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Void growth in an anisotropic ductile solid is studied by
numerical analyses for three dimensional unit cells initially
containing a void. The effect of plastic anisotropy on void
growth is the main focus, but the studies include effects of
different void shapes, including oblate, prolate or general
ellipsoidal voids. Also other 3D effects such as those of dif-
ferent spacings of voids in different material directions,and
effects of different macroscopic principal stresses in three di-
rections are accounted for. It is found that the presence of
plastic anisotropy amplifies the differences between predic-
tions obtained for different initial void shapes. Also, differ-
ences between principal transverse stresses show a strong in-
teraction with the plastic anisotropy, such that the response
is very different for different anisotropies. The studies are
carried out for one particular choice of void volume fraction
and stress triaxiality.

1 Introduction
Void growth in ductile metals, leading to ductile frac-

ture under tensile stresses, has been modelled early on by
McClintock [1] and Rice and Tracey [2], and subsequently
a large amount of research has focussed on this area (see
reviews by Garrison and Moody [3]; Tvergaard [4]; Benz-
erga and Leblond [5]; Benzerga et al. [6]). Most models for

ductile porous materials have considered initially spherical
voids, uniformly distributed in a standard elastic-plastic ma-
terial with isotropic hardening. A much used set of constitu-
tive equations for porous ductile solids have been developed
by Gurson [7] and extended by Tvergaard [8] and Tvergaard
and Needleman [9].

Plastic anisotropy is often present in components due to
processing such as rolling, extrusion or forging. When the
resistance to plastic flow is different for different directions
in the material, this will also affect void growth and the fi-
nal occurrence of ductile fracture. Often, plastic anisotropy
has been represented by using the anisotropic yield surface
proposed by Hill [10, 11]. Benzerga and Besson [12] appear
to be the first to consider void growth in a Hill matrix. They
used axisymmetric cell models for initially spherical voids
to develop an extension of the Gurson model. Subsequently,
Keralavarma and Benzerga [13] extended this, considering
initially oblate or prolate voids, and Morin et al. [14] used
a new limit analysis for Hill materials for various spheroidal
cells containing a confocal spheroidal void, to calculate ap-
proximate yield surfaces.

Full three-dimensional unit cell calculations have been
carried out by Steglich et al. [15], using a cube cell with an
initially spherical void to study differences between tension
in three different directions with respect to the rolling direc-
tion of a sheet. Also Chien et al. [16] and Wang et al. [17]
used a unit cell in the form of a cube with a spherical void
growth in a Hill material. In Dæhli et al. [18] the anisotropic
material is described by the phenomenological yield criterion
proposed by Barlat et al. [19], with this material model cali-
brated by a total number of 500 distinct yield points, obtained
by using numerical simulations with the full-constraint Tay-
lor method. Also the studies in [18] use a cube unit cell with
an initially spherical void located at the centre. Somewhat
related to these analyses are also the numerical studies for
creep in a porous FCC single crystal by Srivastava et al. [20],
where periodic boundary conditions have been used for the
3D unit cell. The authors [21] have earlier analysed the effect
of 3D stress states on cavitation instabilities in an anisotropic
solid, using a full transient analysis of the equations of mo-
tion to approximate the quasi-static solution.

The aim of the present paper is to study the effect of
anisotropic plasticity on void growth, taking into accountthe
influence of void shape, the influence of different 3D stress
states, and the influence of different spacings between voids
in the periodic patterns analysed. The voids are taken to be
initially spheroidal, including oblate, prolate and general el-
lipsoidal shapes with different axes in all three principaldi-
rections. The plastic anisotropy is here described by Hill’s
quadratic yield criterion.

