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Effects of Random Inhomogeneity on Radar Measurements
and Rain Rate Estimation

Guifu Zhang, J. Vivekanandan, and Edward Brandes

Abstract—We study the sampling effect on radar measurements of inho-
mogeneous media and the resultant rain estimation. A two-level drop size
distribution (DSD) model is proposed, in which DSD parameters are as-
sumed to be variable for representing the sampling effects. The dependence
of statistical moments on the variation of DSD parameters are calculated
and applied to radar-based rain estimation.
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I. INTRODUCTION

It is known that most natural media (rain and cloud) are random and
inhomogeneous. Randomness and inhomogeneity are generally related
to wavelength and sample volume respectively in radar meteorology.
Meteorological radars measure electromagnetic wave scattered by a
target region containing many small scatterers (particles or spatial in-
homogeneities such as turbulence). The resultant backscattered signal
has random characteristics. Statistical moments of the random signal
are obtained by averaging over a train of pulses. If the random change
of particle position during sample time is larger or comparable to wave-
length and causes a random phase of the scattered wave, the medium is
called a random medium. Otherwise, it is a partially random or deter-
ministic medium. The condition of randomness has been studied in [1].
In the case of the inhomogeneity of random media, radar can only mea-
sure the spatial variation with a scale larger than the size of a sample
volume (resolution). While the variation inside the sample volume can
not be measured, small scale (local) inhomogeneity does contribute to
the radar measurements and introduces bias when compared with that
of a homogeneous medium. Currently, data fusion has been widely used
in remote sensing, which combines measurements from different sen-
sors which might have different sample volumes. So it is important
to understand the sampling effects when the data sets with differnet
sample volume are merged.

For random media with small scale inhomogeneity, measured wave
statistics such as radar reflectivity (Z) not only depend on sample time
but also on sample volume. Sample volume affects data interpretation
and parameter retrieval of target medium from radar measurements.
Nonuniformity of a reflectivity field has been recognized as a factor af-
fecting the precision of rain estimation because of the nonlinear relation
between reflectivity and rain rate (R) [2]. Recently, effects of nonuni-
form beam filling and reflectivity gradient have attracted attention in
the field of radar meteorology. The bias of radar estimated rain rate
is studied by comparing radar and gauge measurements (G). Previous
studies show that the ratios of gauge and radar rainfalls (G/R) decrease
with range in the mean [3]–[7]. Assuming that time-averaged gauge
measurements are accurate, the decrease in G/R translates to overes-
timation of the radar-based estimate. The increase in the radar-based
rain estimate might be due to the increase in radar sample volume with
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the range. Preliminary analysis of the radar data collected in Florida
by NCAR S-band polarization radar (S-Pol) shows that the radar es-
timated rain rate depends on sample volume. The estimated rain with
spatially averaged radar reflectivity can be two times as that without
spatial averaging in regions with reflectivity gradients. We will study
sampling effects on radar measurements and rain estimation based on
a two-level DSD model.

II. M ODEL AND FORMULATION

Meteorological radar measures statistical moments of scattered wave
field from a target region filled with random scatterers. For a discrete
random medium such as rain, the wave moments depend on moments
of raindrop size distribution. For example, radar reflectivity (Z) is de-
fined as the sixth moment (Z= hD6i) and attenuation is proportional
to the third moment (A/ hD3i) for scatterers that satisfy Rayleigh
scattering approximation. For random media with small scale inhomo-
geneity, statistical moments depend on the DSD which is related to
the size of sample volume, while radar sample volume increases with
range. Thus, the effect of small scale inhomogeneity on radar measure-
ments can be investigated by answering the question: How does one
model a variable DSD and calculate the statistical moments while ac-
counting for the sampling effect?

A. General Two-Level DSD Model

Rain and cloud DSDs change as a function of time and space as
well as size of sample volume. If we assume that local DSDs can be
specified, the statistical moments of the DSD change as the sample
volume increases; and as a result, the DSD for the entire volume is
different from a local DSD. To represent these changes in DSD, we use
a two-level DSD model, as follows.

Let us use a conditional probability density functionn(DjP) to rep-
resent a local DSD, whereD is the equivolume diameter of a particle,P
is the collection of parameters used to define the DSD, the vertical bar
denotes conditioning. The DSD parameters can be random variables of
space and time. Then the DSD for the entire volume and period can be
written as

n(D) =
n[DjP(~r; t)]W (~r; t)d~rdt

W (~r; t)d~rdt
(1)

where the weighting function isW (~r; t).
In general, it is difficult to characterize the random functionP(~r; t).

