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Abstract We study the qualitative properties of population cycles in a predator–prey
system where genetic variability allows contemporary rapid evolution of the prey.
Previous numerical studies have found that prey evolution in response to changing
predation risk can have major quantitative and qualitative effects on predator–prey
cycles, including: (1) large increases in cycle period, (2) changes in phase relations
(so that predator and prey are cycling exactly out of phase, rather than the classi-
cal quarter-period phase lag), and (3) “cryptic” cycles in which total prey density
remains nearly constant while predator density and prey traits cycle. Here we focus on
a chemostat model motivated by our experimental system (Fussmann et al. in Science
290:1358–1360, 2000; Yoshida et al. in Proc roy Soc Lond B 424:303–306, 2003)
with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution
in their level of defense against predation. We show that the effects of rapid prey
evolution are robust and general, and furthermore that they occur in a specific but bio-
logically relevant region of parameter space: when traits that greatly reduce predation
risk are relatively cheap (in terms of reductions in other fitness components), when
there is coexistence between the two prey types and the predator, and when the inter-
action between predators and undefended prey alone would produce cycles. Because
defense has been shown to be inexpensive, even cost-free, in a number of systems
(Andersson et al. in Curr Opin Microbiol 2:489–493, 1999: Gagneux et al. in Science
312:1944–1946, 2006; Yoshida et al. in Proc Roy Soc Lond B 271:1947–1953, 2004),
our discoveries may well be reproduced in other model systems, and in nature. Finally,
some of our key results are extended to a general model in which functional forms for
the predation rate and prey birth rate are not specified.
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1 Introduction

Understanding the potential effects of rapid evolution on the dynamics of natural
ecosystems is critical to predicting how populations will adapt to a changing envi-
ronment. Populations in the wild today face unprecedented stress from habitat loss or
degradation, harvesting pressure, species introductions and climate change. In addi-
tion, otherwise well-intentioned attempts at conservation or management often fail to
take into account the potential for rapid evolutionary responses to intervention [25].

It is now well documented, in both natural and experimental settings, that trait
evolution can occur on the same time scale as population dynamics [21,23,31,42].
Laboratory systems provide examples where rapid trait evolution in response to pop-
ulation dynamics has been observed directly [10,11,29] or inferred via modeling
(e.g., [46,48]). Furthermore, observations of rapid evolution and its consequences in
response to a changing natural environment (e.g., [4,13,18,20,22,30,35]) or to anthro-
pogenic changes, such as size-selective fishing mortality [14,30] and hatchery rearing
of exploited fish species [22], continue to accumulate. For reviews on this topic see
[6,21,37,49].

Prey are under strong selection to avoid predation, because the risk of getting eaten
is very strong natural selection. Prey genetic diversity may then allow rapid evolu-
tion of resistance to predation, akin to the rapid evolution of microbial pathogens in
response to antibiotics. The direct cost of traits conferring defense against predation
may have demographic costs to the prey that match or exceed the impact of preda-
tion (see [34]; most studies to date involve plastic traits, but the cost for a heritable
defensive trait should be similar). For example, the development of armored spines by
Daphnia exposed to chemicals from fish reduces lifetime fitness by diverting energy
from progeny to defense [7]. Thus, by focusing exclusively on changes in population
numbers without considering changes in the properties of the individuals in the pop-
ulation and the associated demographic costs, conventional models of population and
community dynamics may give us only half the story.

Our experimental system is a predator–prey microcosm with rotifers, Brachionus
calyciflorus, and their algal prey, Chlorella vulgaris, cultured together in nitrogen-
limited, continuous flow-through chemostats. In prior studies we have shown that
coexistence of edible and inedible prey genotypes allows the prey to evolve in response
to predation pressure at high predator densities, and in response to nutrient limitation
at high prey densities. The alternation between selection favoring and disfavoring
defensive traits that trade off against efficient nutrient uptake [47] leads to cyclic prey
evolution in concert with predator–prey population cycles. Recent work in this system
has used PCR techniques to directly track density changes in two algal clones, differ-
ing in defense traits, in response to varying predation pressure [29]. Evolution in the
prey can lead to “evolutionary” cycling [38,46], where the predator and prey exhibit
extended, out-of-phase population cycles (Fig. 1a), or in some circumstances, the odd
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Fig. 1 Example of predator–prey dynamics in experimental rotifer–alga chemostats [15,46]. a Evolutionary
cycles. Chlorella are shown in solid line, and the rotifer predator is shown dashed. Prey and predator oscil-
lations are nearly out-of-phase, unlike the quarter-phase shift seen in classic predator–prey cycles. b Cryptic
cycles. Initially the system exhibits classic predator–prey cycles, which would be expected when a single
(edible) prey type is dominant. At about day 55 the system switches to cryptic cycles, which would be
expected if a highly defended (inedible) type with low cost for defense arose by mutation. The estimated
period of cycles for the predator data on days 59–93 is 16.5 days (estimated using the Lomb periodogram
[33]), and the presence of periodicity is significant (P < 0.001 using either Fisher’s exact test or χ2 test).
A switch from classic to cryptic cycles when a defended type arises by mutation has been documented in
bacteria-phage chemostats [11]

phenomenon of “cryptic cycles”, where the predator alone exhibits regular population
cycles but the prey appear to remain in steady state (Fig. 1b). In cryptic cycling, densi-
ties of edible and inedible prey cycle out of phase with each other, driven by changes
in predator abundance, in such a way that total prey density remains nearly constant
[48]. Evolutionary and cryptic cycles are not unique to this study system: we have
observed evolutionary cycles in a chemostat system with rotifers and the flagellated
algae Chlamydomonus, and cryptic dynamics have been observed in bacteria-phage
microcosms [11,48]. We are motivated here by these sorts of perplexing experimental
results.

Before conclusions based on laboratory systems or manipulated natural systems
are applied to the natural world, we must ask if the conclusions are likely to be robust:
are they limited to the special conditions in the experimental systems, or should we
expect to see them in a broad range of conditions in nature? This paper is an attempt,
using theory, to answer the questions: how general is the phenomenon of evolutionary
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cycling in predator–prey systems, under what circumstances might these dynamics
be observed, and what are the implications of this type of phenomenon for natural
systems? Our results show that evolutionary cycles are indeed a general and robust
consequence of rapid prey evolution during predator–prey cycling (Sect. 5), and that
cryptic cycles emerge as a limiting case of evolutionary cycles when anti-predator
defense is cheap but effective (cf. Sect. 6).

2 The model

Our model is based on an experimental predator–prey microcosm with rotifers,
Brachionus calyciflorus, and their algal prey, Chlorella vulgaris, cultured together
in a nitrogen-limited, continuous flow-through chemostat system. This system was
first described by Fussmann et al. [15], further characterized by Schertzer et al. [38]
and Yoshida et al. [46,47], and equilibrium properties studied by Jones and Ellner [24].
Brachionus in the wild are facultatively sexual, but because sexually produced eggs
wash out of the chemostat before offspring hatch, our rotifer cultures have evolved
to be entirely parthenogenic [16]. The algae also reproduce asexually [32], so evolu-
tionary change in the prey occurs as a result of changes in the relative frequency of
different algal clones.

We use a system of ordinary differential equations to describe the population and
prey evolutionary dynamics in the experimental microcosms [24,46]. Genetic vari-
ability and thus the possibility of evolution in the prey is introduced by explicitly
representing the prey population as a finite set of asexually reproducing clones. Each
clone is characterized by its palatability p, which represents the conditional proba-
bility that an algal cell is digested rather than being ejected alive, once it has been
ingested by a predator [29].