2 Problem Formulation and Material Model
A periodic distribution of voids in a plastically

anisotropic metal is analyzed by a unit cell approach. Fig. 1
shows the geometry with the dimensions and coordinate axes
used. The reference Cartesian coordinate system is denoted
by xi . As shown in Fig. 1xi is aligned with the sides of the
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Fig. 1. Geometry of ellipsoidal void analyzed. Illustrated for w1 =
2 and w3 = 1

2 as well as L2/L1 = L2/L3 = 1 for an initial void

volume fraction of f0 = 0.01.

domain analyzed. Also the principal axes of anisotropy, ˆxi ,
are initially aligned with the sides in every material point(not
shown). However, as no shear load is applied on the sides of
the unit cell, the axes do not rotate here, and then the sym-
metries of the problem are maintained throughout the load
history. Hence, even for a plastically anisotropic material,
a macroscopic shear strain will not evolve if a pure normal
stress state is introduced macroscopically. Exploiting this,
only one-eight of the unit cell needs to be analyzed. The
general 3D ellipsoidal void shape defined by the threeinitial
half axes,a1,a2 anda3, with theinitial half spacingsL1,L2

andL3, then yields the initial void volume fraction,f0, as

f0 =

(

πa1a2a3

6L1L2L3

)

0
(1)

where theinitial aspect ratios for the void shape arew1 =
a2/a1 andw3 = a2/a3 .

Denoting the time derivative by a superposed dot, i.e.
∂(•)
∂t = ˙(•), the boundary conditions are expressed in terms

of the displacement rates, ˙ui , and the surface tractions,Ṫi , as

u̇1 = 0 ; Ṫ2 = Ṫ3 = 0 at x1 = 0
u̇2 = 0 ; Ṫ1 = Ṫ3 = 0 at x2 = 0
u̇3 = 0 ; Ṫ1 = Ṫ2 = 0 at x3 = 0
u̇1 = ∆1 ; Ṫ2 = Ṫ3 = 0 at x1 = L1

u̇2 = ∆2 ; Ṫ1 = Ṫ3 = 0 at x2 = L2

u̇3 = ∆3 ; Ṫ1 = Ṫ2 = 0 at x3 = L3

(2)

where∆1,∆2 and∆3 are prescribed displacement quantities
used to introduce the load. The load is characterized by the
three true normal stress components,Σ1,Σ2 andΣ3, acting

in the three coordinate directions,xi . Taking x2 as the pri-
mary loading direction, the stress components are related
such thatΣ1 = κ1Σ2 and Σ3 = κ3Σ2, whereκ1 and κ3 are
prescribed ratios. Two techniques have been used to en-
force these stress ratios. The first method is an approximative
method where initially∆1,∆2 and∆3 are calculated as if the
domain is purely elastic and without any void. Hereafter, the
stresses are evaluated and∆1,∆2 and∆3 are adjusted accord-
ingly, which might take several increments in order to obtain
the prescribed stress ratios. The method is straightforward
to implement. In some analyses it has been necessary to use
the combined finite element and Rayleigh-Ritz procedure as
proposed by [22], which requires a set of trial-functions tobe
evaluated for each load increment. Each trial function repre-
sents the displacement of the nodes of one straight cell side
that is being displaced. The method is exact, but is more de-
manding in terms of implementation. It is noted that both
techniques yield the same results, but the latter seems to be
numerically more stable.

The stress triaxiality,T, is

T =
Σh

Σe
=

Σ1 +Σ2 +Σ3

3Σe
=

(κ1 +1+κ3)Σ2

3Σe
(3)

with the effective stress taken asΣe = max(|Σ2−Σ1|, |Σ1−
Σ3|, |Σ2−Σ3|) .

The elasto-plastically anisotropic material model used
accounts for small elastic but finite plastic deformations in
a visco-plastic formulation. The components of the second-
order velocity gradient tensor,L , are determined byLi j =
∂u̇i
∂x j

= u̇i , j , where the velocity field components for the ma-

terial are ˙ui . The symmetric part ofL is the strain rate,D,
and the antisymmetric part is the continuum spin tensor,W.
The kinematics can then be written as [23–25]

D = De+Dp ; W = ω+Wp ; L = D+W (4)

where the superscripts e and p denote the elastic and plas-
tic parts, respectively, andω is the spin of the substructure,
whereasWp is the plastic spin, which will be neglected here,
i.e. Wp = 0.