To simplify the formulation, we assume that the stationary random field
and the small-scale fluctuation (the correlation length of DSD parame-
ters is much smaller that the size of sampling volume). Using ergodicity
of stationary random field, the space-time averaging in (1) can be re-
placed by probability averaging, as given by

n(D) = p(P)n(DjP)dP (2)

whereP is the probability density function (pdf) of the DSD parame-
ters within the sample volume.

Statistical moments of diameterD are of interest because they di-
rectly related to radar measurements. For the two-level DSD model,
themth moment is

E(Dm) = EP [E(DmjP)] (3)

U.S. Government work not protected by U.S. copyright.



224 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 1, JANUARY 2002

i.e.,

hDmi = p(P) Dmn(DjP)dD dP: (4)

The statistical moment ofD is simply an average of all local moments
corresponding to all conditional parametersP if E(DmjP) is consid-
ered as a local moment.

B. Two-Level Gamma DSD

In characterizing rain DSD, early studies commonly used exponen-
tial distributions with one or two parameters was commonly used be-
cause of its simplicity. This includes the Marshall-Palmer spectrum and
the Laws-Parsons spectrum. Some observations, however, indicate that
natural rain DSD contains fewer of both very large and very small drops
than exponential distribution [9]. Ulbrich (1983) suggested the use of
Gamma distribution for representing rain drop spectra. For a two-level
model, it becomes

n(DjN0; �;�) = N0D
� exp(��D): (5)

The Gamma DSD with three parameters (offset parameter:N0, shape
parameter:�, and slope parameter:�) is capable of describing a
broader variation in rain drop size distribution than an exponential
distribution, which is a special case of the Gamma distribution with
� = 0.

In previous studies, the three parameters of the Gamma distribution
are assumed to be constant within a sample volume and are obtained by
fitting the DSD measurements using curve-fitting or moment method.
It is noticed that the DSD changes during storm evolution. Recent study
also indicates that the DSD evolves as a function of sample time and
volume [6]. Our approach is to assume the DSD parameters are random
functions of time and space. It is expected that their variances increase
as sample time and volume become large. For a large sample volume,
the rain DSD is the result of averaging over all possible parameters as
given by

n(D) = p(N0; �;�)N0D
� exp(��D)dN0d�d�: (6)

To simplify the integral in (6), we write the three conditional parameters
as sums of their respective means and fluctuations as

N0 = �N0 +N1

� =��+ �1

� =��+ �1 (7)

and assume fluctuations of the three parameters are independent of each
other. Equation (6) becomes

n(D) = �N0D
�� exp ���D p(�1)D

� d�1

� p(�1) exp(��1D)d�1: (8)

The integrations in (8) can be performed for specific pdf of�1 and that
of �1. For Gaussian distributions of�1 and�1, we have

n(D) = �N0D
�� exp ���D exp

(lnD)2�2�
2

exp
D2�2�
2

(9)

and for uniform distributions of�1 and�1, we get

n(D) = �N0D
�� exp ���D

D
p
3� �D�

p
3�

2
p
3�� lnD

� exp
p
3��D � exp �p3��D

2
p
3��D

: (10)

We notice that neither (9) nor (10) are Gamma distributions any-
more. That is because the fluctuation of DSD changes the overall drop
spectrum. To further study sampling effects, we calculate the statistical
moments as described in the next section.

C. Statistical Moments

We first look at the conditionalmth moment for a set of specified
parameters as

Dm = Dmn(DjN0; �;�)dD

=N0�
�(�+m+1)�(�+m+ 1) (11)

where. . . represents conditional averaging over particle size.
Radar measurements, however, are collective effects from all pos-

sible conditional DSDs in the sample volume. Themth statistical mo-
ment is the result of the conditionalmth moment averaged over the
conditional parameters (N0, � and�). Using (7) and the assumption
of independent random variables, we have

hDmi = Dm
N ;�;�

= p(N0; �;�)Dm

� (N0; �;�)dN0d�d�

= p(N1)p(�1)p(�1) �N0 +N1

� �� + �1
�(��+� +m+1)

� �(��+ �1 +m+ 1)dN1d�1d�1

= �N0 p(�1)p(�1) �� + �1
�(��+� +m+1)

� �(��+ �1 +m+ 1)d�1d�1: (12)

