Pathology 

Laboratory (Department of Plant Pathology and Crop Physiology, LSU, under the direction of 

Dr. C. Clark). The viruses were obtained initially through infected seeds in cowpeas and were 

tested using Enzyme Linked Immunosorbent Assay (ELISA) (Dr. Clark, personal 

communication).  

5.2.3. Test plants 

Cowpea var. Quick Pick Pinkeye (Victory Seed Company, Molalla, OR) was used for the 

experiments. Seeds were planted in 10-cm-diameter  plastic pots (Dillen Products, Middlefield, 

Ohio) containing sterile potting mix (Miracle-Gro Potting Mix, The Scotts Company, Marysville, 

OH) and 5g Osmocote (14:14:14) (The Scotts Company, Marysville, OH ) was mixed into the 



101 
 

soil prior to planting of seeds as a nutrient supplement and the pots were watered as required. 

Plants were grown in a greenhouse at 27 ± 1 °C, 70 ± 10% RH, and a 14:10 (L:D) h photoperiod.  

5.2.4. Mechanical inoculation of host plants  

After a week of germination, plants were mechanically inoculated with respective viruses. For 

mechanical inoculation, plant tissues infected with viruses (either CMV or ShMV) were ground 

in extraction buffer (0.1 M phosphate buffer with pH 7.0 and 1.0% sodium sulphite) at the ratio 

of 1:2 (weight by volume) by using a mortar and pestle. Absorbent cotton dipped in virus 

extracted buffer solution was used to gently rub leaves of healthy test plants which were 

previously dusted with 400 mesh carborundum powder (Fisher Scientific, Hampton, NH). Test 

plants showing visual symptoms after 2-3 weeks of inoculation were used for the experiment 

while the non-symptomatic plants were discarded. For control treatment (sham-inoculated), 

carborundum dusted plant leaves were inoculated with extraction buffer solution alone. The 

plants were maintained in greenhouse at 22-28℃ and a varying RH. In order to ensure no cross 

contamination occured, the plants were kept inside tent-like cages 61 x 61 x 61 cm in dimension 

(BugDorms, Catalog No. 1462W), BioQuip Products, Inc., USA). 

5.2.5. Feeding bioassays 

After two weeks, virus-infected and sham-inoculated leaves were brought to the laboratory from 

the green-house. Newly hatched neonates were obtained from their respective colonies and 

maintained in 30-ml Solo cups (Dart Container Corporation, Mason, MI) for 24 h in 10 ml 

soybean looper artificial diet (Southland Products, Lake Village, AR) for soybean looper and on 

meridic diet (Ward’s Stonefly Heliothis diet, Rochester, NY) for fall armyworm in order to 

reduce initial mortality due to handling. After 24 h, neonates of soybean looper and fall 

armyworm were transferred to sterile petri-dishes (10 X 1.5 cm) (Fisherbrand Petri Dishes, 
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Thermo Fisher Scientific Inc., Pittsburgh, PA) containing a moistened filter paper (9.0 cm Grade 

410 filter paper, VWR International, Suwanee, GA, USA) with the help of a fine hair paint 

brush. Neonates were allowed to feed on the leaf cores; virus infected or control which were 

placed in the petri dish. Leaf cores were made from the leaves using a #149 Arch Punch 

(Osborne and Co., Harrison, NJ). There were three treatments; two viruses and one control. For 

the soybean looper assays, each treatment consisted of 15 experimental units and was repeated 5 

times. Fall armyworm assays consisted of 15 experimental units and were repeated 4 times. 

Larval feeding was monitored daily and weights were taken after 7 and 14 days.  Data analysis 

was conducted by using PROC Glimmix (SAS Institute Version 9.4).  

5.2.6. Oviposition preference assays 

Soybean loopers and fall armyworms were sexed during the pupal stage as described by Butt and 

Cantu (1962). Recently emerged adults (3 males and 3 females) were released into tent-like cages 

61 x 61 x 61 cm in dimension (BugDorms, Catalog #1462W, BioQuip Products, Inc., USA) 

cages, each containing one healthy and one virus infected cowpea test plant in the green-house. 

Two 30 ml cups containing cotton wadding saturated in 10% honey solution were placed in each 

cage as supplementary diets for adults (Mascarenhas and Boethel 2000). For soybean looper 

assays, each experiment consisted of 12 cages (six cages for each virus) and repeated 4 times with 

a total of 24 replications for each virus. Only 10 cages were used for FAW bioassay and repeated 

3 times with a total of 15 replications for each virus. The number of eggs laid on each plant were 

counted and removed manually each day for a period of 2 weeks after release. Data analysis was 

conducted by using PROC Glimmix (SAS Institute Version 9.4).  
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5.3. Results 
 

5.3.1. Feeding bioassays 

There were no differences in soybean looper larval weights (both 7-day wt. and 14-day wt.) fed 

on virus infected and non-infected cowpea (P > 0.05) (Table 5.1). However, fall armyworm 

larvae fed on virus infected cowpea leaf cores showed significant differences in 7-day (N = 180, 

F = 25.32, P < 0.001) and 14-day larval weights (N = 180, F = 5.80, P = 0.0038). The weights of 

fall armyworm larvae fed on CMV-infected and ShMV-infected cowpea leaf cores measured in a 

week were significantly higher as compared to the weights of larvae fed on healthy cowpea leaf 

cores (Table 5.2). Similarly, comparison of means (Tukey-HSD test, SAS 9.4) showed that fall 

armyworm gained higher weight in two weeks upon feeding on CMV-infected cowpea as 

compared to ShMV-infected and sham-inoculated cowpea leaf cores (Table 5.2).  

Table 5.1. Summary table showing 7-day wt. and 14-day wt. (g) of soybean looper fed on virus-
infected and sham-inoculated cowpea. Values followed by different letters in a column are 
significantly different by the Tukey-HSD test (α = 0.05).  
 
 
Treatment 

Soybean looper  

7-day wt. (mean ± SE) 14-day wt. (mean ± SE) 

Cowpea-CMV 0.0640 ± 0.0057 a 0.1483 ± 0.0200 a 
Cowpea-Sham inoculated 
Cowpea-ShMV  
 

0.0596 ± 0.0064 a 
0.0682 ± 0.0057 a 

 

0.1469 ± 0.0171 a 
0.1508 ± 0.0134 a 

 

 

Table 5.2. Summary table showing 7-day wt. and 14-day wt. (g) of fall armyworm fed on virus-
infected and sham-inoculated cowpea. Values followed by different letters in a column are 
significantly different by the Tukey-HSD test (α = 0.05).  
 