The model consists of two equations for the limiting nutrient and rotifers, plus
two equations for two prey clones or types. In the following equations, N is nitro-
gen (µmol/l), Ci represents concentration of the i th algal clone (109 cells/l), where
i = 1, 2. Though the model can accommodate any number of clones, we limit the
number to two for reasons discussed below. B is total population density for the pred-
ator Brachionus (individuals/l). Rotifer mortality in the chemostat is negligibly small
(≈ 0.05/days) relative to the washout rate δ, so for the sake of simplicity is omitted
here. The parameters χc, χb are conversions between consumption and recruitment
rates (additional model parameters are defined in Table 1).

d N

dt
= δ(NI − N ) − ρc

2∑

i=1

NCi

Kc(pi ) + N

dCi

dt
= Ci

[
χcρc

N

Kc(pi ) + N
− Gpi B

(Kb + ∑
pi Ci )

− δ

]
(1)

d B

dt
= B

[
χb

G
∑

pi Ci

Kb + ∑
pi Ci

− δ

]
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Table 1 Parameter estimates for the Chlorella-Brachionus microcosm system. Set: adjustable parameters
set by the experimenter. TY: Unpublished experimental data (Yoshida et al., in preparation) Fitted: Estimated
by numerically optimizing the goodness-of-fit between model output and data on total prey and predator
population dynamics from two experiments (originally reported by Fussmann et al. [15]) in which regular
cycles occurred

Parameter Description Value Reference

NI Limiting nutrient conc. 80µmol N/l Set

(supplied medium)

δ Chemostat dilution rate variable (d) Set

V Chemostat volume 0.33 l Set

χc Algal conversion efficiency 0.05 [15]

(109 cells/µmol N)

χb Rotifer conversion efficiency ≈ 54, 000 rotifers/109 Fitted

algal cells

m Rotifer mortality 0.055/day [15]

λ Rotifer senescence rate 0.4/day [15]

Kc Minimum algal half-saturation 4.3 µ mol N/l [15]

Kb Rotifer half-saturation 0.835 × 109 TY

algal cells/l

βc Maximum algal recruitment rate 3.3/day TY

ωc N content in 109 algal cells 20.0 µmol [15]

εc Algal assimilation efficiency 1 [15]

G Rotifer maximum consumption rate 5.0 × 10−5 l/day TY

α1 Shape parameter in algal tradeoff variable, α1 > 0 Fitted

α2 Scale parameter in algal tradeoff variable, α2 > 0 Fitted

where

FC,i (N ) = ρc N/(Kc(pi ) + N ) (2)

and

Fb(Ci ) = GCi/(Kb +
2∑

i=1

pi Ci ) (3)

are functional response equations describing algal and rotifer consumption rates,
respectively, and where ρc = ωcβc/εc.

Equation (2) assumes that there is an instantaneous conversion between nutrient
uptake and offspring, and that the yield of offspring per unit of nutrient is constant.
Although these assumptions not strictly valid, the dynamic complexities that can occur
if these assumptions are violated (e.g., [5,36,45]) have not been observed in our exper-
imental system (e.g., in the absence of predators, algal populations always converge
monotonically to a steady state density).
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Equation (3) is derived from the predator’s clearance rate (the volume of water
per unit time that an individual filters to obtain food), assuming that clearance rate
is a decreasing function of the total prey food value

∑2
i=1 pi Ci ). That is, lower prey

palatability results in the predators increasing their clearance rate, exactly as if prey
were less abundant. We also considered a model in which clearance rate depends only
on the total prey density, but it could not be fitted as well to our experimental data on
population cycles. Elsewhere [29,46] we have used a more complicated expression
for Fb(Ci ) in order to fit experimental data more accurately, but using (3) does not
change the model’s qualitative behavior.

The cost for defense against predation in this system has been demonstrated to
be a reduced ability to compete for scarce nutrients [24,29,47]. We model this by
specifying a tradeoff curve

Kc(p) = Kc + α2(1 − p)α1 . (4)

Here Kc > 0 is the minimum value of the half-saturation constant, α1 > 0 deter-
mines whether the tradeoff curve is concave up versus down, and α2 > 0 is the cost
for becoming completely inedible (p = 0). The shape of the curve is unknown and
thus is assumed here, but is unimportant for the purposes of this study. As discussed
below, what matters for evolutionary and cryptic cycle properties is Kc(0) − Kc(1),
the relative half-saturation values of the two prey types.

3 Characteristics of the model under simulation

A system of more than 2 prey types invariably collapses to one or two types in the
presence of a predator: either a single clone that outcompetes all others, or a pair of
very different clones, one very well defended and the other highly competitive, that
together drive all intermediate prey types to extinction [24,46]. Only the latter case is
of final interest here, because with a single prey type there is no prey evolution. We
thus consider a system of two extreme prey types in the presence of a predator.

Two system parameters can be experimentally varied: the dilution rate δ (fraction of
the culture medium that is replaced daily) and the concentration of the limiting nutri-
ent in the inflowing medium, NI . Fussmann et al. [15] showed that δ is a bifurcation
parameter: in both the real system and the model, the system goes to equilibrium at
low dilution rates, limit cycles at intermediate dilution rates, and again to equilibrium
at high dilution rates. Further increases in δ lead to extinction of the predator. Toth
and Kot [43] proved that the same bifurcation sequence occurs in chemostat models
with an age-structured consumer feeding on an abiotic resource (for our experimen-
tal system, the equivalent would be rotifers feeding on externally supplied algae that
could not reproduce within the chemostat).

The prey vulnerability parameter p is also a bifurcation parameter. In the fol-
lowing discussion, we define evolutionary cycles as both prey types coexisting and
exhibiting long-period cycles (period 20–40 days), with the predator and total prey
abundance almost exactly out-of-phase with each other. Cryptic cycles are an extreme
example of this dynamic which occurs if defense is both effective and very cheap [48].
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Predator–prey cycles are shorter (6–12 days), display the classic quarter-period phase
offset between predator and prey, and involve one prey type cycling with the predator.
In addition, both prey may survive and coexist with the predator at an evolutionary
equilibrium, or one prey type may be driven to extinction while the other goes to
equilibrium with the predator.

Single prey model Figure 2a shows the dynamics of the single prey model as a func-
tion of prey palatability p and dilution rate δ. Parameters giving single-prey predator–
prey cycles are indicated by open circles, and elsewhere the system goes to equilibrium.
At low p values (up to 0.2–0.4, depending on the predator conversion efficiency χB)
the system goes to equilibrium at all dilution rates. As p increases there is a bifurcation
and short, low amplitude predator–prey cycles are observed, initially for the narrow
range of dilution rates. When p is higher, oscillations grow in amplitude and increase
very slightly in period, and cycling occurs over a larger range of dilution rates. The
cycles always exhibit classic predator–prey phase relations.

Two prey models Figure 2b shows dynamics of the two prey model as a function
of the dilution rate δ and the trait value p of the defended prey type (the model is
scaled so that the undefended type has p = 1). Using the parameter values listed in
Table 1, extended evolutionary cycles (closed circles) initially appear for all dilution
rates (0.2 ≤ δ ≤ 1.3) at p1 very small (p1 ≈ 0.01). As p1 increases, evolutionary
cycling occurs for a diminishing range of dilution rates. By p1

.= 0.2, cycling vanishes
for all dilution rates, and instead the defended prey is in equilibrium (Fig. 2b, stipples)
or the two prey types are in an evolutionary equilibrium with the predator (Fig. 2b,
crosshatching). As p1 increases further (0.2 < p1 < 1.0, depending on dilution rate),
there is another bifurcation and the system, comprised of the defended type and the
predator, begins to exhibit predator–prey cycles (Fig. 2b, open circles). From this point
on the system behaves as if it were dominated by the defended type (see above), until
p1 has increased to the point that the two prey types are almost identical. At that
point there are predator–prey cycles with both prey types present (closed circles) but
these appear to be very long transients rather than indefinite coexistence: one or the
other prey type, depending on the dilution rate, is slowly driven to extinction by its
competitor.

Effects of predator age structure. As the model fitted to our experimental data and
used in prior studies includes age structure in the rotifer population, it is critical to
the relevance of the present study that the reduced model (2) exhibits similar dynam-
ics. In the full model, age structure is included by distinguishing between young,
fecund rotifers and older, senescent rotifers. Fecund rotifers gradually senesce and
cease reproductive activity at a rate λ = 0.4/day. Panels c and d in Fig. 2 shows model
dynamics with age structure in the predator and all other parameters unchanged. As
seen in Fig. 2c, the single prey model with age structure exhibits dynamics very sim-
ilar to those in Fig. 2b, where age structure is not included. Predator age structure is
generally stabilizing because senescent rotifers are a resource sink, eating prey with-
out converting them to offspring. This effect is most pronounced at low values of
δ because senescent rotifers then spend more time in the chemostat before getting
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Fig. 2 Dynamics of one- and two-prey models as a function of the palatability p of the defended prey type
and the dilution rate δ. a and b show results for the model without predator age structure (2). c and d show
results for the full model including predator age structure (as in [24,46]). a, c Dynamics of a single prey
system. Open circles show predator–prey cycles, and white space indicates equilibrium. b, d Dynamics of
a two-prey system. The model is scaled so that the vulnerable prey type has p = 1. In the model with age
structure (d), predator extinction occurs for δ > 1.5. [Key: filled circles indicate that both types coexist and
cycle together; open circles show short predator–prey cycles with only the defended type (p < 1). cross-
hatching indicates the defended and vulnerable prey coexisting at a stable equilibrium; stipples indicate
equilibrium between predator and defended prey, and white space indicates equilibrium between predator
and vulnerable type.]

washed out. Omitting age structure is therefore destabilizing: it permits cycles with
better defended prey (lower p) and eliminates entirely the stability at very low δ for
nearly all p values. Similarly, simulations of the two-prey model show that eliminating
predator age structure shifts the region of (p, δ) values giving evolutionary cycles to
higher dilution rates, and eliminates the stabilization at very low δ, but otherwise the
bifurcation diagram is unchanged.