The fluctuation ofNo has no effect on the statistical moments be-
cause of its linear relation with the moments. Equation (12) is calcu-
lated both numerically and analytically. To analyze the effects of DSD
variation on the statistical moment, we compare them without any vari-
ation which is the conditional moment at the mean value of the param-
eters, as given by

hDmiu = �N0
���(��+m+1)�(��+m+ 1) (13)

where the subscriptu denotes uniform, i.e., absence of variation.
The ratio between (12) and (13) for radar reflectivity (Z= hD6i)

and rain rate can be calculated. Rain rate is measured as accu-
mulated rain water per unit time in mm hr�1. It is calculated as
7:125 � 10�3hD3:67i, and units ofD and n(D) are in mm and
m�3mm�1 [8]. The statistical distribution of DSD parameters�
and� is assumed to be uniform in the numerical calculations. The
parameters used for the calculation are�� = 2 and �� = 3 mm�1.
The results of reflectivity ratio (Z=Zu) and rain rate ratio (R=Ru) are
shown in Fig. 1(a) and (b), respectively. We see that the ratios are more
sensitive to�� than��. That is because� is a shape parameter of the
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Fig. 1. Dependence of moment ratio on the standard deviation of DSD
parameters. (a) Reflectivity and (b) rain rate. Parameters used for the
calculations are�� = 2 and�� = 3 mm .

DSD, while� is directly related to particle size. The ratios increase as
the standard deviation of DSD parameters (�� and��) increase, but
the reflectivity ratio increases faster than the rain rate ratio because
the DSD moment of reflectivity is higher than that of the rain rate of
the 3.67th moment. This leads to overestimation of rain rate using
radar reflectivity. Application of these results for rain rate estimation
is discussed in the next section.

The fluctuation of the moments is also studied by calculating their
variances. The second moment of themth conditional moment is cal-
culated as follows:

Dm
2

= p(N1)p(�1)p(�1) �N0 +N1
2

�
�� + �1

�2(��+� +m+1)

� �2(��+ �1 +m+ 1)dN1d�1d�1: (14)

Then the variance of the moments due to DSD variation is calculated
by

var(Dm) = Dm
2

� Dm
2
: (15)

The numerical result of the relative variance for radar reflectivity and
rain rate is shown in Fig. 2(a) and (b), respectively. Again, the variances
increase as the variation of DSD parameters (�� and��) increase. This

Fig. 2. Dependence of variance on the standard deviation of DSD parameters.
(a) Reflectivity and (b) rain rate. Parameters used for the calculations are�� = 2

and �� = 3 mm .

effect has been observed in the results of Anagnostouet al. [4]. The
experimental results were plotted as a variance of logarithm of G/R
ratio as a function of the distance from radar shown in Fig. 4 of the
paper by Anagnostouet al. [4].

III. A PPLICATION TO RADAR RAIN ESTIMATION

The two-level DSD model is applied to rain rate estimation from
radar measurement. Data used in this study was collected in east-cen-
tral Florida during the summer of 1998, when NCARs S-Pol radar was
deployed in a special experiment (PRECIP98) to evaluate the potential
of polarimetric radar for estimating rain in a tropical environment. The
experiment was conducted in conjunction with the National Aeronau-
tics and Space Administration (NASA) Tropical Rainfall Measuring
Mission (TRMM). Radar samples were made at intervals of 20 s to 2
min and had a radial resolution of 0.15 km and 1� beam. The region
is covered by a number of gauges at various distances from the radar.
Radar rain estimation based on reflectivity and differential reflectivity
(ZDR) has been studied. TheR(Z) andR(Z; ZDR) relations used for
the rain estimation were obtained by numerical simulation using equi-
librium raindrop shape and obtained DSDs [6]

R(Z) =0:014Z0:7645 mm hr�1: (16)

R(Z;ZDR) =0:007 08Z
0:9535

Z
�4:9542
DR mm hr�1: (17)
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Fig. 3. Gauge-radar rain rate ratio without range correction (a) forR(Z)
estimation and (b) forR(Z;Z ) estimation.

Radar/Gauge comparison is made by taking the ratio of mean rain ac-
cumulation for each storm at each gauge location and shown in Fig. 3 as
a function of range. Fig. 3(a) is the result obtained using theR(Z) re-
lation. The scatter plot shows a decreasing trend as the range increases
with a slope of�0:003 km�1, indicating that the radar tends to over-
estimate rain at farther ranges. This could be due to the large radar
sample volume at farther range. Fig. 3(b) is the result obtained using the
R(Z; ZDR) relation. The fitted line is close to horizontal and it shows
less range dependence. This is because bothZ andZDR increase as
sampling volume, i.e., range, and hence, the ratioZ0:9535=Z�4:9542DR is
immune to the range effect. The range dependence ofZ andZDR tend
to cancel each other.