The elasticity relations are assumed to be given by
Hooke’s law. For the numerical implementation a symmetric
stiffness matrix is pursued. Hence, the objective rate with

respect toω,
▽

( ), of the symmetric Kirchhoff stress,τ, rather
than the Cauchy stress,σ, is introduced as [30]

▽

τ= C : De = C : (D−Dp) (5)

Here, C are the isotropic elastic moduli determined by
Young’s modulus,E, and Poisson’s ratio,ν . The plastic part
of the strain rate is

Dp = φ̇Np ; φ̇ = ε̇0

(

J
g

)1/m

; Np =
∂J
∂σ

(6)



Here,J is value of the anisotropic yield function to be speci-
fied later andNp are the normals to the yield surface, which
gives the direction of the plastic strain increment. The mag-
nitude of the plastic strain increment isφ̇, ε̇0 is a refer-
ence strain rate,m is a strain rate sensitivity parameter and
g = g(εp) is an isotropic deformation dependent power-law
hardening function

g(εp) = σ0

(

1+
εp

ε0

)n

(7)

whereσ0 is the initial uniaxial yield stress in thex1 direction,
ε0 = σ0/E, n is the hardening exponent and the accumulated
effective plastic strain,εp, is

εp =
Z

ε̇pdt ; ε̇p = φ̇
√

2
3

Np : Np (8)

The classical quadratic yield function proposed by Hill
[10, 11] is adopted here. Referring the stresses to the princi-
pal axes of anisotropy, ˆxi , defined by the orthonormal basis,
ni , such that̂σi j = ni ·σ ·ni for (i, j) = 1,2,3 , the anisotropic
yield function is

J(σ,ni) =
√

3
2(F+G+H)

[

F(σ̂22− σ̂33)
2 +G(σ̂33− σ̂11)

2+

H(σ̂11− σ̂22)
2 +2Nσ̂2

12+2Lσ̂2
23+2Mσ̂2

13

]1/2

(9)
The criterion is valid for six non-zero stress components
and the coefficients of anisotropy,F,G,H,N,L andM, can
be determined by uniaxial tensile tests. A fairly simple
model of evolving anisotropy (e.g. texture evolution) can
be established by allowing the coefficients of anisotropy,
F,G,H,N,L and M, change with the deformations.Thus,
during the deformation an initially isotropic material can
evolve into an anisotropic one, or initial anisotropy can grow
more pronounced [26].However, here the coefficients of
anisotropy are assumed to remain constant. During the defor-
mation the orthonormal basis rotates according toṅi = ωni

as the principal axes of anisotropy are attached to the sub-
structure of the material. This rotation will not destroy the
symmetry of the problem, as the rotation is also symmetric
around symmetry planes, such as the sides of the unit cell
analyzed here.

The deformation history will be calculated in a linear
incremental manner. In order to increase the stable time step,
∆t, at any time,t, the rate tangent modulus method is used
[27]. This is a forward gradient method based on an estimate
of the plastic strain rate in the interval betweent and t +
∆t defined byρ ∈ [0;1]. The final form of the constitutive
relations can then be written as [28,30]

σ̇ =
▽

τ +ωσ+σω−σ tr(D) (10)

with

▽

τ= C̃ : D−P
C̃ = C− ξ

h(1+ξ)
(C : Np)⊗ (Np : C)

P = φ̇t
1+ξ (C : Np)

ξ = ρ∆t
(

∂φ̇
∂J

)

t
h ; ρ ∈ [0;1]

h = Np : C : Np−
(

∂φ̇
∂εp

)

t

(

∂φ̇
∂J

)−1

t

√

2
3

(11)

where the subscriptt denotes that the derivatives are taken at
the start of the increment. Throughout the paperρ = 1 will
be used. It is noted, that tr(D) = tr(De) ≃ 0 due to plastic
incompressibility where tr(Dp) ≡ 0.