 
Treatment 

Fall armyworm  
7-day wt. (mean ± SE) 14-day wt. (mean ± SE) 

Cowpea-CMV 0.1187 ± 0.0043 a 0.241 ± 0.0056 a 
Cowpea-Sham inoculated 
Cowpea-ShMV 
 

0.0745 ± 0.0045 c 
0.0992 ± 0.0043 b 

 

0.224 ± 0.0058 b 
0.214 ± 0.0056 b 
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5.3.2. Oviposition preference assays 

Our results showed significant differences among treatments regarding the oviposition 

preferences by soybean looper adults on cowpea (N = 96, F = 6.55, P = 0.0022). Adult females 

laid more eggs on healthy cowpea plants as compared to ShMV-infected plants (Table 5.3). 

Moreover, there was a moderately significant difference in mean number of eggs laid among 

CMV-infected and healthy plants (P = 0.0517). Among all treatments, the mean number of eggs 

oviposited in healthy plants were higher as compared to virus infected plants (Table 5.3).  

 The oviposition preference by fall armyworm also followed the same trend. There was a 

significant difference among the treatments based on oviposition preference by adult fall 

armyworm females (N = 60, F = 12.42, P < 0.001). The mean number of eggs laid were 

significantly higher on sham-inoculated plants as compared to plants infected by either of the 

viruses (Table 5.3). 

Table 5.3. Summary table showing total number of eggs laid (mean ± SE) by soybean looper and 
fall armyworm adults on virus-infected and sham-inoculated cowpea plants. Values followed by 
different letters in a column are significantly different by the Tukey-HSD test (α = 0.05).  
 

 
Treatment 

Number of eggs laid (mean ± SE) 

Soybean looper Fall armyworm  
Cowpea-CMV 53.9 ± 17.8 ab 41.8 ± 10.9 b 
Cowpea-Sham inoculated 
Cowpea-ShMV 
 

96.9 ± 12.6 a 
20.1 ± 17.8 b 

 

101.9 ± 7.7 a 
54.6 ± 10.9 b 

 
 

5.4. Discussion 
 

Emerging infectious diseases (EIDs) caused by plant pathogens; those that have increased in 

geographic range, incidence, or pathogenicity or those that have been recently discovered, are on 

the rise (Anderson et al. 2004). Of EIDs, plant viruses compromise the largest group (47%). 

Plant viruses can adversely affect agricultural production, being costly to both grower and 
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consumer by limiting yield and impacting quality. Plant viruses can also alter trophic 

interactions, enhancing pest herbivore populations. Majority of the researches regarding virus, 

host plant and herbivores have predominantly focused on interactions between virus and the host 

plant and between virus and its vectors. Here, we document that plant pathogenic viruses can 

also impact non-vector herbivores possibly through plant quality changes. Our results indicated 

that plant viruses didn’t affect soybean looper larvae. In a similar study, Lin et al. (2008) 

reported no effects on feeding and oviposition preferences by H. armigera fed on Tobacco 

mosaic virus infected tomato. However, fall armyworm was affected by plant viral pathogens. 

Fall armyworm larvae benefitted upon feeding on CMV-infected cowpea leaves in our studies. 

Earlier, Thaler et al. (2010) reported positive effects on growth of Spodoptera exigua larvae fed 

on Tobacco mosaic virus (TMV)-infected tomato. CMV infection of Cucurbita pepo was 

reported to cause upregulation of certain plant defense hormones (salicylic acid and ethylene) 

and downregulation of defense pathways regulated by jasmonic acid (Mauck et al. 2014a). The 

benefit to caterpillars feeding on a virus infected host, where a salicylate pathway is induced, is 

presumably due to a weaker ability of the host to induce jasmonate pathway (Thaler et al. 1999, 

Stout et al. 2006). Similarly, Preston et al. (1999) reported that TMV infected tobacco plants had 

subdued jasmonic acid induction and decreased resistance to Manduca sexta. Our work indicates 

that as the incidence of plant virus infections rise, this may impact non-vector herbivore 

performance and may be species specific. 

Soybean looper and fall armyworm adults preferred to lay more eggs on the healthy 

plants as compared to the virus-infected ones. Our current study and the data observed, however, 

doesn’t allow us to decipher how the soybean looper or fall armyworm females were able to 

detect infected versus non-infected plants and make an oviposition decision. Earlier work has 
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reported CMV infected plants exhibiting elevated emissions of volatile blends, making them 

attractive for aphids (Mauck et al. 2010). Our green-house and within cage experimental setting 

also precluded the understanding of the effects of distance on females while discriminating 

against infected plants. Nonetheless, this study demonstrates that the effects of virus infection on 

host plants can have pronounced impacts on plant and non-vector herbivore interactions with 

consequences for community structure and population dynamics (Mauck et al. 2010). Even 

though adults preferentially chose to oviposit on healthy plants, fall armyworm larvae seemed to 

benefit from feeding on virus infected cowpea leaves. These findings are similar to previous 

published studies by Mauck et al. (2015), who reported that Anasa tristis (a specialist non-vector 

herbivore) adults preferred ovipositing on healthy squash plants although nymphs performed 

better on CMV-infected squash plants. Based on our results, we propose that plant viruses may 

be “benefitting” themselves from non-vector herbivores by discouraging adult oviposition in 

order to ensure their movement and spread by vector herbivores. Further research is required to 

explicate the mechanisms underlying the observed effects of oviposition preference by females.  

 

5.5. References 

Agrawal, A., J. Lau, and P. Hamback. 2006. Community heterogeneity and the evolution of 
interactions between plants and insect herbivores. Q. Rev. Biol. 81: 349-376.  

Ajayi, O., and A. M. Dewar. 1983. The effect of barley yellow dwarf virus on field populations 
of the cereal aphids, Sitobian avenae and Metopolophium dirhodum. Ann. Appl. Biol. 
103: 1-11.  

Alvarez, A. E., E. Garzo, M. Verbeek, B. Vosman, M. Dicke, and W. F. Tjallingii. 2007. 
Infection of potato plants with potato leafroll virus changes attraction and feeding 
behavior of Myzus persicae. Entomol. Exp. Appl. 134: 170-181.  

Anderson, P. K., A. A. Cunningham, N. G. Patel, F. J. Morales, P. R. Epstein, and P. Daszak. 
2004. Emerging infectious diseases of plants: pathogen pollution, climate change and 
agrotechnology drivers. Trends Ecol. Evol. 19 (10): 535-544.  



107 
 

Arogundade, O., S. O. Balogun, T. H. Aliyu. 2009. Effects of Cowpea mottle virus and 
Cucumber mosaic virus on six soybean (Glycine max L.) cultivars. Virol. J. 6: 220.  

Belliure, B., M. W. Sabelis, and A. Janssen. 2010. Vector and virus induce plant responses that 
benefit a non-vector herbivore. B. App. Ecol. 11: 162-169.  

Blua, M. J., P. A. Perring, and M. A. Madore. 1994. Plant virus-induced changes in aphid 
population development and temporal fluctuations in plant nutrients. J. Chem. Ecol. 20: 
691-707.  

