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Effects of Random Inhomogeneity on Radar Measurements the range. Preliminary analysis of the radar data collected in Florida

and Rain Rate Estimation by NCAR S-band polarization radar (S-Pol) shows that the radar es-
timated rain rate depends on sample volume. The estimated rain with
Guifu Zhang, J. Vivekanandan, and Edward Brandes spatially averaged radar reflectivity can be two times as that without

spatial averaging in regions with reflectivity gradients. We will study

. ) sampling effects on radar measurements and rain estimation based on
Abstract—We §tudy the sampling effe_ct on_rade_lr measurements of mhp- a two-level DSD model.
mogeneous media and the resultant rain estimation. A two-level drop size
distribution (DSD) model is proposed, in which DSD parameters are as-
sumeq to be variable for representing the sampling effects. The dependence Il. M ODEL AND EORMULATION
of statistical moments on the variation of DSD parameters are calculated

and applied to radar-based rain estimation. Meteorological radar measures statistical moments of scattered wave
Index Terms—Author, please supply your own keywords or send a blank  field from a target region filled with random scatterers. For a discrete
e-mail to keywords@ieee.org to receive a list of suggested keywords.. random medium such as rain, the wave moments depend on moments
of raindrop size distribution. For example, radar reflectivity (Z) is de-
fined as the sixth moment (Z {D°)) and attenuation is proportional
to the third moment (Ax (D?)) for scatterers that satisfy Rayleigh
It is known that most natural media (rain and cloud) are random asdattering approximation. For random media with small scale inhomo-
inhomogeneous. Randomness and inhomogeneity are generally relggstkity, statistical moments depend on the DSD which is related to
to wavelength and sample volume respectively in radar meteorologfye size of sample volume, while radar sample volume increases with
Meteorological radars measure electromagnetic wave scattered bymrge. Thus, the effect of small scale inhomogeneity on radar measure-
target region containing many small scatterers (particles or spatial inents can be investigated by answering the question: How does one
homogeneities such as turbulence). The resultant backscattered sigralel a variable DSD and calculate the statistical moments while ac-
has random characteristics. Statistical moments of the random sigerilinting for the sampling effect?
are obtained by averaging over a train of pulses. If the random change
of particle position during sample time is larger or comparable to wavR- General Two-Level DSD Model
length and causes a random phase of the scattered wave, the medium&s . d cloud DSDs ch ; . f i d
called a random medium. Otherwise, it is a partially random or deter- ain and clou s change as a function of time and space as

ministic medium. The condition of randomness has been studied in [ .” as size of sample volume. If we assume that local DSDs can be

In the case of the inhomogeneity of random media, radar can only mé ecified, the statistical moments of the DSD change as the sample

sure the spatial variation with a scale larger than the size of a samﬁ%ume increases; and as a result, the DSD for the entire volume is

volume (resolution). While the variation inside the sample volume ¢ erent from a local DSD. To represent these changes in DSD, we use
i/o-level DSD model, as follows.

|. INTRODUCTION

not be measured, small scale (local) inhomogeneity does contributé't t ditional probability density funcii Pt
the radar measurements and introduces bias when compared with th pt us use a conditional probability density func iofD|P) to rep-

of ahomogeneous medium. Currently, data fusion has been widely ug%?fm alocal DSD, whet® is the equivolume diameter of a particle,

in remote sensing, which combines measurements from different s nh etcolle(;]t:jc;tr; (zir[])ar{irrkr]]etgrssDuse;j tn(i dtefrlne tf:}ebD?[;,dthsq\\//errtilcsll barf
sors which might have different sample volumes. So it is importa pnotes conditioning. 1nhe parameters can be random variables o

to understand the sampling effects when the data sets with differnBR-® and time. Then the DSD for the entire volume and period can be

sample volume are merged. written as

For random media with small scale inhomogeneity, measured wave [ [ n[D[P(F,t)]W (7, t)d7dt
statistics such as radar reflectivity (Z) not only depend on sample time n(D) = 77 U(F t)dfd/t
but also on sample volume. Sample volume affects data interpretation ’
and parameter retrieval of target medium from radar measurementﬁ.ere the weighting function & (7, ¢).