4 Rescaling the model

We now simplify the model (1–3) by rescaling and further reducing its order. We order
the prey types so that p1 and p2 correspond to the defended and vulnerable prey types,
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respectively, p1 < p2. The cost for defense is reduced ability to compete for scarce
nutrients, so Kc(p1) > Kc(p2).

To rescale the model we make the following transformations:

S = N

NI
, xi = Ci

χc NI
, y = B

χcχb NI
, g = χbG

δ
,

m = χcρc

δ
, kb = K B

χc NI
, τ = δt. (5)

The half-saturation constants for each of the two prey types are transformed as follows,

k1 = Kc(p1)/NI , k2 = Kc(p2)/NI . (6)

Substituting these into equations (2) gives:

Ṡ = 1 − S − S
2∑

i=1

mxi

ki + S

ẋi = xi

[
mS

ki + S
− gpi y

kb + Q
− 1

]
(7)

ẏ = y

[
gQ

kb + Q
− 1

]

where

Q = p1x1 + p2x2. (8)

One more rescaling (kb → kb/p2, p1 → p1/p2) can also be done to set p2 = 1
without loss of generality. Table 2 gives values of the rescaled model parameters
corresponding to the parameter estimates in Table 1.

We can reduce the dimension of the system further by letting Σ = S + x1 + x2 + y.

From (7) we have Σ̇ = 1 − Σ, so Σ(t) → 1 quickly as t → ∞. Thus, to study the
long-term dynamics of (7), we may consider the dynamics on the invariant set Σ ≡ 1.

Table 2 Estimates of rescaled model parameters for the Chlorella-Brachionus microcosm system

Parameter Description Value

m Algal maximum per-capita population growth rate 3.3/δ

k1, k2 Algal half-saturation constants for nutrient uptake 0.054 (minimum)

g Predator maximum grazing rate 2.55/δ

kb Predator half-saturation constant for prey capture 0.21
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Then S(t) = 1 − x1(t) − x2(t) − y(t), and (7) reduces to

ẋi = xi

[
m(1 − X − y)

ki + (1 − X − y)
− gpi y

(kb + Q)
− 1

]
, i = 1, 2

(9)

ẏ = y

[
gQ

kb + Q
− 1

]

where X = x1 + x2.

5 Analysis

Our goals in this section are to find the conditions under which two prey types can coex-
ist, to determine when coexistence is steady-state versus oscillatory, and to characterize
the period of cycles and the phase relations during oscillatory coexistence and during
transients when one type is decreasing to extinction. Throughout this section we con-
sider the reduced model (9). Notation alert: we use tildes (as in ỹ) to indicate a three-
way coexistence steady state (predator and both prey types), and overbars (as in ȳ)
to indicate steady states with the predator and a single prey type. For local stability
analysis it is useful to note that the model has the form

ẋi = xiri (x1, x2, x3), i = 1, 2, 3 (10)

with x3 = y. It follows that at any equilibrium where the xi are all positive (and hence
the ri are all 0) the Jacobian matrix J has entries

J (i, j) = x̃i
∂ r̃i

∂x j
(11)

with the tilde indicating evaluation at the equilibrium with all xi present. It is also use-
ful for local stability analysis that the determinant of (11) is always negative unless
p1 = p2 (Appendix D).

In this section we first briefly consider the dynamics of a system with one prey.
We then use these results to analyze the dynamics of a system with two prey types,
focusing on the conditions under which evolutionary cycles occur and the proper-
ties of those cycles. Because this section is necessarily technical and long, at the end
(Sect. 5.4) we give a verbal summary of the results and their interpretation.

5.1 Dynamics of a one-prey system

We need first some properties of the one-prey model

ẋ = x

[
m(1 − x − y)

k + (1 − x − y)
− gpy

(kb + px)
− 1

]

(12)

ẏ = y

[
gpx

kb + px
− 1

]
.
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This is a standard predator–prey chemostat model and its behavior is well-known, so
we summarize here only the results that we will need later; see e.g., [40] for derivations
and details.

In the absence of predators, the steady state for this system is E0 = (1 − Λ, 0),

where

Λ = k

m − 1
. (13)

Λ is the scaled concentration of limiting nutrient at which prey growth balances wash-
out rate, so that ẋ = 0. Similarly, steady state densities for each prey type in a
predator-free two clone system are

Ei = (1 − Λi , 0) where Λi = ki

m − 1
.

The steady state for the prey in the presence of the predator is

x̄c = kb

p(g − 1)
; (14)

x̄c is the prey density at which the predator birth and death rates are equal. The
model (12) has an interior equilibrium point Ec = (x̄c, ȳc) representing predator–prey
coexistence if

Λ + xc < 1 (15)

[40], and otherwise the predator cannot persist. The system then collapses to the prey
by itself and converges to E0. Condition (15) says that there is an interior equilibrium
if the prey by themselves reach a steady state (1 − Λ) that provides enough food so
that the predator birth rate exceeds the predator death rate.

The expression for the steady state of the predator, yc, is easily obtained from (12):

ȳc = σ̄ − x̄c, where σ̄ = (x̄c + ȳc) = 1

2

[
γ −

√
(γ 2 − 4mx̄c)

]
, (16)

with γ = k + 1 + mx̄c. Similarly, the steady-state densities for the predator in a
single-prey system with either prey type, ȳi , are found by substituting the steady state
for the prey, x̄i , in place of x̄c and the appropriate half-saturation ki in place of k in
(16).

We can use (15) to derive the condition for predator-prey coexistence in terms of
the prey defense trait p and the dilution rate δ, recalling that Λ and xc are both implicit
functions of δ. Using (13) and (14) we obtain from (15)

k

m(δ) − 1
+ kb

pg(δ) − 1
< 1, or p >

1

1 − Λ

(
kb

g(δ) − 1

)
. (17)
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Note that the quantity within parenthesis above is the amount of substrate present in
perfect food (undefended prey with p = 1). Solving (17) for δ in terms of p yields the
boundary between predator extinction and stable coexistence in Figure 3. To the left
of this line, the predator goes extinct and the equilibrium is E0. As the left-hand side
of the second expression in (17) is an increasing function of p, and the right-hand side
is an increasing function of δ, the range of p values yielding coexistence narrows as
δ increases (see Fig. 3).

As in the standard Rosenzweig–MacArthur predator–prey model, the stability con-
dition has a graphical interpretation in terms of the nullclines. The prey nullcline is a
parabola which peaks at

x∗ = 1

m

[
1 − k + √

Λ(m − 2)
]
. (18)

The coexistence equilibrium is locally unstable if the peak of the prey nullcline is to
the right of the predator nullcline (i.e., if x∗ > x̄c). Note that a system with defended
prey (p < 1) is always more stable than a system with fully vulnerable prey (p = 1)
as reductions in p shift the predator nullcline to the right.

From (11) the Jacobian of (12) at Ec has the form

Jc =
[

x̄c
∂r̄1
∂x −

+ 0

]
(19)

so Ec is locally stable if the trace Tr(Jc) = x̄c
∂r̄1
∂x is negative. Cycles emerge through

a Hopf bifurcation when the trace becomes positive. The condition Tr(Jc) ≥ 0 is
equivalent to the following expression for model (12):

mk

(k + 1 − x̄c − ȳc)2 ≥ gp2 ȳc

(kb + px̄c)2 (20)

[40]. Cycles begin when the rates of change in prey substrate uptake (LHS) and in
predator consumption (RHS) with respect to the amount of substrate present as prey
(x) are exactly equal. Numerically solving (20) for δ in terms of p yields the boundary
between stable coexistence and predator–prey cycles in Figure 3. It is known that these
cycles are stable and unique near the Hopf bifurcation, and numerical evidence uni-
formly indicates that they are always unique and attract all interior initial conditions
except Ec [40].

5.2 Stability and dynamics of a two-prey system

System (9) has two prey types ordered so that 0 < p1 < p2 = 1. We refer to prey 1
as the defended type and prey 2 as the vulnerable type. The cost for defense comes in
the form of reduced growth rate, 1/k1 ≤ 1/k2.

Following Abrams [2], we begin by finding the conditions for existence of an equi-
librium (x̃1, x̃2, ỹ) at which all three population densities are positive; we refer to this
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Fig. 3 Bifurcation diagram for
the rescaled, reduced clonal
model with one prey type
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as a coexistence equilibrium. Setting (9) to zero and solving gives expressions for X̃ , Q̃
and ỹ in terms of model parameters (see Appendix C; as above Q = p1x1 + p2x2
is the total prey quality, and X = x1 + x2 is the total prey density). The prey steady
states x̃1, x̃2 are then

[
x̃1
x̃2

]
= 1

p2 − p1

[
p2 X̃ − Q̃
Q̃ − p1 X̃

]
. (21)

where

Q̃ = kb

g − 1
. (22)

A coexistence equilibrium thus exists provided X̃ > 0 and p1 X̃ < Q̃ < p2 X̃ , or

p1 <
Q̃

X̃
< p2. (23)

Beyond the above, system (9) does not yield tidy analytical solutions for the steady
states at coexistence. To study how parameter variation affects coexistence, we start by
graphically mapping the region where a coexistence equilibrium exists as a function
of the defended clone’s parameters, p1 and k1 (Fig. 4), without regard to whether or
not the equilibrium is locally stable. The coexistence region also varies with δ, but
selecting several δ values of interest gives a general sense of how the coexistence
region varies as a function of dilution rate.