Boswell, K. F., and A. J. Gibbs. 1983. Viruses of legumes: descriptions and keys from VIDE. 
Australian National University, Canberra, A. C. T., Australia pp. 139.  

Brown, S. A. 2012. Evaluating the efficacy of methoxyfenozide on Louisana, Texas, and the 
Mid-Southern soybean looper populations. Louisiana State University. Electronic Thesis, 
Baton Rouge.  

Buntin, G. D. 1986. A review of plant response to fall armyworm, Spodoptera frugiperda (J. E. 
Smith), injury in selected field and forage crops. Fla. Entomol. 69: 549-559.  

Butt, B. A., and E. Cantu. 1962. Sex determination of lepidopterous pupae. USDA-ARS, pp. 33-
75. 

De Conti, B., V. H. P. Bueno, M. V. Sampaio, and L. A. Sidney. 2010. Reproduction and fertility 
life table of three aphid species (Macrosiphini) at different temperatures. Revista 
Brasileira de Entomologia. 54(4): 654-660.  

Eigenbrode, S. D., H. Ding, P. Shiel, and P. H. Berger. 2002. Volatiles from potato plants 
infected with Potato leafroll virus attract and arrest the virus vector, Myzus persicae 
(Homoptera: Aphididae). Proc. R. Soc. Lond. B 269: 455-460. 

Fehr, W. R., C. E. Caviness, and J. J. Vorst. 1977. Response of indeterminate and determinate 
soybean cultivars to defoliation and half plant cut-off. Crop Sci. 17: 913-917.  

Fereres, A., R. M. Lister, J. E. Araya, and J. E., Foster. 1989. Development and reproduction of 
the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with Barley 

yellow dwarf virus. Environ. Entomol. 18: 388-393. 

Garcia, L.E., G. G. Kennedy, and R. L. Brandenburg. 2000. Survival and reproductive success of 
tobacco thrips on three Tomato spotted wilt virus infected and non-infected peanut 
cultivars. Peanut Sc. 27: 49-52. 

Halbert, S. E., M. E. Irwin, and R. M. Goodman. 1981. Alate aphid (Homoptera: Aphididae) 
species and their relative importance as field vectors of soybean mosaic virus. Ann. Appl. 
Biol. 97(1): 1744-1748.  

Hare, J. D., and J. A. Dodds. 1987. Survival of the Colorado potato beetle on virus-infected 
tomato in relation to plant nitrogen and alkaloid content. Entomol. Exp. Appl. 44: 31-35.  



108 
 

Herzog, D. C. 1980. Sampling soybean looper on soybean, pp. 141-168. In M. Kogan, D. C. 
Herzog, [eds.], sampling methods in soybean entomology. Springer-Verlag, New York.  

Hinds, W. E., and J. W. Dew. 1951. The grass worm or fall armyworm. Ala. Agr. Exp. Stn. Bull. 
186: 61-92.   

Hunt, T. E., L. G. Higley, and J. F. Witkowski. 1994. Soybean growth and yield after simulated 
bean leaf beetle injury to seedlings. Agron. J. 86: 140-146.  

Hurd, H., 2003. Manipulation of medically important insect vectors by their parasites. Ann. Rev. 
Entomol. 48: 141-161. 

Ingwell, L. L., S. D. Eigenbrode, and N. A. Bosque-Pérez. 2012. Plant viruses alter insect 
behavior to enhance their spread. Sci. Rep. 2, http://dx.doi.org/10.1038/srep00578. 

Jeger, M. J., J. Holt, F. van den Bosch, and V. Madden. 2004. Epidemiology of insect-
transmitted plant viruses, modelling disease dynamics and control interventions. Physiol. 
Entom. 29: 291-304.  

Jensen, R. L., L. D. Newsom, and J. Gibbens. 1974. The soybean looper: effects of adult 
nutrition on oviposition, Mating frequency, and longevity. J. Econ. Entomol. 67: 467-
470.  

Jimene´z-Martinez, E. S., N. A. Bosque-Perez, P. H. Berger, R. S. Zemetra, H. Ding, and S. D. 
Eigenbrode. 2004. Volatile cues influence the response of Rhopalosiphum padi 
(Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and 
untransformed wheat. Environ. Entomol. 33: 1207-1216. 

Kogan, M., and S. G. Turnipseed. 1987. Ecology and management of soybean arthropods. Ann. 
Rev. Entomol. 32: 507-538.  

Lefèvre, T., and F. Thomas. 2008. Behind the scene, something else is pulling the strings: 
emphasizing parasitic manipulation in vector-borne diseases. Infect. Genet. Evol. 8: 504-
519. 

Lin, L., T. Shen, Y. Chen, and S. Hwang. 2008. Responses of Helicoverpa armigera to tomato 
plants previously infected by TMV or damaged by H. armigera. J. Chem. Ecol. 34: 353-
361.  

Maia, A. H. N., A. J. B. Luiz, and C. Campanhola. 2000. Statistical inference on associated 
fertility life table parameters using jackknife technique: computational aspects. J. Econ. 
Entomol. 93: 511– 518. 

Maris, P. C., N. N. Joosten, R. W. Goldbach, and D. Peters. 2004. Tomato spotted wilt virus 
infection improves host suitability for its vector Frankliniella occidentalis. Phytopathol. 
94: 706-711. 

 



109 
 

Mascarenhas R. N., and D. J. Boethel. 2000. Development of diagnostic concentrations for 
insecticide resistance monitoring in soybean looper (Lepidoptera: Noctuidae) larvae 
using an artificial diet overlay bioassay. J. Econ. Entomol. 93: 897-904.  

Mascarenhas, R. N., and D. J. Boethel. 1997. Responses of field-collected strains of soybean 
looper (lepidoptera: noctuidae) to selected insecticides using an artificial diet overlay 
bioassay. J. Econ. Entomol. 90(5): 1117-1124.  

Mauck, K. E., C. M. De Moraes, and M. C. Mescher. 2010. Deceptive chemical signals induced 
by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. 107: 3600-
3605.  

Mauck, K. E., C. M. de Moraes, and M. C. Mescher. 2010. Effects of cucumber mosaic virus 
infection on vector and non-vector herbivores of squash. Communicative and Integrative 
Biol. 3(6): 579-582.  

Mauck, K. E., C. M. de Moraes, and M. C. Mescher. 2014a. Biochemical and physiological 
mechanisms underlying effects of cucumber mosaic virus on host-plant traits that mediate 
transmission by aphid vectors. Plant, Cell and Environ. 37: 1427-1439.  

Mauck, K. E., E. Smyers, C. M. De Moraes., and M. C. Mescher. 2015. Virus infection 
influences host plant interactions with non-vector herbivores and predators. Functional 
Ecol. 29: 662-673.  