Nonuniformity of a reflectivity field has been recognized as a factor a¥\-l In general, it is difficult to characterize the random func(¥, ¢).

fecting the precision of rain estimation because of the nonlinear relati?@simplifythe formulation, we assume that the stationary random field

between reflectivity and rain rate (R) [2]. Recently, effects of NONUNKHd the small-scale fluctuation (the correlation length of DSD parame-

form beam filling and reflectivity gradient have attracted attention < is much smaller that the size of sampling volume). Using ergodicity

the field of radar meteorology. The bias of radar estimated rain rgfg stationary random field, the space-time averaging in (1) can be re-
is studied by comparing radar and gauge measurements (G). Previous

studies show that the ratios of gauge and radar rainfalls (G/R) decre“é\]'saecBd by probability averaging, as given by
with range in the mean [3]-[7]. Assuming that time-averaged gauge
measurements are accurate, the decrease in G/R translates to overes-
timation of the radar-based estimate. The increase in the radar-based

rain estimate might be due to the increase in radar sample volume with

@)

n(D) = /‘p(P)n(D|P)dP (2

whereP is the probability density function (pdf) of the DSD parame-
ters within the sample volume.
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and for uniform distributions ofi; andA;, we get

D" :/pP |:/DmnDP dD}dP. 4 o 7 V3a, _ p—V3oy
(D)= | p(P) (DIP) @ (D)= NDP exp (cap) 20T =D
o o 2\/§0M InD
The statlstlc_:al moment dD is simply an average ofgll Ioc_al mom_ents exp (\/%AD) — exp (—\/EUAD)
corresponding to all conditional paramet®&sf E(D™|P) is consid- . 3 V30D . (20)
V3o

ered as a local moment.

B. Two-Level Gamma DSD We notice that neither (9) nor (10) are Gamma distributions any-
more. That is because the fluctuation of DSD changes the overall drop

_ In characterizing rain DSD, early studies commonly used exponetisectrum. To further study sampling effects, we calculate the statistical
tial distributions with one or two parameters was commonly used b&oments as described in the next section.

cause of its simplicity. This includes the Marshall-Palmer spectrum and
the Laws-Parsons spectrum. Some observations, however, indicate thaStatistical Moments
natural rain DSD contains fewer of both very lar nd very small dr i . o

aturalra S co ta.l S IEWer o b0t. erylarge and very small d OIOSWe first look at the conditional:th moment for a set of specified
than exponential distribution [9]. Ulbrich (1983) suggested the use of

L . . rameters as
Gamma distribution for representing rain drop spectra. For a two-leVd
model, it becomes .
D™ :/ D™n(D|No, u, A)dD

n(D|No, u, A) = No D" exp(—AD). (5) — No A~ DT (4 b 4 1) (11)
The Gamma DSD with three parameters (offset paramaigrshape \ynere... represents conditional averaging over particle size.
parameter;u, and slope parameten) is capable of describing & = Radar measurements, however, are collective effects from all pos-
broader variation in rain drop size distribution than an exponentigh|e conditional DSDs in the sample volume. Théh statistical mo-
distribution, which is a special case of the Gamma distribution Withhent is the result of the conditionatth moment averaged over the

p=0. ] ) ~_conditional parameters\j, ¢ andA). Using (7) and the assumption
In previous studies, the three parameters of the Gamma d'St“bUtmndependent random variables. we have

are assumed to be constant within a sample volume and are obtained by
fitting the DSD measurements using curve-fitting or moment method.
Itis noticed that the DSD changes during storm evolution. Recent study
also indicates that the DSD evolves as a function of sample time and
volume [6]. Our approach is to assume the DSD parameters are random
functions of time and space. It is expected that their variances increase
as sample time and volume become large. For a large sample volume,
the rain DSD is the result of averaging over all possible parameters as
given by

<Dm> = <Dm>1\70,H,A
:/ / /p(No,;z,A)W
- (No, pt, A)dNodpdA

= [ [ [romnan (¥ + x)
(R AT

. F(ﬁ + H1 + m 4+ l)df\rld,u,l(ll\l
:No//p(,ul)p(;’\l) (1&+1,X1)—(Lt+u1+m+l)
ST(E 4 pn +m 4+ DdpdAy.

