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While many solid-state emitters can be optically excited non-resonantly, resonant excitation is necessary for many
quantum information protocols as it often maximizes the non-classicality of the emitted light. Here, we study the
resonance fluorescence in a solid-state system—a quantum dot—with the addition of weak, non-resonant light. In the
inelastic scattering regime, changes in the resonance fluorescence intensity and linewidth are linked to both the non-
resonant and resonant laser powers. Details of the intensity change indicate that charge-carrier loss from the quantum
dot is resonant laser. As we enter the Mollow triplet regime, this resonant laser loss term rate is approximately
1∕50 ns−1. This work further clarifies resonance fluorescence in solid-state systems and will aid in the further improve-
ment of solid-state non-classical light sources.

OCIS codes: (300.6280) Spectroscopy, fluorescence and luminescence; (250.5590) Quantum-well, -wire and -dot devices.

https://doi.org/10.1364/OPTICA.5.000354

1. INTRODUCTION

Ideally, the light spontaneously emitted by an isolated two-level
system has a Lorentzian line shape representing the Fourier trans-
formation of the spontaneous emission process. The spectral line-
width γ is then determined by only the dipole radiative decay rate
Γ by the relation γ � Γ∕2. A real world solid-state emitter,
however, interacts with its environment. With environmental
coupling, the emitter spectrum can be broadened, and its line
shape will be modified depending on the characteristic time
and interaction rate of the coupling. Fast coupling mechanisms,
on the timescale of Γ−1, homogeneously broaden the Lorentzian
line shape spectrum so that γ � Γ∕2� γ⋆, where γ⋆ is the pure
dephasing rate. Slow environmental coupling induces spectral
wandering and leads to an inhomogeneous component in the line
shape. These broadening processes reduce the emitted photon in-
distinguishability.

For many quantum information and quantum optics appli-
cations [1–5], resonant excitation is important as it eliminates
the time uncertainty in the state preparation [6–8] and increases
photon indistinguishability. Resonant excitation of a solid-
state quantum emitter can transfer the laser coherence to the
excited state. This can be used, for instance, to generate
time-bin entangled photon pairs, where the phase of the laser
is transferred to the photons [9]. In some solid-state systems,
the quality of spin state preparation and readout can also be
improved [10].

Semiconductor quantum dots (QDs) of InAs embedded in a
solid-state host are bright emitters of single and indistinguishable

photons and are good candidates for applications in quantum in-

formation [11–13]. Better quantum properties of the photons

have been observed under resonant excitation [14–17]. How-

ever, in QD resonant excitation, the fluorescence is often strongly

reduced compared to the non-resonant case and remains spec-

trally broad, limiting the scope of applications [18,19]. Further-

more, the photon indistinguishability drops for photons emitted

temporally more than a few hundreds of nanoseconds apart [20–

22]. Thus, for a variety of quantum information processes using

QDs—for instance, entanglement distribution [2,23], photon

multiplexing [21,24], or multiple sources experiments [25,26]—

resonance fluorescence and the long time scale energy fluctuations

in quantum dots must be better understood.
In this paper, we study the effects of a resonant-laser excitation

in a QD, using a weak above-band laser as a probe in conjunction

with the resonance fluorescence. The additional pump produces

no measurable photons in the region of interest when the reso-

nant laser is switched off, but provides charge carriers to the sys-

tem. First, we show that light from a weak above-band laser can

improve the brightness of a resonantly pumped QD transition by

a factor larger than 30 and reduces its inhomogeneous transition

linewidth by a factor of about 2. The brightness improvement has

been previously reported [18,19,27], but to our knowledge, the

linewidth narrowing has not. Second, we show using both exper-

imental data and Monte Carlo simulations that a carrier loss term

that depends on the resonant laser power is present and to our

knowledge has not been previously discussed. This resonant
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laser-induced loss could have implications for other solid-state

systems beside QDs.