Moonga, M. N. and J. A. Davis. 2016. Partial life history of Chrysodeixis includens 
(Lepidoptera: Noctuidae) on summer hosts. J. Econ. Entomol. 109(4): 1713-1719.  

Niu, Y., R. L. Meagher Jr., F. Yang, and F. Huang. 2013. Susceptibility of field populations of 
the fall armyworm (lepidopteran: noctuidae) from Florida and Puerto Rico to purified 
Cry1F protein and corn leaf tissue containing single and pyramided Bt genes. Fla. 
Entomol. 96: 701-713.  

Palukaitis, P, M. R. Roossinck, R. G. Dietzgen, and R. I. B. Francki. 1992. Cucumber Mosaic 

Virus. Adv. Virus Res. 41: 281-348.  

Pan, H., G. Chen, F. Li, Q. Wu, and S. Wang. 2013. Tomato spotted wilt virus infection reduces 
the fitness of a non-vector herbivore on pepper. J. Econ. Entomol. 106: 924-928.   

Pashley, D. P. 1988. Current status of fall armyworm host strains. Fla. Entomol. 71: 227-234. 

Pio-Ribeiro, S. D. Wyatt, and C. W. Kuhn. 1978. Cowpea stunt: a disease caused by a synergistic 
interaction of two viruses. Phytopathol. 68: 1260-1265. 

Pitre, H. N., and D. B. Hogg. 1983. Development of the fall armyworm on cotton, soybean and 
corn. J. Ga. Entomol. Soc. 18: 182-187.  

Rajabaskar, D., N. A. Bosque-Perez, and S. D. Eigenbrode. 2014. Preference by a virus vector 
for infected plants is reversed after virus acquisition. Vir. Res. 186: 32-37.  



110 
 

Roca, E., J. Aramburu, and E. Moriones. 1997. Comparative host reactions and Frankliniella 

occidentalis transmission of different isolates of Tomato spotted wilt tospovirus from 
Spain. Pl. Pathol. 46: 407-415. 

Shrestha, A., R. Srinivasan, D. G.  Riley, and A. K. Culbreath. 2012. Direct and indirect effects 
of a thrips-transmitted Tospovirus on the preference and fitness of its vector, 
Frankliniella fusca. Entomol. Exp. Appl. 145: 260-271. 

Smith, R. H., B. Freeman, and W. Foshee. 1994. Soybean loopers: late season foliage feeders on 
cotton. Alabama Ext. Circukar ANR-843.   

Srinivasan, R., J. M. Alvarez, S. D. Eigenbrode, N. A. Bosque-Perez, and R. Novy. 2008. Effect 
of an alternate weed host, hairy nightshade, Solanum sarrachoides (Sendtner), on the 
biology of the two important Potato leafroll virus (Luteoviridae: Polerovirus) vectors, 
Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Homoptera: 
Aphididae). Environ. Entomol. 37: 592-600. 

Srinivasan, R., J. M. Alvarez, S. D. Eigenbrode, and N. A. Bosque-Pérez. 2006. Influence of 
hairy nightshade Solanum sarrachoides (Sendtner) and Potato leafroll virus 
(Luteoviridae: Polerovirus) on the host preference of Myzus persicae (Sulzer) 
(Homoptera: Aphididae). Environ. Entomol. 35: 546-553. 

Stafford, C.A., G. P. Walker, and D. E. Ullman. 2011. Infection with a plant virus modifies 
vector feeding behavior. Proc. Natl. Acad. Sci. 108: 9350-9355. 

Stout, M. J., J. S. Thaler, and B. H. J. Thomma. Plant-mediated interactions between pathogenic 
microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51: 663-689. 

Stumpf, C.F., and G. G. Kennedy. 2005. Effects of Tomato spotted wilt virus (TSWV) isolates, 
host plants, and temperature on survival, size, and development time of Frankliniella 

fusca. Entomol. Exp. Appl. 114: 215-225. 

Stumpf, C.F., and G. G. Kennedy. 2007. Effects of Tomato spotted wilt virus (TSWV) isolates, 
host plants, and temperature on survival, size, and development time of Frankliniella 

occidentalis. Entomol. Exp. Appl. 123: 139-147. 

Temple, J., S. Brown, J. A. Davis, and B. R. Leonard. 2010. Soybean loopers in Louisiana 
soybean. LSU Agcenter Department of Entomology. 
http://agfax.com/LibRepository/soybean-looper-white-paper-08122010.pdf. 

Thaler, J. S., A. A. Agrawal, and R. Halitschke. 2010. Salicylate-mediated interactions between 
pathogens and herbivores. Ecol. 91(4): 1075-1082.  

Thaler, J. S., A. L. Fidantsef, S. S. Duffey, and R. M. Bostock. 1999. Trade-offs in plant defense 
against pathogens and herbivores: a field demonstration of chemical elicitors of induced 
resistance. J. Chem. Ecol. 25: 1597-1609.  

 



111 
 

Valverde, R.A. 2011. Soybean viruses in Louisiana affect yield, seed quality. Louisiana 
Agriculture Magazine, Spring issue, 2011. 

van Molken, T., H. de Caluwe, C. A. Hordijk, A. Leon-Reyes, T. A. L. Snoeren, N. M. van Dam, 
and J. F. Stuefer. 2012. Virus infection decreases the attractiveness of white clover plants 
for a non-vectoring herbivore. Oecologia 170: 433-444.  

Walton, W. R., and P. Luginbill. 1916. The fall army worm, or “grass worm,” and its control. 
USDA Farmer’s Bulletin 752.  

Wijkamp, I., R. Goldbach, and D. Peters. 1995. Effect of Tomato spotted wilt virus infection on 
survival, development and reproduction on the vector Frankliniella occidentalis. 
Proceedings of the Section Experimental and Applied Entomology of the Netherlands 
Entomological Society (N.E.V.) 6: 207-214. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 
 

CHAPTER 6: EFFECTS OF BELL PEPPER ENDORNAVIRUS ON MYZUS PERSICAE 

HOST PREFERENCE AND POPULATION DYNAMICS 

 

 

6.1. Introduction 
 

Endornaviruses belong to the genus Endornavirus in the family Endornaviridae and infect a 

wide host range including plants, fungi and oomycetes (Hacker et al. 2005, Okada et al. 2013, Li 

et al. 2014). Endornaviruses are currently classified into two genera, Alphaendornavirus, which 

infects plants, fungi and oomycetes, and Betaendornavirus, which infects ascomycete fungi 

(Adams et al. 2017). Endornaviruses are reported to infect various crops of economic 

importance, such as, beans, cereals, cucurbits, and peppers (Pfeiffer 1998, Coults 2005, Valverde 

and Gutierrez 2007). In general, only select cultivars of these crops have been shown to be 

infected by endornaviruses except for bell pepper (Capsicum anuum) and melon (Cucumis melo) 

in the US, which have been reported to be infected almost 100% (Valverde et al. 1990, Okada et 

al. 2011, Sabanadzovic et al. 2016). Plants infected by endornaviruses are phenotypically normal 

and do not show any typical viral symptoms (Okada et al. 2011, Song et al. 2013). In addition to 

plants, endornaviruses have also been described in several species of fungi that include 

Alternaria brassicola, Helicobasidium mompa, and Tuber aestivum (Osaki et al. 2006, Stielow et 

al 2011, Shang et al. 2015) and oomycetes which includes Phytophthora endornavirus-1 in a 

Phytophthora isolate collected from Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) (Hacker 

et al. 2005).   

