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Abstract - Aspects of polarized coherent quasi-elastic scatter-
ing by dilute macromolecular solutions are discussed. Effects
of polydispersity, branching and chain stiffness are considered,
particularly in respect to the observable first cumulant of the
dynamic structure factor and its dependence on the scattering
angle. A combination of integrated and time-resolved scatter-
ing data yields the maximum information.

INTRODUCTION

During the past decade, thanks to both experimental and theoretical advances,
dynamic light scattering has become an important technique of polymer charac-
terization. A very useful review of the theoretical situation for solutions
of macromolecules was published last year by Akcasu, Benmouna and Han (1) and
our purpose here is to supplement that article. Older standard references
(2-4) may also be read with profit.

As our major interest here is in applications to the characterization of in-
dividual macromolecules, and particularly in those features mentioned in the
title, discussion is confined to dilute solutions, thus perforce with neglect
of some very interesting phenomena encountered with semidilute solutions or
gels. For similar reasons, we restrict ourselves to polarized scattering and
leave untouched both depolarized scattering and incoherent scattering.

In the earlier history of the field, most measurements were made interfero-
metrically and the line width and line shape were reported. With the devel-
opment of photon correlation methods, the common technique is now in the time
domain, and leads to the determination of the dynamic structure factor S(q,t)
as a function of time and of scattering vector magnitude, = 4iX'sin(O/2).
Effectively, the time autocorrelation function of the scattered electric
field strength is the quantity obtainable from these experiments.

TRANSLATIONAL DIFFUSION

For a dilute solution of identical structureless solute particles, the cor-
relation function has the simple exponential form

S(q,t)/S(q,O) = exp(-q2Dt), (1)

where D is the translational diffusion coefficient. At sufficiently small
valuesThf , the same relation holds strictly for arbitrary solutes only if
there is no coupling between translational and rotational or deformational
motions. If, as is usually true (see below), the effects of this coupling
cannot be seen experimentally, then observations of S(q,t) for polydisperse
solutions offer information about the distribution of D. Chu and coworkers
(5,6) and Provencher and coworkers (7,8) have implemented practical methods
for inverting such data, closely related to similar tasks long confronting
students of the ultracentrifuge.

The study of migration in external fields by light scattering is well devel-
oped in the case of electrophoresis (Ref. 9), and this has even found appli-
cation to medical diagnosis (Ref. 10). Less well known is the ingenious ex-
periment of Wada, Nishio and Soda (11), who showed that the scattering from
a solution confined in a sinusoidally vibrating cell affords a determination
of the sedimentation coefficient. The initial experimental results are of
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moderate precision, but are fully adequate to establish the correctness of the
analysis. Thus the ratio of sedimentation to diffusion coefficients, which
leads to the molecular weight via the Svedberg equation, can be determined by
dynamic scattering methods at low angles without the need of angular-depen-
dence information.

We return now to the problem of coupling between translation and internal mo-
tion. The initial time-dependence of the time correlation function always
corresponds to an unbiased sampling of all conformations and orientations of
the solute molecule, as given by an equilibrium ensemble average. However, as
time proceeds, the coupling (if it exists) favors certain internal states over
others and eventually produces a steady-state value of D which differs from
the instantaneous initial value. As a result, even at low , a plot of
logS(,t) against time will become linear only after a certain time interval,
of the order of magnitude of the effective orientational correlation time of
the molecule. Specific model calculations dealing with this phenomenon are
available for rigid dumbbells (Ref. 12), rigid rods (Refs. 13-15), hinged rods
(Ref. 16) and Gaussian chains with pre-averaged hydrodynamic interaction
(Refs. 17-20) (the Zimm model). In the case of Gaussian molecules with
pre-averaged hydrodynamic interaction, no coupling exists, the "center of re-
sistance" coinciding with the center of mass; this is in contrast to the open
chain, where the average hydrodynamic shielding is less for terminal atoms
than for those in the middle of the chain contour.