3 Computational Method
An updated Lagrangian formulation [29, 30] based on

the principle of virtual work is used. Disregarding body
forces the incremental form of the principle of virtual work
in terms of the Kirchhoff stress,τi j = τ ji , is [31]

∆t
Z

V

(

▽

τ i j δDi j −σi j (2DikδDk j −Lk jδLki)
)

dV =

∆t
Z

S
Ṫiδu̇idS−

[

Z

V
σi j δDi j dV −

Z

S
Tiδu̇idS

] (12)

whereV is the volume andS is the surface,Ti = σi j n j are the
tractions andδu̇i are the virtual velocities, all referred to the
current deformed configuration. Therefore,τi j is identical
to σi j . From the principle of virtual work the symmetric
element stiffness matrix as well as the consistent nodal load
vectors are established.The bracketed terms in Eq. (12)
vanish if the current state satisfies equilibrium. However,due
to numerical errors the solution tends to drift away from the
true equilibrium path, and including the bracketed terms in
Eq. (12) as an additional load term, prevents such drifting.

x1

x2

x3

Fig. 2. Example of mesh used for evenly distributed ellipsoidal voids

(w1 = 2 and w3 = 1
2 as well as L2/L1 = L2/L3 = 1 for an initial

void volume fraction of f0 = 0.01) using 1536 elements.



For the numerical finite element solution the cell is dis-
cretisized using iso-parametric, quadratic 20-node brickele-
ments with three translational degrees of freedom per node.
Reduced 2× 2× 2 Gauss integration is adopted. Fig. 2
shows an example of a mesh consisting of 1536 elements
(22083 DOFs) for a cell given byw1 = 2 andw3 = 1

2 as
well as L2/L1 = L2/L3 = 1 with the void volume fraction
f0 = 0.01 . In cases withL2/L1 6= L2/L3 6= 1, more ele-
ments are used. The elements are stretched, such that the
elements are smaller near the void. In particular, as the pri-
mary load is in thex2 direction, the elements forx2 = 0 are
rather thin in order to withstand the large deformation in the
x2 direction. The mesh shown in Fig. 2 has proven to be suf-
ficiently fine, in order to obtain converged results. The finite
element solution is obtained by parallelization of the system
of equation using up to 20 CPU’s. In each increment, the
time step,∆t, for the next increment is adjusted according to
(ε̇p)max·∆t ≤ 10−5 , where(ε̇p)max is the maximum effective
plastic strain rate in any Gauss point.

4 Numerical Results
The effect of hydrostatic tension on void growth is very

well understood from many previous investigations. Higher
stress triaxiality gives much more rapid void growth, and this
is also true for anisotropic plasticity. But such effects are not
the aim of the present study, and therefore it has been chosen
to consider only one stress triaxiality,T = 2, in all the anal-
yses here. Also, it is known that low triaxiality will tend to
develop long narrow voids under axisymmetric tension (e.g.
see Budiansky et al. [32]), or voids that close up in micro-
cracks under simple shear (Tvergaard [33]), but again such
effects are not the aim of the present study, and such effects
of stress state are not illustrated under the rather high stress
triaxiality applied here. Larger voids will tend to give earlier
failure by void coalescence than small voids, but this will not
be studied here where it has been chosen to consider only one
initial void volume fraction,f0 = 0.01 for various geometri-
cal configurations defined byw1,w3,L2/L1,L2/L3 . Finally,
while the coefficients in (9) are varied, to consider different
plastic anisotropies, only one set of the material parameters
σ0/E,n andm are considered.

Analyses are carried out forσ0/E = 0.002,ν =
1/3, ε̇0 = 0.001 s−1, m=0.01 andn = 0.1 . The initial time
step is 0.002 s. Two of the plastic anisotropies studied in [21]
are also considered here. They are both defined byH = 1.00
andL = M = N = 9.60 in Eq. (9), corresponding to the exper-
iments by Moen et al. [34] on aluminum alloy Al-7108-T7.
Furthermore,F = 0.40 andG = 7.33 for the anisotropy la-
belled II, whileF = 2.50 andG= 0.30 for the anisotropy la-
belled IV. These values ofF andG are slightly more extreme
compared to the experiments by Moen et al. [34], which gave
F = 0.70 andG = 3.33 . Isotropic results will also be pre-
sented, i.e. forF = G = H = 1 andL = M = N = 3.00 .
Fig. 3 illustrates the corresponding initial yield surfaces in
the (σ11,σ22)-plane forσ33 = σ12 = σ13 = σ23 = 0. Com-
paring to the isotropic Mises yield surface, it is seen, that
while anisotropy II expands the elastic region anisotropy IV