 Endornaviruses have a single linear dsRNA genome (9.8-17.6 kbp), are generally 

transmitted at a high rate only through seeds and are present in a very low copy number 

(Moriyama et al. 1996, Horiuchi and Fukuhara 2004, Valverde and Gutierrez 2007). 

Endornaviruses lack both coat protein and movement proteins, and are solely comprised of naked 
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RNA (Roossinck et al. 2011). Endornaviruses contain only one open reading frame which 

normally encodes a single polypeptide that is processed by virus-encoded proteinases (Okada et 

al. 2011). Endornaviruses whose genome have been completely sequenced are reported to 

possess conserved motifs of RNA-dependent RNA polymerase and viral RNA helicases (Gibbs 

et al. 2000).  

 BPEV (Bell pepper endornavirus), like other endornaviruses, shows no typical viral 

disease symptoms on bell peppers (Capsicum annuum L.) (Aguilar-Melendez et al. 2009). BPEV 

produce no apparent symptoms, cannot move from one cell to another but are found at uniform 

concentrations in every tissue and at every developmental stage of the plant (Okada et al. 2011). 

Endornaviruses possibly interact with plant hosts in many ways: i) parasitic, and use host 

resources for their replication, ii) mutualistic, a possibility looking at the high rate of vertical 

transmission from parent to progeny suggesting a selection for the endornavirus infection, or iii) 

commensalistic, benefitting the virus while no effects on their hosts (Herschlag 2017).  

Although reported infecting many economically important crops, the effects of 

endornaviruses on their hosts have not been fully studied primarily due to the lack of a practical 

inoculation method (Khankhum and Valverde 2018), resulting in very few studies conducted to 

assess the effects of endornaviruses on their hosts. A positive effect on seed germination, longer 

sized pods, and higher seed weight were reported on endornavirus-infected common bean 

(Phaseolus vulgaris) as compared to endornavirus-free common bean plants (Khankhum and 

Valverde 2018). On the contrary, a negative effect of BPEV on bell pepper was also reported 

(Escalante 2017). Using two near-isogenic lines (NILs) of the bell pepper cv. Marengo, 

Escalante (2017) conducted a comparative study on plant physiology and phenotypic 

characteristics and reported that fruits obtained from BPEV-free pepper plants weighed 
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significantly higher than the fruit weight obtained from BPEV-infected line. Similarly, a higher 

percentage of seed germination and root length was measured in BPEV-free lines. However, no 

statistically significant differences were observed on stem thickness, height, fruit size, and dry 

matter percentage of the plants among BPEV-infected and BPEV-free lines (Escalante 2017).  

 Moreover, Escalante (2017) also investigated the interaction of BPEV with Pepper mild 

mottle virus (PMMoV) and found that BPEV-infected lines had less severe symptoms and lower 

virus titer and viral RNA accumulation, suggesting an antagonistic relationship between BPEV 

and PMMoV. Earlier, Valverde and Fontenot (1991) had reported the presence of BPEV in all 

tested bell pepper cultivars. It appears that plant breeders while developing bell pepper cultivars, 

inadvertently selected and introduced virus infected genotypes in bell pepper growing regions, 

completely unaware of the presence of endornaviruses in the germplasm. Because BPEV is 

transmitted vertically and is at constant concentrations in almost all commercial bell pepper 

cultivars, it is logical to presume that BPEV might also be providing a benefit. One of the 

probable beneficial effects could include resistance or tolerance to biotic and abiotic factors. 

Therefore, endornaviruses may have evolved a symbiotic relationship with their hosts to tolerate 

stresses. With this in mind, we set out experiments to determine host suitability and population 

dynamics of green peach aphid on BPEV-infected and BPEV-free pepper test plants.  

6.2. Materials and Methods 
 

6.2.1. Host plants, Virus source and maintenance 

Two near isogenic lines (NILs) of bell pepper cv. Marengo, one BPEV-infected and another 

BPEV-free, were developed in the Plant Virology Laboratory (Department of Plant Pathology 

and Crop Physiology under the direction of R. Valverde) at LSU as described by Guardado 

(2017). The plants were planted in steam sterilized soil mixture consisting of soil, sand, and 
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Miracle-Gro potting mix (Scotts Miracle-Gro, Marysville, OH) in a proportion of 2:1:1. The 

plants were grown in the greenhouse at an average temperature of 28 ℃. For the detection of 

virus, viral double stranded RNA (dsRNA) was extracted as described by Khankhum et al. 

(2017), analyzed in agarose gel electrophoresis, and used in reverse-transcription polymerase 

chain reactions (RT-PCR) as reported by Okada et al. (2011). The plants, after confirmatory 

tests, were obtained from the Plant Virology Laboratory and maintained in the greenhouse at 22-

28 ℃ and a varying RH. The plants were kept separately inside tent-like cages 61 x 61 x 61 cm 

in dimension (BugDorms, Catalog No. 1462W, BioQuip Products, Inc., USA) in order to ensure 

no cross contamination.  

6.2.2. Aphid colony 

Green peach aphids used in the experiment came from a colony established from a single 

apterous M. persicae collected from eggplant (Solanum melongena L.) in 2009. The colony was 

maintained in screened cages (30 x 30 x 30 cm, assembled using Plexiglass plastic sheet and 

nylon mesh fabric) and reared on mustard (Brassica juncea L.) cv. Tendergreen (W. Atlee 

Burpee and Co., Warminster, PA), under laboratory conditions at room temperature (20-22 °C) 

and a 14:10 (L: D) photoperiod. Mustard plants were planted in plastic pots 10 cm in diameter 

(Dillen Products, Middlefield, OH) containing sterile potting mix (Miracle-Gro Organic Choice 

Garden Soil, Marysville, OH) and 5g Osmocote (14:14:14) (The Scotts Company, Marysville, 

OH) and grown in growth chambers (Percival Scientific, Perry, IA) maintained at 25 ± 2 °C, 50 

± 5% RH and a photoperiod of 14:10 (L: D). A cohort of 10 to 15 aphids was placed on fresh 

plants every 2 to 3 weeks to establish and maintain a new colony.  
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6.2.3. Choice bioassay 