The lower boundary of the coexistence region occurs when the cost of defense is so
high that the equilibrium density of the defended prey x1 drops to zero while x2 and y
remain positive. Recalling the general form (10), the lower boundary is thus defined
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Fig. 4 Prey coexistence equilibria. The shaded regions indicate parameters (p1, 1/k1) for prey type 1
giving a coexistence equilibrium (stable or unstable) with the vulnerable prey type p2 = 1. At δ = 1.5
a Prey type 2 cycles, and at δ = 2.0. b Prey type 2 is stable. A solid point on the p1 axis marks p1 = p∗
in each panel. The dashed lines show a representative tradeoff curve (4), assuming roughly 50% reduction
in growth rate as the cost of being 100% defended. Here kc = 0.054, α1 = 1.0, and α2 = 0.05. In a the
dash-dotted line delimits where the defended type can invade the limit cycle of the predator and vulnerable
prey type. For k1 sufficiently small (i.e., above the line) the defended prey type can invade the limit cycle,
below the line it cannot invade

by the conditions

r1(0, x2, y) = r2(0, x2, y) = r3(0, x2, y) = 0 with x2 > 0, y > 0.

The conditions on r2 and r3 are satisfied by the steady state E2 = (0, x̄2, ȳ2) for a
one-prey system with only the vulnerable prey. The lower boundary of the coexistence
region is then defined by the condition r1(0, x̄2, ȳ2) = 0, which can be written as

1

k1
= 1

1 − x̄2 − ȳ2

[
ȳ2 p1 + x̄2

x̄2(m − 1) − ȳ2 p1

]
. (24)

The upper boundary of the coexistence region occurs when the cost of defense
is so low that the defended prey (at the equilibrium density) drives one of the other
populations to extinction. In Sect. 6 we show that for p1 < p∗ = Q̃/x̄2, the predator
goes extinct first (ỹ → 0) as k1 decreases, because the defended prey (at steady state)
drives the vulnerable prey to low abundance and the defended prey is very poor food.
This occurs at k1 = k2 (zero cost of defense). For p1 > p∗, the vulnerable prey
type is outcompeted by the defended type before k1 has reached k2. This boundary is
therefore defined by the conditions

r1(x1, 0, y) = r2(x1, 0, y) = r3(x1, 0, y) = 0 with x1 > 0, y > 0.

The conditions on r1 and r3 are solved by the one-prey steady state E1 = (x̄1, 0, ȳ1), so
the condition r2(x̄1, 0, ȳ1) = 0 defines the upper boundary of the coexistence region
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for p > p∗. The upper boundary of the coexistence region is thus the curve

1

k1
= min

[
1

k2
,

1

ϕ(x̄1, ȳ1)

]
(25)

where ϕ is value of k1 that solves

m(1 − x̄1 − ȳ1)

k2 + (1 − x̄1 − ȳ1)
− ȳ1 + p1 x̄1

(p1 x̄1)
= 0, (26)

noting that x̄1 and ȳ1 are functions of k1 and p1. The two segments of the upper
boundary defined by (25) meet at the point

p1 = p∗ = Q̄

x̄2
= Q̄

1 − Λ2
, k1 = k2.

As δ → 0 (with the parameter scalings in Table 2), Q̄ → 0 and Λ2 → 0, thus
p∗ → 0. So as δ → 0 there typically an increasingly narrow band of p1 values for
which a p1 − k1 tradeoff curve lies in the coexistence equilibrium region, unless by
chance the tradeoff curve lies exactly inside the cusp of the coexistence equilibrium
region.

As p1 → 1, the upper and lower boundaries of the coexistence region meet at
p1 = p2 = 1, k1 = k2 (Fig. 4). That is, if the two prey are almost equally vulnerable
to predation, they can only coexist at equilibrium if a tiny bit of defense has a tiny
cost. To prove that this occurs, we show that the point p1 = 1, k1 = k2 lies on both
boundaries. At this point the two prey are identical so x̄1 = x̄2 and ȳ1 = ȳ2.

The upper boundary is defined by r2(x̄1, 0, ȳ1) = 0. At p1 = 1 and k1 = k2,
r2(x̄1, 0, ȳ1) = r2(x̄2, 0, ȳ2) = r2(0, x̄2, ȳ2) = 0, thus p1 = 1, k1 = k2 lies on the
upper boundary.

The lower boundary is defined by r1(0, x̄2, ȳ2) = 0. At p1 = 1 and k1 = k2,
r1(0, x̄2, ȳ2) = r1(0, x̄1, ȳ1) = r2(x̄1, 0, ȳ1) = 0, which shows that p1 = 1, k1 = k2
also lies on the lower boundary. Thus both boundaries converge to k1 = k2 as p1 → 1.

5.3 Local stability analysis

To characterize two-prey evolutionary cycles we need to find the bifurcation curves
in parameter space where these cycles arise. The “empirical facts” are summarized
in Fig. 5, based on numerical evaluations of the Jacobian and its eigenvalues within
the coexistence equilibrium region. In Fig. 5 we change the stability of the (predator +
vulnerable prey) system by varying the value of δ, but the results are qualitatively the
same if other parameters are varied instead (e.g., varying the prey maximum growth
rates).

The stability properties in Fig. 5 explain the major qualitative features of the
two-prey model’s bifurcation diagram (Fig. 2d). To see the connection, recall that
a horizontal (constant δ) slice through Fig. 2d corresponds to a tradeoff curve between
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Fig. 5 Stability of coexistence equilibria for the reduced two-prey model. In each panel, the horizontal
axis is the palatability p1 of the defended prey with the model scaled so that p2 = 1. To remain consistent
with Abrams (cf. [2], Figs. 1–3) the vertical axis is 1/k1, scaled so that 0 and 1 correspond to the lower and
upper limits of the coexistence equilibrium region (Fig. 4). The Jacobian matrix and its eigenvalues were
evaluated at an even 50 × 100 grid of values. Lighter gray indicates that the equilibrium is stable, darker
gray that it is unstable; in all cases the computed eigenvalues with largest real part are a complex conjugate
pair. A solid semicircle on the p1 axis marks p1 = p∗, the value where the straight and curved segments of
the upper limit of the coexistence equilibrium region meet. The dashed curve in panels a and b is the tradeoff
curve k1 = kc + α2(1 − p1)α1 , with kc = k2 = 0.054, α1 = 1; α2 = 0.05 at p1 values lying within
the coexistence equilibrium region. The dash-dotted line represents the minimum 1/k1 values at which the
defended prey can invade the (predator + vulnerable prey) limit cycle (see Appendix E). Parameter values
for these plots are as follows: a δ = 1.5; b δ = 1.75; c δ = 2.0. All other parameters are unchanged
and are as shown in Table 2. To the right of a is a key to the dynamics shown in this figure: 1 predator
+ vulnerable prey cycle, and their limit cycle is invasible ⇒ evolutionary cycling; 2 stable coexistence
equilibrium; predator + vulnerable prey limit cycle is invasible ⇒ steady state coexistence of three types; 3
stable coexistence equilibrium; predator + vulnerable prey limit cycle is not invasible ⇒ multiple attractors
(coexistence steady state, classic predator–prey cycles); and 4 predator + vulnerable prey cycle, and their
limit cycle is not invasible ⇒ classic predator–prey cycles

p1 and k1 in the panel of Fig. 5 with the same value of δ. Panel a of Fig. 5 has δ = 1.5.
When p1 is near 1, the tradeoff curve lies above the coexistence equilibrium region,
and the defended prey type eventually outcompetes the vulnerable type. For p1 very
close to 1 the prey types are very similar, and the vulnerable type persists for a long
time. The system exhibits “classical” predator–prey cycles as if a single prey-type were
present, even though two types are transiently coexisting. For p1 somewhat smaller,
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the vulnerable type is quickly eliminated and there are either classical cycles with only
the defended type (open circles in Fig. 2d), or (for lower values of p1) the defended
prey type goes to a stable equilibrium with the predator (open triangles in Fig. 2d). As
p1 decreases further, Fig. 5a shows that the tradeoff curve enters the coexistence region
in the area where the coexistence equilibrium is stable, so the system then exhibits
stable coexistence (cross-hatching in Fig. 2d). Finally, as p1 decreases towards 0, the
tradeoff curve enters the area where the coexistence equilibrium is unstable, and it
lies above the dash-dot curve marking the k1 value required for the defended prey
type to invade the vulnerable prey’s limit cycle with the predator. The system exhibits
evolutionary cycles with both prey types persisting (filled circles at p ≈ 0 in Fig. 2d).