Mm:///MMWAmuwm*ummwwm (6)

- . . . " 12
To simplify the integral in (6), we write the three conditional parameters (12)

as sums of their respective means and fluctuations as ) o
The fluctuation ofN, has no effect on the statistical moments be-

cause of its linear relation with the moments. Equation (12) is calcu-
lated both numerically and analytically. To analyze the effects of DSD
variation on the statistical moment, we compare them without any vari-
ation which is the conditional moment at the mean value of the param-
eters, as given by

[Vo :JV(J + ZVI
p=p+

A=A+A, 7)

and assume fluctuations of the three parameters are independent of each

other. Equation (6) becomes (D™ = NoA™ U™ DD (1 4 m + 1)

(13)

where the subscript denotes uniform, i.e., absence of variation.

The ratio between (12) and (13) for radar reflectivity £ (D))
and rain rate can be calculated. Rain rate is measured as accu-
mulated rain water per unit time in mmT. It is calculated as
7.125 x 107*(D*®T), and units of D and n(D) are in mm and
m~*mm~' [8]. The statistical distribution of DSD parameters
and A is assumed to be uniform in the numerical calculations. The
parameters used for the calculation gre= 2 andA = 3 mm™'.
The results of reflectivity ratio{/Z..) and rain rate ratioR/R..) are
shown in Fig. 1(a) and (b), respectively. We see that the ratios are more
sensitive tarx thane,,. That is becausg is a shape parameter of the

n(D) = NoD* exp (—J_\D) /p(,ul)D“ld,ul

-/p(z\l)oxp(—AlD)dz\l. (8)

The integrations in (8) can be performed for specific pdf pind that
of A;. For Gaussian distributions pfi andA;, we have
)®

) (2

2 2
TA

2

(In D)*s7,
2

n(D) = NoD" exp (—AD) exp <
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Fig. 1. Dependence of moment ratio on the standard deviation of DSBg. 2. Dependence of variance on the standard deviation of DSD parameters.
parameters. (a) Reflectivity and (b) rain rate. Parameters used for {l@@ Reflectivity and (b) rain rate. Parameters used for the calculatiofisarg
calculations argg = 2 andA = 3 mm~*. andA = 3 mm~1.

DSD, whileA is directly related to particle size. The ratios increase asfect has been observed in the results of Anagnostal. [4]. The
the standard deviation of DSD parameters @nda) increase, but eyperimental results were plotted as a variance of logarithm of G/R
the reflectivity ratio increases faster than the rain rate ratio becayggo as a function of the distance from radar shown in Fig. 4 of the
the DSD moment of reflectivity is higher than that of the rain rate qfaper by Anagnostoet al. [4].
the 3.67th moment. This leads to overestimation of rain rate using
radar reflectivity. Application of these results for rain rate estimation
is discussed in the next section.

The fluctuation of the moments is also studied by calculating their The two-level DSD model is applied to rain rate estimation from
variances. The second moment of th¢h conditional moment is cal- radar measurement. Data used in this study was collected in east-cen-

Ill. APPLICATION TO RADAR RAIN ESTIMATION

culated as follows: tral Florida during the summer of 1998, when NCARs S-Pol radar was
deployed in a special experiment (PRECIP98) to evaluate the potential

=\ _ [ [ [ -2 of polarimetric radar for estimating rain in a tropical environment. The

<D > - / / /p(‘wl)p(”l)pml) (No + ) experiment was conducted in conjunction with the National Aeronau-

(A4 A])*?(ﬁ+u1+m+l) tics and Space Administration (NASA) Tropical Rainfall Measuring

y Mission (TRMM). Radar samples were made at intervals of 20 s to 2
I+ p+m + DdNidpndAr. - (14)  min and had a radial resolution of 0.15 km arfdbam. The region
is covered by a number of gauges at various distances from the radar.
Then the variance of the moments due to DSD variation is calculatB@dar rain estimation based on reflectivity and differential reflectivity
by (Zpr) has been studied. THY Z) andR(Z, Zpr) relations used for
the rain estimation were obtained by numerical simulation using equi-
var(D™) = <W2> - <W>2 . (15) librium raindrop shape and obtained DSDs [6]

The numerical result of the relative variance for radar reflectivity and 07645 =
rain rate is shown in Fig. 2(a) and (b), respectively. Again, the variances R(Z) =0.0147 mm hr. . (16)
increase as the variation of DSD parametefsdndo ) increase. This R(Z,Zpr) =0.007082° 7 255" mmhr'.  (17)
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Fig. 3. Gauge-radar rain rate ratio without range correction (a)Rfaz) Fig. 4. DSD variation model and calculated range factor (a) )
estimation and (b) foR(Z, Z ) estimation. estimation and (b) foR(Z, Zp ) estimation.