shrinks it.
True stress versus logarithmic strain curves for thex2-

direction will be shown. These quantities are calculated as

Σ2 =
Z

S
T2dS=

Z L1+∆L1

0

Z L3+∆L3

0
[T2]L2+∆L2dx1dx3 (13)

E2 = ln

(

1+
∆L2

L2

)

(14)

where S is the surface in the current deformed geometry,
whereas∆L1,∆L2 and∆L3 are the accumulated elongations
of the three loaded cell sides. The current void volume frac-
tion, f , will also be shown. It will be found by numerical
integration of the void volume divided by the current volume
of the cell.

The first cases analysed consider a material with
isotropic plasticity to be able to make a comparison with
the results to be shown subsequently for anisotropy. Fig. 4
shows the true stress versus the true strain in thex2 direction,
and the current void volume fractionf versus the true strain
in cases where the unit cell is initially a cube, so that the void
spacings in the three coordinate directions are initially equal.
The stress triaxialityT = 2 is here obtained by taking equal
stresses in the two transverse directions, withκ1 = κ3 = 5/8 .
The curves forw1 = w3 < 1 represent oblate voids, while the
curves forw1 = w3 > 1 represent prolate voids, and curves
for an initially spherical void,w1 = w3 = 1, are included for

(Mises)
Isotropy

Anisotropy II

Anisotropy IV
2

1

0

-2

-1

210-2 -1

σ11/σ0

σ 2
2/

σ 0

Fig. 3. Initial yield surfaces shown in the (σ11,σ22)-plane for

σ33 = σ12 = σ13 = σ23 = 0. Two different anisotropic Hill yield

surfaces are shown: (II) F = 0.40 and G = 7.33 (IV) F = 2.50
and G = 0.30, while both have H = 1.00,N = L = M = 9.60 in

Eq. (9). The isotropic Mises yield surface is also shown.
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Fig. 4. Effects of void shape, w1 and w3, for isotropic plasticity,

equally distributed voids, L2/L1 = L2/L3 = 1, and κ1 = κ3 = 5
8

(T = 2) . a) Normalized stress-strain response in the primary load

direction. b) Void volume fraction evolution.

reference. It is seen that the oblate voids reduce the stress
level, while the prolate voids allow for a higher stress level
during the tensile loading. The same tendency was found
by Pardoen and Hutchinson [35] in axisymmetric cell model
studiesand Cao etal. [36] for a 3D cell. The evolution of
the void volume fraction during the tensile loading differs
rather little between the five cases.Subsequently, the curve
for isotropic plasticity withw1 = w3 = L2/L1 = L2/L3 = 1
andκ1 = κ3 = 5/8 will be used as a reference curve to il-
lustrate the influence of various parameters. This reference
curve will be shown by a dashed line in the following figures.

Also in Fig. 5 the material follows isotropic plastic-
ity, but here other parameters are varied, and comparison is
made with the reference case shown by the dashed curves,
which was also part of Fig. 4. WhenL2/L1 = 1/

√
2 and

L2/L3 =
√

2 the spacing between the spherical voids is ini-
tially larger in thex1 direction than in thex2 direction, and
smaller in thex3 direction. In this case the stress level is
initially lower than the reference case, but then decays more
slowly, and the void volume fraction grows less rapidly after
the initial stage. At the curves forw1 = 2 andw3 = 1/2 the
voids have initially a general ellipsoidal shape, with different
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Fig. 5. Effects of void shape, w1 and w3, void spacing, L2/L1 and

L2/L3, and stress ratio, κ1 and κ3 for isotropic plasticity. When

nothing else is stated the curves have w1 = w3 = 1,L2/L1 =
L2/L3 = 1 and κ1 = κ3 = 5