Figure 5a also shows that there is a region of parameters (below the dash-dot curve)
where the coexistence equilibrium is stable and the system therefore has coexisting
attractors: a locally stable coexistence equilibrium, and a locally stable limit cycle
with the predator and the vulnerable prey.

Figure 5b, which has δ = 1.75, shows the same sequence of transitions as Fig. 5a,
but each occurs at higher values of p1, reflecting the stabilizing effect of increased
washout. This is reflected in Fig. 2d: increasing δ above 1.0 shifts all the bifurca-
tion boundaries to higher p values, but the sequence of bifurcations as p decreases is
unchanged. However for δ sufficiently high (panels c and d in Fig. 5), the tradeoff curve
lies either below the coexistence equilibrium region or within the region where the
coexistence equilibrium is stable, so evolutionary cycles never occur. Instead, there is
either stable coexistence of the two prey with the predator, or classical predator–prey
cycles with only the vulnerable prey type.

Evolutionary cycles are also eliminated—but for a different reason—as δ ↓ 0 in
Fig. 2d. As noted above, as δ ↓ 0 we also have p∗ ↓ 0, so unless p1 ≈ 0 the trade-
off curve lies above the coexistence equilibrium region and only the defended prey
persists with the predator, cycling at higher p1 and stable at lower p1. Only very near
p1 = 0, a region tiny enough to be missed by our simulation grid in Fig. 2, can there
be coexistence of both prey with the predator.

Stability on the edges. We can gain some understanding of the patterns in Fig. 5,
and see that they are not specific to the parameter values used to draw the figure, by
examining the limiting cases that occur along the edges of the coexistence equilibrium
region. One general conclusion (explained below) is that the bottom and right edges,
and the right-hand portion of the top edge, all must have the same stability as the
reduced system with the predator and only the vulnerable prey (prey type 2). However
even if this system is unstable, there must be a region along the top edge where the
coexistence equilibrium is stable.

The Jacobian matrix that determines equilibrium stability is derived in Appendix D.
We also show there that the determinant of this Jacobian is always negative at a coex-
istence equilibrium unless p1 = p2, so the coefficient c0 = − det(J ) in the Routh–
Hurwitz stability criterion for 3-dimensional systems is always positive.

Bottom and right edges Near the bottom and right edges, the coexistence equilibrium
has the same local stability as the (predator + vulnerable prey) subsystem (panels a
and b versus c and d in Fig. 5). The bottom edge is the lower limit of the coexistence
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equilibrium region, where x̃1 → 0. The coefficients for the Routh–Hurwitz stability
criterion (see Appendix B) are then

c0 = − det(J ) > 0, c1 = T2(J ) → δ2, c2 = −T (J ) → −τ2 (27)

where δ2 and τ2 are the determinant and trace, respectively, of the 2 × 2 Jacobian for
the (predator + vulnerable prey) system, and T2 is the sum of all order-2 principal
minors (Appendix B). If this one-prey system is stable then δ2 > 0, τ2 < 0 so c0, c1
and c2 are all positive. Moreover c0 = O(x̃1) (see Appendix D), so when x̃1 is small
we have c1c2 > c0 and the equilibrium is stable. Conversely if the steady state for
the (predator + vulnerable prey) system is unstable, c2 is negative so the full system
is also unstable.

The right edge corresponds to the cusp in the coexistence region as p1 → 1. Near
the cusp the two prey become increasingly similar (p1 ≈ p2 = 1, k1 ≈ k2). Using
(11), the functional forms of the ri (10) and the fact that p1 ≈ p2 imply that the form
of J is approximately

J0 =
⎡

⎣
aq aq −qb

a(1 − q) a(1 − q) −(1 − q)b
c c 0

⎤

⎦ (28)

where q = x̃1/(x̃1 + x̃2); even if p1 is near p2, it is not necessarily the case that
x̃1 is close to x̃2. In (28) b and c are positive while a has the sign of ∂r1/∂x1 which
may be positive or negative. One eigenvalue of J0 is 0, corresponding to the dynamics
of x1 − x2. The others are 1

2 (a ± √
a2 − 4bc), which are also the eigenvalues of a

single-prey system at the coexistence steady state. Thus, the two-prey system with
p1 ≈ p2 = 1 “inherits” two eigenvalues from the one-prey system with p = 1.

When the one-prey system with p = 1 is cyclic, the inherited eigenvalues are a
complex conjugate pair. In the corresponding eigenvectors, the components for the two
clones are identical when p1 = p2. This implies that when p1 ≈ p2 the eigenvector
components will be similar, so the two prey types cycle almost exactly in phase. The
period of these oscillations is determined by the inherited eigenvalues, so it is close
to the period of the corresponding one-prey system.

When the one-prey system is stable, the Routh–Hurwitz criterion (Appendix B),
using J0 to approximate trace(J ) and T2(J ) and the fact that det(J ) < 0 for p1 �= p2,
implies that the full system will also be stable. Therefore, a coexistence equilibrium
with two nearly identical prey has the same stability as the equilibrium for the cor-
responding one-prey systems. During damped oscillations onto a stable coexistence
equilibrium, or diverging oscillations away from an unstable one, the clones will
oscillate nearly in phase with each other and inherit the cycle period of the one-prey
system.

Top edge The rightmost portion of the top edge also corresponds to the cusp in the
coexistence equilibrium region, so the stability here is also the same as that of the
(predator + vulnerable prey) system. In general, as 1/k1 approaches the upper limit of
the coexistence equilibrium region when p1 > p∗ (the curved portion), the stability
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of the two-prey system approaches that of the (predator + defended prey) system with
1/k1 approaching 1/k2. This must be stable if the (predator + vulnerable prey) sys-
tem is stable, because the defended prey is always more stable, as noted above. If the
(predator + vulnerable prey) system cycles, then there will be instability as p1 → 1
along the top edge.

However, there is always stability near the top edge for p1 → p∗, as follows.
Along the straight portion of the top edge (p1 < p∗), as 1/k1 approaches the edge,
the coexistence equilibrium converges to a limit with ỹ = 0, while along the curved
portion the limiting coexistence equilibrium has x̃2 = 0. So near their intersection at
p1 = p∗, both x̃2 and ỹ approach 0. Condition (20) then implies that the (predator +
defended prey) system is stable, so the coexistence equilibrium is stable near the top
edge for p1 just above p∗. By continuity, there is an open region of (p1, k1) values
near p1 = p∗, k1 = k2 where the coexistence equilibrium is locally stable. If the
(predator + vulnerable prey) system is only weakly unstable then this stability region
may be quite large (Fig. 5b), but it cannot reach either the bottom or right edges.

Left edge Finally, consider the left edge at p1 = 0. The steady states simplify to

x̃1 = 1 − Z̃ − x̃2 − ỹ, x̃2 = Q̃ = kb

g − 1
, ỹ = Q̃(m − 1)

(k1 − k2)

k1 + k2(m − 1)
(29)

where Z̃ = k1
m−1 . The coexistence equilibrium exists for ϑ < 1

k1
< 1

k2
where ϑ is the

value of 1/k1 that solves x̃2 + ỹ + Z̃ = 1, noting that ỹ depends on k1. The Jacobian
matrix at (29) is

J =
⎡

⎣
−a1 x̃1 −a1 x̃1 −a1 x̃1

−a2 x̃2 (−a2 + gỹF2)x̃2 −(a2 + gF)x̃2

0 gkb ỹF2 0

⎤

⎦ (30)

where setting p1 = 0 and p2 = 1 gives F = 1
kb+x̃2

and

ai = mki

(ki + Z̃)2
. (31)

Near the lower limit of the left edge, we know that the system inherits the stability
of the (predator + vulnerable prey) system. Above the lower limit we can use the
Routh–Hurwitz criterion (Appendix B) to determine stability. The coefficients c0 and
c1 have common factor x̃2gF2 > 0. Dividing this out gives modified coefficients

c̃0 = a1 x̃1gkb F > 0, c̃1 = kb(a2 + gF) − a1 x̃1, c̃2 = a1 x̃1 + x̃2(a2 − gỹF2)

(32)

and the stability conditions remain the same: c̃0, c̃1, c̃2 > 0, c̃1c̃2 > c̃0. Extensive
numerical evaluations of the coefficients as δ is varied indicate that loss of stability
occurs when the condition c̃1c̃2 − c̃0 > 0 is violated—the equilibrium is stable if this
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condition holds and unstable if it fails. Assuming this is true, loss of stability along
the left edge occurs via a Hopf bifurcation (Appendix B). Global persistence results
for the model with p1 = 0 were obtained by Butler and Wolkowicz [12].