Radar/Gauge comparison is made by taking the ratio of mean rain 5tdar sampling will be investigated in future,. is assumed to be
cumulation for each storm at each gauge location and shown in Fig. Z8E0 because the rain ratio is more sensitive {¢hano ., as shown

a function of range. Fig. 3(a) is the result obtained usingith#) re- N Fig. 1 The means of the DSD parameters are obtaln(?d from the
lation. The scatter plot shows a decreasing trend as the range incre¥iggo-disdrometer measurementgias 2.2 andA = 3.6 mm~". The

with a slope 0f—0.003 km™?, indicating that the radar tends to over-"éflectivity (Z) and differential reflectivity £» ) can be calculated
estimate rain at farther ranges. This could be due to the large raf@ged on the previous work [8]. The calculaédndZ . are used in
sample volume at farther range. Fig. 3(b) is the result obtained using {A8) and (17) for estimating rainrate with and without DSD variation.

R(Z, Zpw) relation. The fitted line is close to horizontal and it showd he range factors are defined as the ratio of rain rate with DSD
less range dependence. This is because Botind Z1 . increase as variation and that without DSD variation. These factors are calculated

and shown in Fig. 4. The function ofs is also shown in the same
figure. Fig. 4(a) is forR(Z) estimated rain rate and Fig. 4(b) is for
R(Z, Zpr) estimation. The range factor fd?(Z, Zp ) estimation
increases with range slower than that #¢Z) estimation, which is
consistent with the observations shown in Fig. 3. This is because the
range dependences BfandZpr tend to cancel each other.

on =V =Cr?? mm™! (18) Fig. 5 shows the revised G/R ratios, correcting the radar estimated
rain rate by normalizing the range factor discussed earlier. The cor-
rected G/R ratio fol?(Z) estimation exhibits almost no range depen-

sampling volume, i.e., range, and hence, the r&tic*** /7, %7%** is
immune to the range effect. The range dependenceaidZ, » tend
to cancel each other.

To apply the two-level DSD model, we assume the variance a$

where dence, as shown in Fig. 5(a), and the accumulated rain ratio between
V sample volume; gauge and radar measuremei§Sf =R ratio) is 0.991, which has al-
r range from radar location in km; most no bias compared with the earlier value of 0.832 in the absence
candC proportionality constants. of range correction. ThEG/XR for R(Z, Zpr) estimation is notim-

For the data shown in Fig. 3, we estimated a value of 0.0XBoved, as showninFig.5(b). This might be because the negative power
mm~'km~2/3 for C' would eliminate the range-dependent bias. An the R(Z, Zpr) relation (17) over accounts th€pr contribution.
general methodology for estimating the valuecsof for a specified A more accurate retrieval algorithm may improve the result.
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Fig. 5. Gauge-radar rain rate ratio with range correction (a) R¢%Z)
estimation and (b) foR(Z, Zpr) estimation.
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variables. Some of the observations show that DSD parameters may be
mutually dependent [9]. But we have not seen high correlation among
the fluctuations of DSD parameters in literature. THie — 4 relation
shown in Ulbrich’s paper varies an order of magnitude for a speeific
The fluctuations in DSD parameters are even less correlated. The in-
dependence among the fluctuations of DSD parameters can be a valid
assumption for some cases. Even if the correlation among the fluctua-
tions of DSD parameters are found, the two-level model does not lose
its generality. In that case, the correlation among them can be included
in the joint probability density function of the fluctuation of the DSD
parameters and (6) and (12) are still valid. Another approach to deal
with the parameters with correlation is to use the transformed parame-
ters which are less correlated instead of Gamma parameters. Normal-
ized Gamma distribution will be helpful for further study.

Range correction for rain estimation is obtained by assuming that
the DSD variance depends on sample volume. Further studies are
needed to evaluate and improve the approach. The spatial correlation
of DSD parameters was neglected and the spatial averaging was
replaced by probability averaging in this paper. This can be included
in future studies. Fixed relations were used for rain estimation and
accounting DSD variation, while rain DSD changes from storm to
storm, causing large scatter in G/R ratio and overestimation of rain
based on th&k(Z, Zpr) relation. These variations may be addressed
by using different DSD parameters and their variances as a function of
rain storm and using a more accurate retrieval algorithm.
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