To apply the two-level DSD model, we assume the variance of� as

�� = c
p
V = Cr2=3 mm�1 (18)

where
V sample volume;
r range from radar location in km;
c andC proportionality constants.

For the data shown in Fig. 3, we estimated a value of 0.015
mm�1km�2=3 for C would eliminate the range-dependent bias. A
general methodology for estimating the value of�� for a specified

Fig. 4. DSD variation model and calculated range factor (a) forR(Z)
estimation and (b) forR(Z;Z ) estimation.

radar sampling will be investigated in future.�� is assumed to be
zero because the rain ratio is more sensitive to�� than��, as shown
in Fig. 1. The means of the DSD parameters are obtained from the
video-disdrometer measurements as�� = 2:2 and�� = 3:6mm�1. The
reflectivity (Z) and differential reflectivity (ZDR) can be calculated
based on the previous work [8]. The calculatedZ andZDR are used in
(16) and (17) for estimating rainrate with and without DSD variation.
The range factors are defined as the ratio of rain rate with DSD
variation and that without DSD variation. These factors are calculated
and shown in Fig. 4. The function of�� is also shown in the same
figure. Fig. 4(a) is forR(Z) estimated rain rate and Fig. 4(b) is for
R(Z; ZDR) estimation. The range factor forR(Z; ZDR) estimation
increases with range slower than that forR(Z) estimation, which is
consistent with the observations shown in Fig. 3. This is because the
range dependences ofZ andZDR tend to cancel each other.

Fig. 5 shows the revised G/R ratios, correcting the radar estimated
rain rate by normalizing the range factor discussed earlier. The cor-
rected G/R ratio forR(Z) estimation exhibits almost no range depen-
dence, as shown in Fig. 5(a), and the accumulated rain ratio between
gauge and radar measurements (�G=�R ratio) is 0.991, which has al-
most no bias compared with the earlier value of 0.832 in the absence
of range correction. The�G=�R forR(Z; ZDR) estimation is not im-
proved, as shown in Fig. 5(b). This might be because the negative power
in theR(Z;ZDR) relation (17) over accounts theZDR contribution.
A more accurate retrieval algorithm may improve the result.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 1, JANUARY 2002 227

Fig. 5. Gauge-radar rain rate ratio with range correction (a) forR(Z)
estimation and (b) forR(Z;Z ) estimation.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have studied sampling effects on radar measure-
ments and on parameter retrievals. A two-level DSD model is proposed
and illustrated for calculating statistical moments. The numerical re-
sults show that the variation of DSDs contribute to the overestimation
of statistical moments and biases the parameter retrieval. A range cor-
rection has been applied to radar estimated rain rate for accurate rain
rate estimation based on the two-level Gamma DSD model. Although
the two-level DSD model is proposed to include the DSD variation, the
effects due to incomplete beam filling can also be compensated, since
incomplete beamfilling will alter the DSD and hence the parameters of
the DSD.

In this study, we randomize DSD parameters for including sampling
effects, while their fluctuations are assumed to be independent random

variables. Some of the observations show that DSD parameters may be
mutually dependent [9]. But we have not seen high correlation among
the fluctuations of DSD parameters in literature. TheN0 � � relation
shown in Ulbrich’s paper varies an order of magnitude for a specific�.
The fluctuations in DSD parameters are even less correlated. The in-
dependence among the fluctuations of DSD parameters can be a valid
assumption for some cases. Even if the correlation among the fluctua-
tions of DSD parameters are found, the two-level model does not lose
its generality. In that case, the correlation among them can be included
in the joint probability density function of the fluctuation of the DSD
parameters and (6) and (12) are still valid. Another approach to deal
with the parameters with correlation is to use the transformed parame-
ters which are less correlated instead of Gamma parameters. Normal-
ized Gamma distribution will be helpful for further study.

Range correction for rain estimation is obtained by assuming that
the DSD variance depends on sample volume. Further studies are
needed to evaluate and improve the approach. The spatial correlation
of DSD parameters was neglected and the spatial averaging was
replaced by probability averaging in this paper. This can be included
in future studies. Fixed relations were used for rain estimation and
accounting DSD variation, while rain DSD changes from storm to
storm, causing large scatter in G/R ratio and overestimation of rain
based on theR(Z; ZDR) relation. These variations may be addressed
by using different DSD parameters and their variances as a function of
rain storm and using a more accurate retrieval algorithm.
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