5.4 The structure of evolutionary cycles

The stability analysis above delimits the situations in which evolutionary cycles occur.
As illustrated in Fig. 5a, they arise when the p1 versus k1 tradeoff curve passes (with
decreasing p1) from the region of stable coexistence equilibria near p1 = p∗, k1 = k2
to the region of unstable coexistence equilibria with p1 ≈ 0. For 1/k1 below the
dash-dot curve in Fig. 5a, the defended prey cannot invade the vulnerable prey–pred-
ator limit cycle (see Fig. 6). As 1/k1 increases, the defended prey becomes persistent
and then increases in average abundance. As 1/k1 → 1/k2 the characteristic features
of evolutionary cycles emerge: longer cycle period and out-of-phase oscillations in
predator and total prey abundance.

To understand the phase relations on evolutionary cycles, we need to examine the
dominant eigenvector of the Jacobian matrix for the unstable fixed point (Fig. 7). There
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Fraction of defended prey: Average (defended/total)

Fig. 6 Contour plot of the long-term average fraction of defended prey. The horizontal axis is the palatabil-
ity p1 of the defended prey, with the model scaled so that p2 = 1. The vertical axis represents 1/k1, with 0
and 1 corresponding to the lower and upper limits of the coexistence equilibrium region (Fig. 4). Numerical
solutions of the model were used to compute the long-term average value of x1/(x1 + x2) for parameter
values such that the (predator + vulnerable prey) system (same parameter values as panel a of Fig. 5). In
the lighter-gray region the coexistence equilibrium is stable. In the darker-gray region the equilibrium is
unstable. The vertical black line is at p1 = p∗, the value where the straight and curved segments of the
upper limit of the coexistence equilibrium region meet. The dash-dot line is the minimum 1/k1 value at
which the defended prey can invade the (predator + vulnerable prey) limit cycle. Parameter values are as in
Table 2 with δ = 1.0
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is a codominant pair of complex conjugate eigenvalues, and (because det(J ) < 0 )
the third eigenvalue is real and negative. When the defended prey has very low pal-
atability, the predator and the vulnerable prey have the classical quarter-period phase
lag. Here the phase angle is 90◦; because eigenvectors are only defined up to arbitrary
scalar multiples, including arbitrary rotations in the complex plane from multiplication
by eiθ , only the relative phases of eigenvector components are meaningful. As 1/k1
increases, the eigenvector components for the two prey types become out of phase
with each other (≈ 180◦ phase angle, right column of Fig. 7). As a result, the predator
and total prey densities are out of phase with each other.

In the next section we show that these phase relations become exact as the limit
1/k1 → 1/k2 is approached, for a general version of the model which does not specify
the functional forms of the predator and prey functional responses.

The four “right angle” phase relations that arise as the cost of defense becomes
vanishingly small explain the most obvious qualitative feature of evolutionary cycles.
Specifically, it implies that predator and prey densities are exactly out of phase, in
a way that cannot occur in a standard predator–prey model without prey evolution
because it would violate existence and uniqueness of solutions. In the next section, we
show mathematically that these phase relations become exact as the cost of defense
drops to zero, for a general version of the model in which we do not specify the func-
tional forms of the predator and prey functional responses. Analysis of the general
model also provides explanations for the long period of evolutionary cycles, and for
the emergence of “cryptic cycles” (as in Fig. 1b) when the cost of defense is low. The
transition from evolutionary to cryptic cycles is gradual, with cycle period lengthening
and variability in total prey decreasing as the cost of defense decreases. The next sec-
tion is the most technical in the paper, and it can be skipped on first reading. The main
conclusion is as summarized above: the important features of evolutionary cycles are
a consequence of the biologically realistic (but rarely made) assumption that effective
defense can be cheap.

6 Evolutionary cycles in a general two-prey model

In this section we analyze the limiting properties of evolutionary cycles, for p1  1
and low cost to defense, without specifying the functional forms of the prey and
predator functional responses. We consider a two-prey, one-predator model that (after
rescaling) can be written in the form

ẋi = xi ( f (X, y, θi ) − pi yg(Q)) , i = 1, 2

ẏ = y (Qg(Q) − d) (33)

where X = x1 + x2 is the total density of prey and Q = p1x1 + p2x2 is the total prey
quality as perceived by the predator. The key assumption in (33) is total niche overlap
in the prey types (e.g., because they are two clones within a single species), which
is reflected in f being a function of X . To model the trophic relations, f is assumed
to be strictly decreasing in X and nonincreasing in y, and h(Q) = Qg(Q) is strictly
increasing in Q. Specific examples of the general model (33) include the two-prey,
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Fig. 7 Coexistence of edible and defended prey on a limit cycle. Parameter values for all plots were
δ = 0.9, m = 3.3/δ, g = 2.3/δ, k2 = 0.05, kb = 0.2, p2 = 1, p1 = 0.08. Values of k1 were 0.4 (top
row), 0.1 (center row) and 0.055 (bottom row). In each row the leftmost panel shows the dynamics of total
prey and predator densities, the center panel shows the dynamics of the two prey types, and the rightmost
panel shows the phases of the Jacobian dominant eigenvector components: 1 defended prey, 2 edible prey,
3 predator, 4 total prey
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one-predator chemostat model analyzed in the previous section of this paper, and the
Abrams–Matsuda model [1], which is a two-prey version of the classic Rosenzweig–
MacArthur model with Lotka–Volterra competition between the prey.

In (33), let θ be some parameter affecting the ability of the prey to compete for
nutrients. We assume that f is increasing in θ . Then to simplify notation and without
loss of generality we take θ to be the steady-state density for a single prey type in the
absence of predators, i.e.,

f (θ, 0, θ) = 0. (34)

As usual we take p1 < p2 = 1. We therefore assume that θ1 < θ2 because of the
tradeoff between defense and competitive ability.

In the chemostat model, the situation giving rise to evolutionary cycles is when
θ1 ↑ θ2 with p1  1. Evolutionary cycles are generated by the following two
properties:

1. There is a positive coexistence equilibrium with x̃1, x̃2 converging to positive
limits while ỹ → 0 as θ1 ↑ θ2;

2. The coexistence equilibrium is a spiral for θ1 ≈ θ2.

In Appendix F we show that these properties of the chemostat model also hold in the
general model (33) for p1 sufficiently small and θ1 sufficiently near θ2. Evolution-
ary cycles then occur whenever the coexistence equilibrium is unstable. Evolutionary
cycles are thus a general property of (33) rather than a special property of the chemostat
model.

To determine the limiting phase relations as θ1 ↑ θ2, we need to find the eigen-
vector corresponding to the dominant eigenvalue with positive imaginary part. The
relative phase angles of this eigenvector’s components (in the complex plane) corre-
spond to the phase lags between the corresponding state variables in solutions to the
linearized system near the steady state (see Appendix A). The Jacobian for (33) in the
limit θ1 ↑ θ2 is

J0 =
⎡

⎣
x̃1 f̃ X x̃1 f̃ X x̃1 fy − p1 x̃1g̃
x̃2 f̃ X x̃2 f̃ X x̃2 fy − x̃2 g̃

0 0 0

⎤

⎦ . (35)

The characteristic polynomial of (35) factors to show that the eigenvalues of (35) are
fX (x̃1 + x̃2) < 0 and 0 as a repeated root. The eigenvector for the negative eigenvalue
is (x̃1, x̃2, 0), and for 0 there is the unique eigenvector (1,−1, 0). The zero eigenvalue
therefore has algebraic multiplicity 2 and geometric multiplicity 1.

To determine the limiting phase relations in evolutionary cycles consider a small
perturbation off the limit of the defended prey parameters, θ1 = θ2 − ε. For ε small,
we show in Appendix F that the double-zero eigenvalue is perturbed to a complex
conjugate pair of eigenvalues. To study cycles we assume that the eigenvalues have
positive real part. That is, near the double-zero root the (scaled) characteristic poly-
nomial is perturbed to leading order from p(z) = z2 to p(z) = (z − εa)2 + εb2 for
some b > 0. The perturbed eigenvalues therefore have O(ε) real part and imaginary
parts ±√

εbi to leading order (here i = √−1).
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We need to determine the corresponding perturbed eigenvectors. Let w0 denote the
unperturbed eigenvector (1,−1, 0), and let w0 + we be a perturbed eigenvector cor-
responding to the complex eigenvalue with positive imaginary part, scaled so that its
first component is 1. The first component of we is therefore 0. The perturbed Jacobian
is J0 + ε J1 for some matrix J1. Then

(J0 + ε J1)(w0 + we) = √
εbi(w0 + we) + O(ε). (36)

Using J0w0 = 0 and keeping only leading-order terms, gives

J0we = √
εbiw0. (37)

Let we = (0, w2, w3); then writing out (37) in full, w2 and w3 satisfy

[
x̃1 fX x̃1 fy − p1 x̃1g̃
x̃2 fX x̃2 fy − x̃2 g̃

] [
w2
w3

]
= √

εbi

[
1

−1

]
. (38)

w2 and w3 must be purely imaginary, because the unique solution to the real part of
(38) is (0, 0). Writing w j = (