8 (T = 2) . a) Normalized stress-strain

response in the primary load direction. b) Void volume fraction evo-

lution.

lengths of the three half axes, see Fig. 1. These curves show
lower stress levels and more rapid void growth than found
for the reference case. Finally,κ1 = 10/9 andκ3 = 5/9 rep-
resents a case where the principal stressΣ1 is larger thanΣ2,
while Σ3 is lower. In this case the stress levelof Σ2 remains
significantly lower than the other curves, and the void vol-
ume fraction grows much faster as a function ofE2 . This is
related to the fact that the larger stress component in thex1

direction results in a more rapid growth ofE1 thanE2, such
thatE1 = 0.327 at the end of the curve,E2 = 0.124 .

Fig. 6 illustrates the effect of plastic anisotropies in
cases where the voids are initially axisymmetric,w1 = w3,
uniformly spaced in all three coordinate directions,L2/L1 =
L2/L3, and with equal stresses in the two transverse direc-
tions,κ1 = κ3. The anisotropies labelled II or IV are speci-
fied in Fig. 3. It is seen that generally anisotropy II resultsin
much higher stress peaks and much more rapid void growth
than found for the reference case, and anisotropy IV results
in lower stress peaks, decaying slowly, and in less rapid void
growth. This agrees well with anisotropy II having a larger
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Fig. 6. Effects of axi-symmetric void shape, w1 = w3, for

anisotropic plasticity and equally distributed voids, L2/L1 =
L2/L3 = 1, κ1 = κ3 = 5

8 (T = 2). a) Stress-strain response in

the primary load direction. b) Void volume fraction evolution.

yield stress in thex2 direction compared to anisotropy IV,
Fig. 3. In Fig. 4, for an isotropic matrix, it was seen that
oblate voids,w1 = w3 < 1, reduce the stress level, whereas
the stresses are higher for prolate voids. This is also seen in
Fig. 6 for anisotropy IV, but for anisotropy II the effect is
opposite.It is also noted, that case of spherical voids in Fig.
4 falls in between the oblate and prolate cases, which is only
the case for anisotropy IV in Fig. 6. In Fig. 4 there was
not much difference between the rate of void growth for the
different cases considered, but in Fig. 6 there is clear differ-
ence between the void volume fractions for prolate or oblate
voids, such that the oblate voids grow faster in the case of
anisotropy IV but slower in the case of anisotropy II. Fig.
7 shows the contours of the effective plastic strain,εp, at the
end of the curve in Fig. 6 forw1 = w3 = 1

4 with anisotropy IV.
The initial cell is also indicated.Even though a symmetric
geometry as well as symmetric loading are considered, a high
local plastic strain develops at the surface of the void near
the x1-axis, which is caused by the plastic anisotropy. The
macroscopic compressive strain in thex1 direction is approx-
imately half the strain in thex3 direction, i.e.E1 = −0.031
andE3 = −0.073, respectively. This is opposite to the case
with anisotropy II, where the macroscopic compressive strain
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Fig. 7. Contours of effective plastic strain, εp, at an overall strain,

E2 = 0.147, in Fig. 6, for w1 = w3 = 1
4 , L2/L1 = L2/L3 = 1,

κ1 = κ3 = 5
8 (T = 2) with plastic anisotropy IV (color print available

online).

in thex1 direction is approximately twice the strain in thex3

direction, i.e.E1 = −0.018 andE3 = −0.009, respectively.
However, the strain reached is significantly smaller.

For a general ellipsoidal void, specified byw1 = 2 and
w3 = 1/2, Fig. 8 gives a comparison of the effect of the two
different anisotropies. For an isotropic matrix material Fig.
5 has shown that this void shape gives a behaviour a little
different from the reference curve, but Fig. 8 shows that the
difference is much larger when the void is embedded in one
of the anisotropic materials. In the case of anisotropy II the
peak stress is much higher than that on the reference curve
and also the corresponding growth of the void volume frac-
tion is much faster, whereas the case of anisotropy IV shows
a lower stress peak and a slower growth of the void volume
fraction. In fact, for both anisotropies the curves are in the
range of the curves found inFig. 6for the same anisotropies,
with axisymmetric voids. The curves in Fig. 8 are very close
to those inFig. 6for w1 = w3 = 1 .