For the Zimm chains the initial value of D is given by the well-known equation
of Kirkwood (21,22)

D(O) = 4kBT/9Tr3"2flO<S2>'2, (2)

where no is solvent viscosity and <s2> the unperturbed mean square radius of
gyration. In the final steady state the value D(oo) is only 1.7 percent lower
than D(O). The time required for the transition from initial to steady-state
behavior is of the order of the longest internal normal-mode relaxation time.
The complete expression actually involves all the even modes; it was first
given explicitly by Dubois-Violette and deGennes (18) in the Appendix of their
paper but not further pursued. More recent numerical estimates (Ref s. 19,20)
indicate that the effect would be too small to measure for Zimm chains of any
molecular weight under present experimental capabilities.

A survey of the considerably body of data on polystyrene under unperturbed
theta conditions (Ref. 23) reveals that in fact the measured diffusion coeff i-
cients are no less than 15% lower than the Kirkwood value; and even lower re-
sults have been recorded for poly(methylmethacrylate) (Ref. 24). Zirnm (25)
has recently reported Monte Carlo studies of unperturbed Gaussian chains in
which pre-averaging of the hydrodynamic interactions has been avoided, and
has found rather good agreement with the experimental data, but his method
contains one approximation that needs further exploration (Ref. 26). In any
case, since the time scale of the coupling effect cannot be greatly altered
by the pre-averaging approximation, it may be concluded that even a 15% drop
in D would occur over such short times as to elude definite experimental de-
tection.

The behavior of D for flexible chains in good solvents has continued to gener-
ate interest as an aspect of the excluded volume effect. If we define an ef-
fective Stokes-Einstein hydrodynamic radius by Rh = kBT/6rrDflo, we may expect,
for y high molecular weights N in sufficiently good solvents, the power
laws

M2V ; Rh M, (3)

and intuitively we would set ' = '. However, in view of the analogy between
these limiting exponents and those for certain model magnetic critical phenom-
ena (cf. Ref. 27), a possibility remains that the equality is not exact, no
matter how tempting on ordinary physical grounds. Earlier data on polystyrene
in benzene (Ref. 28) were best correlated with an exponent '' = 0.55; but when
the molecular weight range (in toluene) was extended to some 40 million by
Appelt and Meyerhoff (29), the value v' = 0.58 was obtained, which within ex-
perimental uncertainty matches the best values of = 0.59 to 0.60.
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At lower molecular weights, no really reliable theories of D have been worked
out for chains with excluded volume. The so-called "blob" model has been
used in its most primitive form (Refs. 1,30) and a cluster-series first coef-
ficient was long ago computed (Ref. 31). All these efforts started from the
general Kirkwood (21) equation which, as has been seen, is not exact except
at t = 0. Further theoretical efforts in this area would be useful.

Translational diffusion alone is thus probably the most important aspect of
dynamic light scattering for polymer characterization, as theories are fairly
well developed (cf. Ref. 22) for linear and branched flexible macromolecules
as well as for stiff-chain models (Refs. 32-34). Dimensionless ratios, such
as h E Rh(branched)/Rh(linear) at the same M and p <S2>½<Rjl> at the same
Mw, show considerable dependence on both polydispersity or on branching, and
results are available for quite a few models (cf. Ref. 35).

OBSERVABLE QUANTITIES

In principle the photon correlation method yields the complete normalized
correlation function S(q,t)/S(q,O) at all times and over a range of values.
In practice, the range is of course rather restricted and the values of
S(q,t) at long times are too small to distinguish from the noise level. As
with many other similarly limited measurable properties, we then have two
more or less alternative ways of proceeding (cf. Ref. 1): (a) Develop theo-
retical models predicting complete function S(q,t) and obtain the molecular
parameters of the model by matching experimental and theoretical curves.
(b) Distinguish certain features of the correlation function which can be
evaluated morer less unambiguously from the experimental data, independent-
ly of any particular model, and then consider the applications of various
models to these results.