Host plant selection preference of adult apterous non-viruliferous M. persicae was 

examined using a dual-choice bioassay arena. The plants used in the choice bioassay were near 

isolines of each other, differing only in infection status. The leaves were carefully excised along 

with the petiole from the plants in the greenhouse and brought to the laboratory for the 

experiment. The choice bioassay arena consisted of 3 circular petri dishes, one at the center 

(central) and two at the edges (peripheral) (Fig 6.1). Each peripheral petri dish consisted of two 

holes (approximately 0.5 cm in diameter), one to connect with the central petri dish, and another 

to insert the excised treatment leaf into the arena. The central petri dish consisted of two holes to 

insert tubes in order to connect with two petri dishes in the opposite sides. The petiole of the 

excised treatment leaf was inserted in a glass tube containing water and sealed with parafilm 

(Parafilm, Pechiney plastic packaging, Menasha, WI) in order to avoid wilting of the leaf due to 

desiccation during the experimental duration. 50 adult apterous aphids were removed from the 

colony with the help of a fine camel’s hair brush and placed in 2-ml micro-centrifuge tube. After 

a starvation period of 2 h, aphids were carefully released into the central petri dish and allowed 

to choose between BPEV-infected or BPEV-free bell pepper leaves placed at two different 

peripheral petri dishes. Aphid observations were made at 0.5 h, 1 h, 2 h, 6 h, and 24 h after 

release into the arena and the number of aphids were counted during each observation period. 

The experiment was conducted under laboratory conditions at room temperature (20-22 °C) and 

a 14:10 (L: D) photoperiod. The positions of leaves were varied during each replication to avoid 

continuous placing of one treatment on one side of the arena. The experiment was repeated 20 

times. The proportion of aphids responding to either treatments were compared using a 

generalized linear mixed model assuming a binomial distribution with a logit link function in 
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SAS (Proc Glimmix, SAS Institute version 9.4, Cary, NC). The time variable examined 

observations made at different intervals after release using a repeated measures design. 

Treatment means were separated by the Tukey-HSD test (α = 0.05). Aphids not located on either 

plant leaf in an arena were considered non-responsive and excluded from the analysis. 

 

 

 

 

 
Fig. 6.1. Showing the experimental setup of the dual choice bioassay (left) and a close-up of the 
arena (right). 
 

6.2.4. Life table studies 

The life table studies of M. persicae on two different hosts (NILs), BPEV-infected and BPEV-

free on bell pepper cv. Marengo was conducted and aphid life history traits were compared on 

the host plants using excised leaves. Plant leaves were carefully excised from the plants in the 

green house and brought to the laboratory. Circular leaf cores (approximately 11.3 cm2) were cut 

from the leaves using a #149 Arch Punch (Osborne and Co. Harrison, NJ). Leaf cores were 

placed in 30 ml Solo cups (Dart Container Corporation, Mason, MI). The cups were filled 

previously with 12-15 ml agarose solution (0.1% w/v) (RM3001-500G Agar Powder Extra Pure, 

HiMedia, Einhausen, Germany). Leaf cores were placed with abaxial surface upward on top of 

the agarose solution. Agarose solution helped to avoid dehydration of the leaves and prevented 

aphids from escaping the leaf surface. Adult apterous aphids were removed from the colony and 

placed in individual cups with the help of a fine camel’s hair brush and allowed to larviposit for 

24 h. After 24 h, adult aphid along with all nymphs but one were removed so that only one 1st 



118 
 

instar nymph remains in each cup. All single 1st instar nymphs consisted the cohort for that 

treatment for the experimental duration. There were 25 nymphs per cohort and the experiment 

was replicated 4 times for both the treatments. The cohort was examined every 24 hours for 

deaths, change of instars, and nymphs produced per day until death for all individuals. Life table 

parameters were calculated for each host plant as reported by Birch (1948). Age-specific survival 

(lx), the proportion of live females on a given day, and fecundity (mx), the mean number of births 

by female on that day were calculated for each treatment host. Net reproductive rate, R0, defined 

as the product of age-specific survival and age-specific fecundity was calculated using the 

formula R0 = ∑ lx mx. The intrinsic rate of increase, rm, was calculated as, ∑ 𝑒−𝑟𝑚 lx mx = 1. 

Finite rate of increase was calculated as  = 𝑒𝑟𝑚, Mean generation time was calculated as 𝑇𝐺   =    

ln R0/rm, and doubling time was calculated as, DT = ln (2)/rm.  Jackknifing procedure was used to 

estimate rm standard error. Jackknifing is based on calculating the pseudo-values after 

recombining the original data and estimating the mean value and standard error of rm from the 

frequency distribution of pseudo-values (Meyers et al. 1986). Pseudo-values of rm were used to 

estimate the values for net reproductive rate, finite rate of increase, mean generation time and 

population doubling time and these variables were analyzed by one-way analysis of variance in 

SAS (Proc Glimmix, SAS Institute version 9.4, Cary, NC). Treatment means were separated by 

the Tukey-HSD test (α = 0.05). The biological variables (days to reproductive adult, reproductive 

period, longevity, progeny per female, and progeny per female per day) were analyzed by one-

way analysis of variance in SAS (Proc Glimmix, SAS Institute version 9.4, Cary, NC) and 

treatment means for each variable were compared using Tukey-HSD at 0.05% significance level. 

Age-specific survivorship and fecundity graphs were plotted using Excel (Microsoft Excel Ver. 

3, 2013).  
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6.3. Results  
 

6.3.1. Choice bioassay 

Aphid preference behavior experiments through choice bioassay arena showed that apterous M. 

persicae tended to prefer BPEV-free bell pepper leaves than BPEV-infected leaves (Table 6.1). 

The percentage of aphids observed on BPEV-free leaves were significantly higher than those 

observed on BPEV-infected leaves throughout the experimental period. This suggests that aphids 

preferred to feed on healthy leaves as compared to BPEV-infected ones.  

Table 6.1. Analysis of variance (ANOVA) test results showing the differences in mean 
proportion of aphids (Means ± S.E.) among the aphids responding to either treatments observed 
at different observation points throughout the experiment. Values followed by different letters in 
a row are significantly different by Tukey-HSD test (α = 0.05). 
 

Observation point 
Proportion of aphids observed in different hosts 

BPEV-free BPEV-infected 

0.5 h  0.92 ± 0.03 a 0.08 ± 0.03 b 

1.0 h 0.74 ± 0.04 a 0.26 ± 0.04 b 

2.0 h 0.62 ± 0.05 a 0.38 ± 0.05 b 

6.0 h 0.60 ± 0.04 a 0.40 ± 0.04 b 

24.0 h 0.59 ± 0.05 a 0.41 ± 0.05 b 

 
 

6.3.2. Life table analysis 

Life table analysis through feeding bioassays on BPEV-infected and BPEV-free bell pepper 

showed statistically significant differences of the biological variables (Table 6.2). Aphids fed on 

BPEV-free bell pepper leaf cores had a greater longevity (average life span from day one until 

death) than those fed on BPEV-infected leaf cores (F = 3.966, P = 0.048). Similarly, differences 

were statistically significant for two reproductive variables, progeny per female (F = 6.144, P = 

0.014) and progeny per female per day (F = 9.087, P = 0.003), where aphids performed better 

upon feeding on BPEV-free leaf tissue as compared to BPEV-infected ones. However, no 
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significant differences were observed on biological variables days to reproductive adult and 

reproductive period (the duration in which female remained reproductively active) (P > 0.05).  