Fig. 9 illustrates results of the two different anisotropies
for a case where the spacing between the spherical voids
is initially larger in thex1 direction than in thex2 direc-
tion, and smaller in thex3 direction, and for a case where
the principal stressΣ1 is larger thanΣ2 , while Σ3 is lower.
In both cases thecorrespondingpredictions for an isotropic
matrix are shown in Fig. 5. In the case of different spac-
ings,L2/L1 = 1/

√
2 andL2/L3 =

√
2 , the curves are rather

close to those shown in Fig. 8 for the two anisotropies, al-
though there are small quantitative differences. The case
of different principal stresses in the three coordinate direc-
tions, κ1 = 10/9 andκ3 = 5/9, resulted in rather unusual
behaviour inFig. 5, with the curves ending by a steep load
drop and a steep increase of the void volume fraction. In
Fig. 9 for anisotropy II the stress reaches a value well above
that in Fig. 5, but the curves end at a rather small strain,
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Fig. 8. Effects of general void shape, w1 = 2 and w3 = 1
2 ,

for anisotropic plasticity and equally distributed voids, L2/L1 =
L2/L3 = 1, κ1 = κ3 = 5

8 (T = 2). a) Stress-strain response in

the primary load direction. b) Void volume fraction evolution.

E2 = 0.015 , due to a numerical instability where very large
strains at a point on the void surface near thex2-axis result
in strong mesh distortion. The deformed unit cell and con-
tours of effective plastic strain at the end point of the curve
are shown in Fig. 10, with the shape of the initial cell in-
dicated. In this case the largest principal stress is in thex1

direction, and for anisotropy II the deformed cell in Fig.10
shows that the strain in this direction has grown much larger,
E1 = 0.396 . With the very small growth ofE2 indicated by
Fig. 10 there is the possibility thatE2 would start to decay
during the continued void growth, but this has been tested us-
ing the finite element-Rayleigh Ritz method, and it has been
found that a change of sign forE2 is not the reason for the
numerical instability. For anisotropy IV in Fig. 9 the case of
different principal stresses in the three coordinate directions
gives a rather flat stress-strain curve with corresponding slow
growth of the void volume fraction.

In Fig. 11 two deviations from the standard unit cell
are considered simultaneously, the voids have the general
ellipsoidal shape also considered in some cases of Figs. 5
and 8,w1 = 2 andw3 = 1/2, and the principal stressΣ1 is
larger thanΣ2 , while Σ3 is lower, as also considered in some
cases of Figs. 5 and 9. For anisotropy II the curves in Fig.
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Fig. 9. Effects of spacing, L2/L1 and L2/L3, and stress ratio, κ1

and κ3, for anisotropic plasticity with spherical voids, w1 = w3 = 1 .

When nothing else is stated, the curves have L2/L1 = L2/L3 = 1
and κ1 = κ3 = 5

8 (T = 2) . a) Stress-strain response in the primary

load direction. b) Void volume fraction evolution.

11 show some similarity with the curves forκ1 = 10/9 and
κ3 = 5/9 , Fig. 9, in that a rather low value of the strain is
reached,E2 = 0.027 , and as was described in relation to Fig.
9 the value of the strain in thex1 direction has grown much
larger,E1 = 0.778 . For anisotropy IV the stress-strain curve
is rather flat with a low peak as in the corresponding case in
Fig. 9, but the void volume fraction grows more rapidly in
Fig. 11. It may be concluded that the rather drastic difference
between the two anisotropies found in Fig. 9 forκ1 = 10/9
andκ3 = 5/9 with initially spherical voids is less drastic in
Fig. 11 with the general ellipsoidal shape of the voids, but
the trends are still the same.