√
εbi)z j and solving for the z’s, we find that z2 < 0 and

z3 > 0; specifically

[
z2
z3

]
∝

[
(x̃1 + x̃2) fy − (p1 x̃1 + x̃2)g̃

−(x̃1 + x̃2) fX

]
=

[
X̃ fy − d
−X̃ fX

]
(39)

using the fact that (from the second line of (33))

Q̃g(Q̃) = d. (40)

So to leading order the eigenvector corresponding to eigenvalue
√

εbi + o(
√

ε) is

w0 + we =
⎡

⎣
1

−1 − √
εBi√

εCi

⎤

⎦ for some B, C > 0. (41)

Now we add total prey as a fourth state variable to the system. The corresponding
eigenvector component is the sum of the first two components in (41) (see
Appendix A):

⎡

⎢⎢⎣

1
−1 − √

εBi√
εCi

−√
εBi

⎤

⎥⎥⎦ (42)

We can multiply each component of (42) by an arbitrary real constant without affect-
ing the phase angles, so we can consider instead

(
1,−1 − √

εBi, i,−i
)T

. Then as
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ε → 0 the vector giving the relative phases for prey 1, prey 2, predator, and total prey
becomes

[1 − 1 i − i]T . (43)

The components of the limiting phase-angle vector (43) lie exactly on the coordinate
axes. The two prey types (first and second eigenvector components) are exactly out
of phase; the predator and total prey (third and fourth components) are exactly out of
phase; and there is a quarter-period lag between the vulnerable prey and the predator.
This holds in the limit θ1 → θ2 for p1 < p∗ such that the coexistence equilibrium
remains is an unstable spiral when θ1 < θ2.

The occurrence of cryptic cycles (Fig. 1b) is explained by the asymptotic eigenvec-
tor (42) and the fact that x̃1, x̃2 converge to positive limits while ỹ → 0. Together they
imply that the coefficient of variation in density over a complete cycle drops to zero
for total prey, while remaining bounded above zero for the two prey types individually
and increasing for the predator. The long period of evolutionary and cryptic cycles is
explained by the zero eigenvalue for (35). The dominant eigenvalues for the coexis-
tence equilibrium are a complex–conjugate pair (because of property 2 above) which
converge on a double-zero root as θ1 ↑ θ2. The cycle period near the equilibrium is
inversely proportional to the imaginary part of the dominant eigenvalues. As θ1 ↑ θ2,
the imaginary part of the dominant eigenvalues remains positive but becomes increas-
ingly small, so cycles near the equilibrium have longer and longer period that increases
without limit as θ1 ↑ θ2. See [48] for further details and data analyses supporting these
predictions.

7 Discussion

The model studied in this paper is three dimensional, with a few fairly tame non-
linearities—just like the Lorenz equations. So it is not surprising that a complete
mathematical analysis of it has not been possible. Nonetheless, we have come a long
way towards our goal of characterizing how and when rapid evolution can affect the
ecological dynamics resulting from predator–prey interactions.

Our primary questions concern the generality of the phenomenon of “evolutionary”
limit cycles in predator–prey interactions, and the conditions in which such cycles
might be observed. A combination of analysis and numerical studies suggests that
evolutionary dynamics are not omnipresent, but neither are they knife-edge phenom-
ena existing only in a narrow range of parameter values. Instead, the types of cycles
observed by Yoshida et al. [46,48] are both robust and general. They occur in a spe-
cific but substantial and biologically relevant region of the parameter space, and in a
general class of predator-two prey models that includes a two-prey model with Lotka–
Volterra prey competition terms [1,2,26], and the standard two prey chemostat model
[12,24,46] with mechanistic modeling of resource competition between the prey.

We have shown that evolutionary cycles arise through a bifurcation from a stable
coexistence equilibrium, that occurs when defense against predation remains relatively
inexpensive but nevertheless becomes very effective. Cryptic population dynamics,
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where the predator cycles but the total prey density remains nearly constant, occur as
a limiting case when effective defense comes at almost zero cost [48]. These regions
in parameter space are biologically relevant because empirical studies have shown
that defense—be it against predation or against antimicrobial compounds—can arise
quickly and can be both highly effective and very cheap [3,17,47]. For example,
Gagneux et al. [17] showed that in laboratory cultures of Mycobacterium tuberculosis
(TB) mutants, prolonged treatment with antibiotics results in multi-drug resistant
strains of TB with no fitness costs for resistance, and furthermore that most naturally
circulating resistant TB strains are either low or no cost types. Indeed, fitness tradeoffs
in the production of defensive structures and compounds are notoriously difficult to
demonstrate, and in many empirical studies, no fitness tradeoff was actually found
[3,9,41].

We close by listing some open questions. “Proving things is hard” (H. Smith, per-
sonal communication), but others may succeed where we have not. Concerning the
model in this paper,

– When does the Jacobian at a coexistence equilibrium have a pair of complex con-
jugate eigenvalues? There will be 3 real, negative eigenvalues if the two prey types
are very similar and the interior equilibrium for the (predator + vulnerable prey)
exists and is a stable node. However, our numerical results suggest the full sys-
tem (at a coexistence equilibrium) has complex conjugate eigenvalues whenever
the (predator+vulnerable prey) system has an interior equilibrium with complex
conjugate eigenvalues.

– Can there be coexistence of the predator and both prey on a limit cycle or other
attractor, even when there is no coexistence equilibrium? Numerical evidence sug-
gests that the answer is “no” for the chemostat model: for k1 below (above) the
range of values at which a coexistence equilibrium exists, the defended (vulner-
able) prey type outcompetes the other. As it is difficult to distinguish between
persistence and slow competitive exclusion numerically, it is likewise hard to map
reliably the parameter region where both prey coexist on a nonpoint attractor.

– On the bifurcation curve 0 ≤ p1 ≤ p∗, k1 = k2, the Jacobian of the general model
(33) has zero as a double root with algebraic multiplicity 2 and geometric multi-
plicity 1. Generically, this situation gives a Takens–Bogdanov bifurcation [27]. Do
the higher order conditions for Takens–Bogdanov (i.e., BT.1–BT.3 in Theorem 8.4
of [27]), which hold generically, hold for our model (2)?

– A general two-prey, one-predator chemostat can exhibit a wider range of dynamic
behaviors than we have observed in a system where the prey differ only in their
p and k values (see [44] and references therein). Indeed, these predicted dynam-
ics have been observed in other experimental systems [8]. The absence of some
dynamics from our system could indicate a qualitative difference between within-
species evolutionary dynamics resulting from prey genetic diversity, and food-web
dynamics with one predator feeding on a several prey species whose within-spe-
cies heritable variation is much smaller than the functional differences among
prey species. But another possibility is that more complex dynamics can occur, at
parameters outside the range we have explored.
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More generally, how robust are the phenomena of evolutionary and cryptic predator–
prey cycles in more complex food webs involving multiple predator and prey species?
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Appendices

Appendices A and B summarize some general results useful to us here, and contain
nothing original. In Appendix C we derive the expressions for coexistence steady
states in the reduced and rescaled two-prey chemostat model, and in Appendix D we
derive the Jacobian matrix and prove that it has negative determinant at any coexis-
tence steady state. In Appendix E we derive the conditions in which a limit cycle of the
(predator + edible prey) subsystem can can be invaded by the defended prey. Finally,
in Appendix F we show generally that for realized cost θ1 sufficiently close to θ2 and
0 ≤ p1 ≤ p∗, the coexistence equilibrium for the general model (33) always has a
pair of complex conjugate eigenvalues.

A Appendix: Eigenvectors and phase relations

The contents of this Appendix appear to be well-known, but we have not seen them
summarized anywhere in print. We consider oscillations in a linear system

ẋ = Jx (44)

resulting from the real matrix J having complex conjugate eigenvalues

λ, λ̄ = a ± ib with b > 0,

where i = √−1 and the over bar denotes complex conjugation. The corresponding
eigenvectors are also a complex conjugate pair w, w̄.

The resulting oscillatory terms in solutions of (44) are of the general form Aeλtw+
Beλ̄t w̄. In order for these to be real (as solutions of (44) must be), we must have B = Ā.
Then writing A = reiθ , r > 0, the solutions are proportional to

z(t) ≡ eiθ eibtw + e−iθ e−ibt w̄. (45)

We are interested in the relative phases of the oscillations by different components in
z(t). Write w j = r j eiφ j for the j th component of w. The j th component of z(t) is
then

r j (e
i(φ j +θ+bt) + e−i(φ j +θ+bt)) = 2r j cos(φ j + θ + bt). (46)
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The relative phases of the j th and kth components in solutions proportional to z(t) is
therefore given by φ j − φk . When this is near 0 components j and k are oscillating in
phase, and when it is near ±π they are oscillating nearly out of phase.