  Statistically significant differences were observed in intrinsic rate of increase (rm), which 

was higher in BPEV-free treatment as compared to BPEV-infected one. All other population 

parameters were not statistically different among treatments (Table 6.2). 

Table 6.2. Life-table parameters (mean ± SE) of M. persicae on BPEV-infected and BPEV-free 
bell pepper cv. Marengo. Values followed by different letters in a row are significantly different 
by Tukey-HSD test (α = 0.05). 

 

 Age specific fertility rate (mx) curve was higher for BPEV-free bell pepper as compared 

to BPEV-infected one (Fig. 6.2). Similarly, age-specific survival rate (lx) curve was also higher 

for BPEV-free bell pepper as compared to BPEV-infected bell pepper (Fig. 6.3).  

 

 
Parameters 

Host plant  

BPEV-free BPEV-infected 

Biological parameters 
Days to reproductive adult 
Reproductive period 
Longevity 
Progeny per female 
Progeny per female per day 
(mx) 
 
Population parameters 
Intrinsic rate of increase (rm) 

 
7.6 ± 0.1 a 
5.0 ± 0.3 a 
12.2± 0.4 a 
19.4 ± 1.2 a 
3.7 ± 0. a 

 
 
 

0.343 ± 0.042 a 

 
7.5 ± 0.1a 
4.6 ± 0.3 a 

11.1 ± 0.4 b 
15.1 ± 1.2 b 
3.1 ± 0.1 b 

 
 
 

0.273 ± 0.019 b 
Net reproductive rate (R0) 13.7 ± 3.6 a 9.2 ± 2.3 a 
Finite rate of increase (λ) 1.4 ± 0.1 a 1.3 ± 0.1 a 
Doubling time (DT) 
Mean generation time (GT) 
 

2.0 ± 0.3 a 
7.6 ± 0.4 a 

 

2.5 ± 0.3 a 
8.1 ± 0.3 a 
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Fig. 6.2. Age-specific fertility rate of M. sacchari on BPEV-infected and BPEV-free bell pepper 
cv. Marengo. 
 

 
 
Fig. 6.3. Age-specific survival rate of M. sacchari on BPEV-infected and BPEV-free bell pepper 
cv. Marengo. 
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6.4. Discussion 

Since the advent of plant viruses and their basic understanding as pathogens, a majority of the 

studies have concentrated on the negative impacts of viruses on plants. However, many viruses 

are found to be beneficial to their hosts either by enhancing the host ability to counteract abiotic 

stresses, or in some cases, altering the plants ability to deal with biotic stresses (Roossinck, 

2015). The effects of plant viruses, in some cases, can be conditional as stated by Bao and 

Roossinck (2013), where virus, under normal conditions, may be a pathogen but benefit the hosts 

under stress. Plant viruses induce specific changes in plant volatile emission and alter the 

physiology and the morphology of the plant (Bosque-Perez and Eigenbrode 2011, Mauck et al. 

2012). BPEV, a persistent virus in bell pepper has been maintained at a constant concentration 

and transmitted vertically by the host plants in almost all commercial bell peppers varieties 

(Valverde et al. 1990, Okada et al. 2011). However, the impacts of BPEV on bell pepper and 

insect pests that attack bell pepper have rarely been studied. Escalante (2017) reported a negative 

effect of BPEV, in which fruits from BPEV-free bell pepper weighed higher than fruits from 

BPEV-infected bell pepper plants. In contrast to this result, Escalante (2017) reported that 

presence of BPEV had an antagonistic relationship on Pepper mild mottle virus (PMMoV), a 

disease-causing virus on pepper, where BPEV-infected lines had less severe symptoms due to 

PMMoV, lower virus titer and viral RNA accumulation. 

 Here, we report the first instance of effects of BPEV on preference behavior, growth and 

reproduction of an important insect pest on bell pepper under laboratory conditions. In our study, 

we examined the potential interaction between BPEV and M. persicae, a common pest of pepper 

(Blackman and Eastop 1984, Frantz et al. 2004). During host preference bioassays, we found that 

higher number of aphids were observed initially and throughout the observation period on 

BPEV-free leaf arena. This could indicate that BPEV infection might have benefitted the host by 
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making them unattractive to the herbivores and could be reducing virus inoculation of non-

persistent viruses. Our experiment was not designed for aphids to move freely between 

treatments and make a feeding decision. So, there is no evidence to entail that aphid’s behavior 

was altered upon feeding on BPEV-infected leaf tissue. However, a rapid efflux of aphids from 

either treatment arena was not observed in order to suggest an alteration in behavior after feeding 

on a particular host. Also, it is not surprising for BPEV to have no effects on M. persicae 

behavior upon feeding since it is a non-vector of BPEV. We also found that BPEV negatively 

affected longevity and fecundity of aphids. Population parameters like intrinsic rate of increase, 

and mean generation time were negatively affected by BPEV. Similarly, age specific survival 

rate and fertility rate were higher on aphids fed on BPEV-free leaf tissues. The findings of this 

study contribute an important first stride towards understanding the intricate interactions that 

occur between BPEV, bell pepper and M. persicae. The mechanism for decreased population 

growth rate is not clear but life table analyses suggest that decreased survival rate on infected 

BPEV might lead to decreased aphid performance in the field. Lower population growth rate 

upon feeding on BPEV-infected plants can help to check the rapid growth of pest population and 

allow time for other control measures to come into effect for successful management of the pest. 

Moreover, since the negative effects of BPEV on bell pepper have not been completely 

understood and the interactions seem rather beneficial to the host, this opens a new avenue for 

the integration of BPEV-infected pepper plants in the crop ecosystem. Other insect pests that 

attack bell pepper besides M. persicae are beet armyworm (Spodoptera exigua), flea beetles, 

leafminers, leafrollers, pepper weevil (Anthonomus eugenii), thrips, and tomato fruitworm 

(Helicoverpa zea). Similarly, fungal diseases like anthracnose, damping-off, mildew, blight, 

cercospora leaf spot, bacterial diseases like bacterial spot, bacterial wilt, and viral disease like 
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(Cucumber mosaic virus, Potato virus Y, Tomato spotted wilt virus) also attack bell peppers. 