Method (a) is rather restricted because few models have been worked through
in sufficient detail. The second method was greatly enhanced in value a few
years ago when Akcasu and Gurol (36), hereafter AG, derived a very general
theoretical formula for the initial time derivative [-dlnS(q,t)/dt]0 or so-
called first cumulant of the correlation function (cf. Refs. 37,38). A fre-
quently used symbol for this quantity is F, or more explicitly F(q), but
Akcasu and his coworkers (cf. Ref. 1) prefer the symbol Q(q).

At very low j, the first cumulant is equal to as seen in eq. 1 for a
single solute species. In a polydisperse sample, a z-average value is ob-
tained, since the scattering power of a molecule in a homogous series varies
as the square of its molecular weight:

Dz = (4)

As is increased, contributions from the internal molecular motions begin to
contribute to L The leading term is proportional to and is an increasing
function of molecular size. It is useful to express this behavior in the
form

F = q2D(1 + Cq2<S2> + ....) (5)

where <52>z is the z-average mean square radius of gyration obtainable by
conventional ("integrated") light scattering and C is a dimensionless number
that in general depends on chain structure, polydispersity and solvent power.It is given special attention in the next section.

At higher , flexible macromolecules reach a domain in which L is due mainly
to rather short-scale motions and varies as j3. In this region (cf. Ref. 1)
no information about molecular weights, dimensions, or topology is obtainable,
and we do not consider it further. Nor can we pass to still higher , where
F begins to display oscillatory behavior due to local chain structure. This
has been seen in neutron scattering experiments and discussed theoretically
by Akcasu and Higgins (39) for one model.
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THE C-COEFFICIENT; RESULTS FOR FLEXIBLE MACROMOLECULES

Calculations of the coefficient C for a number of Gaussian models, linear and
branched, are available (Ref s. 1,35,36,40). In all of these, the general
theoretical equation of Akcasu and Gurol (36) was used together with the fa-
miliar Kirkwood-Riseman form (cf. Ref s. 21,22) of the polymer diffusion ten-
sor. It is not necessary to repeat the general equations here. The effects
of pre-averaging the hydrodynamic interactions are interesting: for linear
chains, C = 13/75 = 0.1733 without pre-averaging, but this drops to C = 2/15 =
0.13333 if the pre-averaging manoeuvre is used. For linear pôlydisperse sys-
tems with a Flory "most probable" distribution, the corresponding values rise
to 1/5 and 1/6, respectively. On the other hand, branching lowers the value
of C; for example, a regular star with four rays has C = 0.1482 without pre-
averaging and C = 0.1020 with pre-averaging.

In addition to the quantity C and the ratios h and p mentioned earlier, of
course we also have the classical ratio of mean square radii for branched
and linear molecules of the same molecular weight. If all four of these
quantities have been measured, it is often possible to narrow considerably
the choice of molecular models consistent with the data (cf. Ref. 35).

Two questions remain about the above-described calculations. One is the pos-
sible effect of excluded volume on the coefficient C. The first term in the
cluster expansion has been evaluated by Tanaka (41), with the interesting re-
sult that the effect of excluded volume on C is rather small, though depen-
dent on whether or not pre-averaging is invoked. It is probably too small to
measure with present accuracy. For larger excluded volumes, Benmouna and
Akcasu (42) have made extensive calculations with the "blob" model, and some
of their results are discussed by Akcasu, Benmouna and Han (1).

The other question concerns the possibility that the true initial value of C
predicted by the AG equation may not always be the measured one. We have
seen earlier that the translational diffusion coefficient itself has a time
dependence in the scattering experiment, albeit a small one. The terms in

Fig. 1. Time dependence of the coefficient C of 94 in the first
cumulant. The examples are for monodisperse polystyrene in cy-
clohexane at the theta temperature, for the two molecular weights
indicated.
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and beyond, however, being due to internal motions, are bound to decay
steadily and to vanish at long times. It is an experimentally related ques-
tion as to whether these terms vary appreciably during the early times of the
correlation measurements. To probe this question, we present here some re-
sults for Zimm chains (i.e., Gaussian chains without excluded volume and with
pre-averaged strong hydrodynamic interaction). These were obtained by ex-
panding the Pecora (17) complete solution for S(q,t) in the form

lnS(q,O) - lnS(q,t) = q2tD(t)[1+ q2<S2>C(t) + . . . . (6)

For the present purpose, it was adequate to use the zeroth-order (free drain-
ing) eigenfunctions. This fails to give the aforementioned small time depen-
dence of and misses the initial value C(O) by a few percent, yielding C(O)=
0.126 instead of the theoretically correct C(O) = 2/15 = 0.13333 for pre-
averaged Gaussian chains. Taking the numerical parameters appropriate to
polystyrene in cyclohexane at the theta temperature (cf. Ref. 23), we then
find the curves shown in Fig. 1 above for two different molecular weights.