We are interested in the phase difference between the predators and total prey
density. For that we can use a linear change of variables

⎡

⎣
u
v

y

⎤

⎦ =
⎡

⎣
x1 + x2
x1 − x2

y

⎤

⎦ = A

⎡

⎣
x1
x2
y

⎤

⎦ , A =
⎡

⎣
1 1 0
1 −1 0
0 0 1

⎤

⎦ .

In transformed coordinates the Jacobian matrix becomes AJA−1, and Jacobian eigen-
vectors w are transformed to Aw. The dominant eigenvector component for x1 + x2
is therefore the sum of the components for x1 and x2.

B Appendix: Stability conditions

In this Appendix we review criteria for local stability of equilibria in a three-dimen-
sional system of ordinary differential equations.

The diagonal expansion ([39], Sect. 4.6) is an expression for det(A + D) where A
is square and D is diagonal. For D = x I and A of order n it states that

det(A + x I ) = xn + xn−1T1(A) + xn−2T2(A) + · · · + Tn(A) (47)

where Tj (A) is the sum of all principal minors of order j (a principal minor of order j
is the determinant of a j × j submatrix of A whose diagonal is a subset of the diagonal
of A—that is, a submatrix obtained by selecting n − j diagonal elements of A and
deleting the row and column containing each element). Note that Tn(A) = det(A) and
T1(A) = trace(A).

For a 3 × 3 matrix the characteristic polynomial is

p(λ) ≡ det(λI − A) = λ3 + c2λ
2 + c1λ + c0. (48)

Comparing with (47) and noting that and that Tj (−A) = (−1) j Tj (A), we have

c0 = T3(−A) = − det(A), c1 = T2(−A) = T2(A),

c2 = trace(−A) = −trace(A). (49)

In the notation of (48), the Routh–Hurwitz stability criteria for order-3 systems [28]
is

c0 > 0, c1 > 0, c2 > 0, c1c2 > c0. (50)

Loss of stability through a Hopf bifurcation occurs when the third condition in (50) is
violated, with the ci all positive [19].
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C Coexistence steady states for the rescaled chemostat model

We consider here the two-prey model (9). Setting ẏ = 0 and solving gives the steady
state value of Q, Q̃ = kb

g−1 . We solve for X̃ and ỹ as follows. Defining Z = 1− X − y

and noting that g
kb+Q̃

= 1
Q̃

, the conditions ẋ1 = ẋ2 = 0 imply

m Z̃

k1 + Z̃
− p1 ỹ

Q̃
= m Z̃

k2 + Z̃
− ỹ

Q̃
= 1. (51)

Solving (51) for ỹ gives two expressions which remain equal within the coexistence
region:

ỹ = Q̃

p1

[
(m − 1)Z̃ − k1

k1 + Z̃

]
, ỹ = Q̃

[
(m − 1)Z̃ − k2

k2 + Z̃

]
. (52)

Setting the two expressions for ỹ equal, we can solve for Z̃ :

Z̃ = 1

2(1 − p1)(m − 1)

[
ζ +

√
ζ 2 + 4(m − 1)(1 − p1)2k1k2

]
(53)

where

ζ = k1 (1 + p1(m − 1)) − k2 ((m − 1) + p1) .

Finally, recalling that Z̃ = 1 − X̃ − ỹ, then X̃ = 1 − Z̃ − ỹ. Expressions for x̃1 and
x̃2 in terms of X̃ and Q̃ are derived and shown in the text.

D Jacobian at a coexistence equilibrium

The general expression (11) for Jacobian entries at a coexistence equilibrium implies
that all entries in the i th row of the Jacobian have common factor x̃i , so det(J ) =
x̃1 x̃2 ỹ det( J̃ ) where J̃ (i, j) = ∂r̃i

∂x j
with x3 = y. Let F̃ denote the steady state

per-capita feeding rate for the predator,

F̃ = 1

kb + p1 x̃1 + p2 x̃2
, (54)

and the ai are defined by (31) with Z̃ = 1 − x̃1 − x̃2 − ỹ; Eq. (53) gives the general
expression for Z̃ .

Taking the necessary partial derivatives for model (9) we have:

J̃ =
⎡

⎢⎣
−a1 + gp2

1 ỹ F̃2 −a1 + gp1 p2 ỹ F̃2 −a1 − gp1 F̃

−a2 + gp1 p2 ỹ F̃2 −a2 + gp2
2 ỹ F̃2 −a2 − gp2 F̃

p1gkb F̃2 p2gkb F̃2 0

⎤

⎥⎦ . (55)
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We now show that the determinant of the Jacobian is always negative for the general
model (33), and therefore for the chemostat model, unless p1 = p2. For (33) with the
scaling p2 = 1 we have

J̃ =
⎡

⎣
fX − p2

1 ỹ g̃′ fX − p1 ỹ g̃′ fy − p1g̃
fX − p1 ỹ g̃′ fX − ỹ g̃′ fy − g̃

h̃′ p h̃′ 0

⎤

⎦ (56)

where g̃ = g(Q̃), g̃′ = g′(Q̃) and h̃′ = h′(Q̃), h(Q) = Qg(Q). Then using basic
products of determinants, det( J̃ ) equals

h̃′

∣∣∣∣∣∣

fX fX fy − p1g̃
fX fX fy − p1g̃
p1 1 0

∣∣∣∣∣∣
= h̃′

∣∣∣∣∣∣

fX fX fy − p1g̃
0 0 (p1 − 1)g̃
p1 1 0

∣∣∣∣∣∣
= (1 − p1)

2h̃′g̃ fX (57)

which is negative (unless p1 = 1) because h̃′ > 0, g̃ > 0 and fX < 0.

E Appendix: Invasion of an edible prey limit cycle

Following [2] we give here the condition for invasion of a predator + edible prey
limit cycle by a rare defended prey type. Along the limit cycle we have

〈 ˙logy
〉 = 0

and therefore
〈

gx2
kb+x2

〉
= 1. By Jensen’s inequality, this implies that g〈x2〉

kb+〈x2〉 > 1, and

therefore 〈x2〉 > Q̃. We also have
〈 ˙log x2

〉 = 0 along the limit cycle, so

〈
gy

kb + x2

〉
= 1 +

〈
m(1 − x2 − y)

k2 + 1 − x2 − y

〉
. (58)

A rare defended prey can invade if
〈 ˙log x1

〉
> 0, i.e., if

0 <

〈
m(1 − x2 − y)

k1 + 1 − x2 − y
− p1

gy

kb + x2
− 1

〉
=

〈
m(1 − x2 − y)

k1 + 1 − x2 − y

〉
− p1

〈
gy

kb + x2

〉
− 1

Using (58) and simplifying, we get the invasion condition in terms of p1, k1):

p1 <
〈ζ(k1)〉 − 1

〈ζ(k2)〉 + 1
, (59)

where

ζ(ki ) = m(1 − x2 − y)

ki + 1 − x2 − y
.

Note that the right-hand side of (59) can be computed for all k1 using one long simu-
lation of the (predator + vulnerable prey) system, and yields p1 as a function of k1.
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F Appendix: Eigenvalues for θ1 ↑ θ2, p1 ≤ p∗

We show here that for θ1 sufficiently close to θ2 and 0 ≤ p1 ≤ p∗ in the general model
(33), the coexistence equilibrium always has a pair of complex conjugate eigenvalues.
As θ1 → θ2, in this range of p1 values ỹ → 0, so we set ỹ = ε  1 and use a
series expansion in ε of the characteristic polynomial (i.e., we regard θ1 as a function
of ỹ with all else held fixed, rather than vice versa). The Jacobian at the coexistence
equilibrium is an O(ε) perturbation of (35) and so to leading order has the form

J (ε) =
⎡

⎣
A + εa11 A + εa12 B + εa13
C + εa21 C + εa22 D + εa23

εa31 εa32 0

⎤

⎦ (60)

with A, B, C, D < 0, and a31 = p1a32 > 0 (the last holds because ẏ/y is a function
of Q = p1x1 + x2 with the scaling p2 = 1). J (0) has eigenvalues zero (with algebraic
multiplicity 2) and A +C < 0, and we need to approximate the near-zero eigenvalues
for ε small. The characteristic polynomial of J (ε) is a cubic in λ but the near-zero
eigenvalues are at most O(

√
ε), so for our purpose the λ3 terms in the characteristic

polynomial can be neglected. This leaves a quadratic polynomial in λ, which will have
complex conjugate roots if its discriminant is negative. Using Maple to compute the
characteristic polynomial of (60), discard λ3 terms and expand the remainder about
ε = 0, to leading order in ε the discriminant is

4ε(a32 − a31)(A + C)(AD − BC)

which will be negative if AD − BC > 0. Referring to (35) some algebra gives

AD − BC = x̃1 x̃2 f̃ X g̃(p1 − 1)

which is positive because fX < 0, as desired.
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