Therefore, understanding the interactions between the aforementioned biotic factors and BPEV-

infected bell pepper is very important to understand in integrated pest management programs.  
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CHAPTER 7:  SUMMARY AND CONCLUSION 

 

 

Plant virus-vector-host are complex and the interactions between key components in the 

pathosystem are very important in order to devise sound management strategies for the control of 

plant virus disease epidemiology in the landscape. Although the interactions between plant 

viruses and their impacts on the behavior and performance of their vector herbivores are studied 

in many pathosystems, there is a dearth of information regarding the impacts of plant viruses on 

non-vector herbivores. This is crucial because the majority of insect herbivores are non-vectors 

and the impacts plant viruses might have on non-vector herbivores could lead to the reassessment 

of prevalent pest management options. Moreover, feeding on an infected plant, even if an insect 

might not transmit a specific pathogen, could have major impacts on its behavior with significant 

implications for its ecology.  

 In order to shed some insights on the interactions between plant viruses, their hosts, 

potential vectors, and non-vector herbivores, three unique pathosystems were chosen for our 

studies. At first, we conducted experiments in Sorghum mosaic virus (SrMV)-sorghum (Sorghum 

bicolor L.) pathosystem. Transmission studies for SrMV in sorghum were conducted for the first 

time on sugarcane aphid (Melanaphis sacchari Zehntner), an important invasive pest in U.S. 

sorghum, and green peach aphid (Myzus persicae Sulzer), a model vector for non-persistently 

transmitted viruses. We also conducted electrical penetration graph (EPG) studies to understand 

the feeding behavior and choice bioassay experiments to understand the preference behavior of 

M. persicae and M. sacchari on SrMV-infected and non-infected sorghum. Life history and 

population dynamics of M. sacchari on SrMV-infected and non-infected sorghum were also 

studied.  
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We found that transmission of SrMV differs among two aphid species; M. sacchari and 

M. persicae. M. sacchari failed to transmit SrMV both singly and in groups under laboratory 

conditions. Based on our results, we state that M. sacchari is a non-vector of SrMV in sorghum. 

Therefore, it is safe to mention that sorghum growers do not need to be concerned regarding the 

indirect damage that sugarcane aphid can inflict through transmission of SrMV. M. persicae, 

however, successfully transmitted SrMV in sorghum in our studies at different efficiencies (4.2 

to 8.2 %), depending upon whether they were allowed to transmit singly or in groups. The non-

persistent transmission like that of SrMV is best accomplished by non-host aphid species like M. 

persicae, which are known to be capable of causing severe mosaic epidemics in sugarcane. 

Moreover, the incidence and increase of virus disease also depends on the number of migrating 

aphid vectors passing through the landscape. Therefore, the ability of M. persicae to cause SrMV 

disease epidemiology on sorghum fields should not be underestimated. Studies of feeding 

behavior by EPG suggested that by virtue of producing higher numbers of probes during feeding, 

a longer potential drop duration with longer subphases II-1 and II-3, higher number of archlets 

during subphase II-3, and quicker to produce first potential drops than M. sacchari, M. persicae 

possesses an ability to successfully transmit SrMV from sorghum to sorghum.  

Our second study system consisted of Cucumber mosaic virus (CMV) or Sunn-hemp 

mosaic virus (ShMV) infected cowpea (Vigna Unguiculata (L.) Walp) and its interaction with 

two non-vector herbivores, soybean looper, Chrysodeixis includens (Walker) and fall armyworm, 

Spodoptera frugiperda (Smith). We conducted greenhouse and laboratory experiments to 

determine the effects of Cucumber mosaic virus or Sunn-hemp mosaic virus infected cowpea on 

soybean looper and fall armyworm larval growth and adult oviposition preference. We found that 

both viruses didn’t affect soybean looper larval growth. However, fall armyworm larvae 
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benefitted upon feeding on CMV-infected cowpea leaves in our studies. Here, we document that 

plant pathogenic viruses can also impact non-vector herbivores possibly through plant quality 

changes. Though our study was not designed to study the possible cause for this effect, the 

benefit to caterpillars feeding on a virus infected host, where a salicylate pathway is induced, 

might presumably be due to a weaker ability of the host to induce jasmonate pathway. In the 

oviposition preference study, we observed that soybean looper and fall armyworm adults 

preferred to lay more eggs on the healthy plants as compared to the virus-infected ones. This 

demonstrates that the effects of virus infection on host plants can have significant impacts on 

plant and non-vector herbivore interactions with implications for community structure and 

dynamics. Based on our results, we propose that plant viruses may be “benefitting” themselves 

from non-vector herbivores by discouraging adult oviposition and subsequent larval feeding on 

the infected hosts in order to ensure their movement and spread by vector herbivores.  

 Lastly, the third pathosystem we studied consisted of a persistent virus, Bell pepper 

endornavirus (BPEV) in bell pepper (Capsicum annuum L.). BPEV is a persistent virus with no 

known vectors, is transmitted only vertically, and is present at constant concentrations in every 

tissue in all tested bell pepper cultivars. BPEV produces no symptoms and no negative effects 

have been documented on the infected hosts. There seems to have evolved a symbiotic 

relationship between virus and the host suggesting that viruses might be providing a benefit in 

terms of tolerance or resistance to biotic and abiotic agents. Thus, we conducted lab experiments 

to understand if BPEV-infection provides any benefit to bell pepper hosts against a common 

pest, M. persicae. We designed experiments to determine preference behavior, host suitability 

and population dynamics of M. persicae on BPEV-infected and non-infected pepper plants. 

Through host preference bioassays, we found that M. persicae preferred virus-free leaves as 
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compared to virus infected ones. This could indicate that BPEV infection might have benefitted 

the host by making them unattractive to the vector herbivores and could be reducing virus 

inoculation of non-persistent viruses. Moreover, we also found that BPEV negatively affected 

longevity and fecundity of aphids. The findings of this study provide an important first step 

towards understanding the complex interaction that occur between BPEV, bell pepper and M. 

persicae.  

 In conclusion, in our study in SrMV-sugarcane aphid-sorghum pathosystem, we observed 

that plant virus negatively affected the population dynamics of a piercing sucking herbivore. A 

similar result was obtained in the BPEV-green peach aphid- bell pepper pathosystem. In 

addition, oviposition of fall armyworm and soybean looper, two economically important 

chewing herbivores in CMV-cowpea and ShMV-cowpea pathosystems were also negatively 

affected by virus infected cowpea plants. In contrast to these results, the larval growth of fall 

armyworm was positively affected upon feeding on CMV infected cowpea leaves. Thus, it is 

difficult to draw a broader conclusion regarding the impacts of plant viruses on non-vector 

herbivores, which might be virus-insect specific. More research is needed in order to fully 

understand the interaction among various components in a diverse plant virus-host-insect 

agroecosystem.  
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