If the shortest experimental time of observation is somewhere around 1 ps, it
is seen that there is a possibility of finding somewhat too small a value of
C(O).

SEMI-FLEXIBLE CHAINS

Many macromolecules of interest show conformational behavior intermediate to
that of rigid rods and random coils, and so it would be extremely useful to
have a reliable theory of the dynamic scattering function, particularly the
first cumulant, for such systems. The pursuit of this goal turns out to be
hampered by a difficult problem related to the fact that the internal relaxa-
tion times grow shorter and shorter as the rigidity of the molecule increases.
If some of these times become sufficiently short, the corresponding contribu-
tions to the first cumulant fall below the full initial value, as we saw
earlier even for Gaussian chains, and in extreme cases may be entirely in-
visible on the experimental time scale. Uninformed application of the AG
expression for the first cumulant can therefore be dangerous.

It is easy to work out the specific example of the almost-rigid free-draining
dumbbell. In this case (Ref. 43), the scattering function contains contribu-
tions not only from translational and rotational motions, but also a term
proportional to a2exp(-4Dt/a'), where D is the translational diffusion coef-
ficient and a2 is the equilibrium mean square amplitude of the bond stretch-
ing motion. For fairly stiff dumbbells, the stretching relaxation time a2/4D
will be shorter than those for rotation and translation. A numerical example,
showing the slope of the structure factor as a function of time at a fixed
angle, is given in Fig. 2. It is seen that if the stretching relaxation is
rapid enough it may escape detection if the smallest time observable in the
experiment is much greater than a2/4D.

1 5 QUASI-ELASTIC SCATTERING BY

t
FREE-DRAINING

qFLRNKEL
DUMBBELL

Fig. 2. Computed decay of the scattering function for a rather
stiff dumbbell, according to Ref. 43. The rotatory diffusion
coefficient is 0; for other symbols, see text. Observe that for
et > 10-3 the stretching contribution is negligible.
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As we pass to the limit of a perfectly rigid dumbbell, an interesting double
limit problem arises. As a is allowed to decrease toward zero, the scatter-
ing contribution of the stretching motion vanishes. However, as seen from
the expression given above, if the time derivative is first taken and t is
set equal to zero before passing to the rigid limit, then a non-zero contri-
bution to the first cumulant from the stretching motion is retained, whatever
the value of . Thus, an AG evaluation of the first curnulant which embraces
all six degrees of freedom of the dumbbell will include the stretching con-
tribution; but if the diffusion equation appropriate to a completely rigid
dumbbell is taken as the starting point then the AG recipe necessarily pro-
duces a completely consistent result.

Analogous behavior is seen for a rigid rod (cf. Ref. 1); if this consists of
n scattering elements, the AG formula applied to the space of all 3n coordi-
nates gives (in the free-draining case) the value C = 1/3, while if rigidity
is invoked at the start there are only 5 degrees of freedom in the problem
and one obtains C = 2/15. We thus see that the AG formalism gives physically
correct results in limiting cases, provided the appropriate conditions are
recognized a priori. For chains of limited but non-vanishing flexibility,
however, these conditions appear not to be readily available, and considera-
tion of the diffusion problem seems mandatory. Also, of course, the actual
experimental time scale has to be explicitly brought into the problem. At
this writing only rather rudimentary results are offered.