5 Discussion
The present 3D cell model analyses of void growth show

that there is a clear interaction between the different effects
considered, the plastic anisotropies, the void shape, the dif-
ferent void spacings in different coordinate directions, and
the differences in the principal macroscopic stresses. Thein-
teractions between these four types of effects are the aim of
the study. Therefore, other parameters are not varied, and
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Fig. 10. Contours of effective plastic strain, εp, at an overall strain,

E2 = 0.015, in Fig. 9, for w1 = w3 = 1, L2/L1 = L2/L3 = 1,

κ1 = 10
9 and κ3 = 5

9 (T = 2) with plastic anisotropy II (color print

available online).

only one stress triaxiality, one initial void volume fraction,
and one set of reference values for the uniaxial stress-strain
curve are considered.

The first studies, for isotropic plasticity, show that each
of the three other effects considered, the void shape, the void
spacings, and deviations from equal transverse stresses, have
an effect on the overall stress-strain curve and on the rate
of growth of the void volume fraction. For axisymmetric
voids, oblate shapes give a reduced stress level, whereas pro-
late shapes allow for higher stresses. The general ellipsoidal
void shapes considered result in a reduced stress level.

When plastic anisotropy is added to the three other ef-
fects, the differences are much more visible. First of all,
one of the plastic anisotropies considered gives much higher
stress peaks than the other anisotropy. But there is also
an interaction between the plastic anisotropies and the void
shapes, such that the difference between prolate and oblate
voids in the anisotropic plasticity matrices is larger thanwas
found for isotropic plasticity. For one of the anisotropies
considered the oblate voids result in a lower stress peak than
the prolate voids, as was found for isotropic plasticity, but
the other anisotropy gives the opposite result that the oblate
voids results in the highest stress peak. The general ellip-
soidal void shapes considered result in stress-strain curves
and void volume growth curves rather close to those found
for spherical voids with the same plastic anisotropy. The
studies carried out for different spacings of the voids in the
three coordinate directions did not show much difference
from predictions for uniform spacings.

Considering differences in the transverse macroscopic
principal stresses it has been found that this can strongly af-
fect the material response, in particular when combined with
plastic anisotropy. And the response is very different for the
different plastic anisotropies considered here. For anisotropy

0
0

0
0

0.02

0.04

0.05

0.05

0.06

0.08

0.10

0.10

0.10

0.12

0.14

0.15

0.15

0.20

0.20

0.25

0.25

1.0

2.0

3.0

4.0

5.0

6.0

Isotropy

Isotropy

Isotropy
Isotropy

Anisotropy II

Anisotropy II

Anisotropy IV

Anisotropy IV

κ1 = κ3 = 5
8

κ1 = κ3 = 5
8

w1 = w3 = 1

w1 = w3 = 1

Σ 2
/σ

0
C

ur
re

nt
vo

id
vo

lu
m

e
fr

ac
tio

n,f

E2

E2

a)

b)

Fig. 11. Plasticity effects for equally distributed voids, L2/L1 =
L2/L3 = 1, of general shape, w1 = 2 and w3 = 1

2 with the stress

ratios κ1 = 10
9 and κ3 = 5

9 (T = 2). a) Stress-strain response in

the primary load direction. b) Void volume fraction evolution.

II it leads to a very large strain in the transverse direction
where the stress is largest, while for anisotropy IV the largest
strain is in the primary load direction. When the different
transverse macroscopic stresses and plastic anisotropy are
also combined with initially ellipsoidal voids these threeef-
fects interact further, still with a drastic difference between
the two plastic anisotropies considered.

A limitation of the cell studies performed here is that the
orientation of plastic anisotropy initially has to be aligned
with the cell sides in order not to violate the symmetry con-
ditions. Also, only normal loads can be applied and the prin-
cipal axes of the ellipsoidal void have to be aligned with the
cell sides as well. In order to allow for general orientations of
anisotropy and voids as well as shear loads, a larger cell with
periodic boundary conditions is needed [37]. In the most
general case the full void (eight times as large cell) has to be
used. However, in the special case, where the principal axes
of anisotropy or the principal axes of the void are inclined
only relative to one of the cell sides, a cell containing half
the void will be sufficient (four times as large cell).
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