It is reasonable to assume that for small departures from Gaussian flexibili-
ty it should be adequate to retain the full-coordinate-space version of the
AG formula, and we shall do so. A frequently employed model for semi-flexLble
macromolecules is the Kratky-Porod wormlike chain (cf. Ref. 22) for which re-
liable calculations of the translational diffusion coefficient exist (Ref. 32).
To evaluate the C coefficient by means of the AG formula, we use an approxi-
mation to the wormlike chain statistics due to Koyama (44) which gives cor-
rect second and fourth moments of end-to-end separation for all degrees of
stiffness and makes only modest errors for the higher moments. The results
are shown in Fig. 3 in both the pre-averaged (curve AGKD) and non-pre-
averaged (curve AGK) treatments of the hydrodynamic interactions. In this
figure, the abscissa is the contour length L (on a log scale) of the chain
measured in units of the Kuhn length 1/A, which is kept constant along each
curve.

Fig. 3. Effective values of the coefficient C in the first
cumulant for various approximate models of semiflexible chains.
Curves AGK are for wormlike chains, based on the Akcasu-Gurol
(36) formula and the approximate statistics of Koyama (44).
Curve HBH uses the dynamical model of Hearst, Beals and Harris
(51). Curve PDH modifies Pecora's rigid-rod solution (45) by
use of a rotatory diffusion coefficient for slightly bent worm-
like chains due to Hearst (52). The shaded area represents the
authors' estimate of the correct curve. Abscissa is chain con-
tour length in units of the Kuhn length Al. Recall that the
persistence length is half the Kuhn length.

Ceff

AGK
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(The symbol A is unfortunate but common; of course it should not be confused
with the wavelength of the applied radiation.) We see in Fig. 3 that both
the AGK curves ascend monotonically to the left as the chains get shorter and
their relative stiffness increases. The correct non-draining rodlike limit,
obtainable from the Pecora (45) treatment but without taking account of the
small effect of rotation-translation coupling, is C = 1/10. Manifestly the
small-scale motions of the macromolecule are gradually getting too rapid to
contribute to the observable scattering behavior, but AGK curves themselves
give no guidance as to how far they may be trusted.

An ingenious approximate treatment of semi-flexible chains, the "sliding rod"
model, has been presented by Benmouna, Akcasu and Daoud (46), based on the
full-space AG formula. It thus does not yield a proper rigid-rod limit, just
like our AGK calculations, nor can this be remedied by simply tinkering with
the "rodlike" parts of the model. We do not discuss this model further.

There is one stiff-chain model, unfortunately not completely realistic, which
offers a normal-coordinate separation and therefore allows a full treatment
of the dynamical light-scattering problem. This is the Harris-Hearst (44)
model, which has been useful in illuminating viscoelastic behavior (Ref. 48).
The original model used free-draining hydrodynamics, and in this version it
has been applied to the light-scattering case by Fujime (49,50). We have
made calculations with the corresponding pre-averaged non-draining model of
Hearst, Beals and Harris (51), with results for the C coefficient also shown
in Fig. 3 as curve HBH. It is seen that the results for this model also be-
come untrustworthy as the chain gets stiffer. In the HBH case it is in fact
true that for rigid chains the relaxation times of the internal modes become
very short, as they should, but unfortunately the large-scale normal modes of
the model are then so far from resembling rigid-chain motions (for example,
they remain separable in the three Cartesian spatial directions) that they
give highly erroneous amplitudes to the computed scattering function.

In a crude attempt to estimate the initial departures from the rigid rod
limit at the left side of Fig. 3, we suppose that the most important initial
effect of introducing some flexibility into a rod is to shorten the end-to-
end distance and increase the rotatory diffusion coefficient ® above its
stiff-rod limit. Ignoring the third rotational degree of freedom which then
appears, neglecting bending motions, and using the formula of Hearst (52) for

of slightly bendable rods, we modify Pecora's (45) rigid rod formula and
obtain the curve 9H of Fig. 3, which ascends rapidly upward to the right and
must at best have a very limited range of applicability. Nonetheless, we now
boldly sketch out a range (shaded area) within which we estimate the effec-
tive observable value of C should lie as a function of XL., Only further de-
tailed calculations will be able to check on the correctness of this crude
estimate.
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