2. EXPERIMENTS

The sample was made by molecular-beam epitaxy. It consists of
strain-induced InAs QDs in GaAs embedded in a 4λ∕n thick pla-
nar distributed Bragg reflector cavity (λ is the cavity resonance
wavelength, and n is the GaAs refractive index). The cavity
enhances the fluorescence collection through the upper sample
surface, resulting in extraction efficiencies of 10% to 20% [28].
We observe a single charged exciton and show that the observed
emission under resonant excitation has a low multi-photon con-
tribution: g �2��0� � 0.22� 0.03 (no dark count or background
subtraction). From the data, we determine the radiative decay rate,
Γ � 1.5 ns−1, and thus a radiative-limited linewidth of 250MHz.

To suppress the resonant laser scattering from the QD
fluorescence signal, we use an orthogonal excitation-collection
scheme: the excitation laser light is fiber-coupled to the side of
the sample and propagates in-plane, and the collection axis is
normal to the plane (Fig. 1) [29,30]. The in-plane pump laser
couples predominantly to the 4λ∕n cavity region, which forms
an in-plane waveguide. The QD emission is collected vertically
with a high-numerical-aperture objective and is coupled into a
single-mode fiber.

The resonant light source is a tunable continuous-wave (CW)
laser (200 kHz linewidth). Its frequency is measured using a wave-
length meter. The weak above-band light is a 633 nm HeNe laser
and is sent to the sample surface through the collection optical
fiber (Fig. 1). Polarizers and polarization controllers inserted in
the excitation laser path and collection path further minimize
the detected laser scattering. The sample is cooled to 4.2 K using
a helium bath cryostat.

As has been previously reported [18,19], the on-resonance
fluorescence signal is weak for most QD states, and weak
above-band light can enhance the fluorescence intensity. We mea-
sure large photon intensity improvements for many QDs, but not
for all of them. For all the results of this study, the power of the
HeNe laser beam on the sample is on the order of nanowatts, and
no photoluminescence signal from the HeNe alone is measured.
Measurements were made at a variety of Rabi frequencies varying
from near zero to 0.7 GHz.

3. RESONANCE FLUORESCENCE MAPS

To investigate the effects of broadening mechanisms on the emis-
sion properties from exciton transitions in resonant excitation, we
measure resonance fluorescence maps in the elastic scattering
regime. Such maps represent the QD fluorescence intensity IExp
as a function of both the pump laser frequency ωL and the fluo-
rescence frequency ωPh. To do this, we use the tunable CW laser
and a 200 MHz band-pass Fabry–Pérot filter (Fig. 1). We obtain
a map through a series of resonance fluorescence spectroscopy
scans (i.e., by scanning the Fabry–Pérot filter frequency) for sev-
eral laser frequencies. An identical map could also be obtained by
scanning the laser frequency and keeping the filter position con-
stant for each scan. We measure the QD fluorescence intensity for
each point using a single-photon avalanche photodiode connected
to an event-counting module.

We use the detuning-dependent resonance fluorescence equa-
tions of a coherently driven two-level system [31,32] to calculate
fluorescence maps. Results in the inelastic scattering regimes are
plotted and discussed in Supplement 1. We discuss here the elas-
tic scattering regime (also called the Rayleigh scattering regime).
In the ideal case (narrow linewidth laser, Fabry–Pérot filter, and
QD state), the map is a point centered on the QD state fre-
quency. For a real-world case, this ideal response is successively
convolved by the laser line shape (convolved along the ωL axis),
the detector response (convolved along the ωPh axis), and the
QD state broadening (convolved along the diagonal direction,
ωph � ωL). The QD state broadening is Gaussian in the case

of inhomogeneous broadening and Lorentzian in the case of

Fig. 1. Schematic of the experiment. A single-mode (SM) optical fiber
is glued to the cleaved edge of the sample to resonantly excite a QD em-
bedded between two distributed Bragg reflectors (DBR). The light is col-
lected from the sample top surface using a fiber-coupled microscope
objective. The weak, 633 nm laser is sent to the sample using the same
objective. The Fabry–Pérot filter is bypassed in the resonance fluores-
cence spectroscopy scans. BS: beam splitter; SPAD: single photon ava-
lanche photodiode.

(b)(a)

(d)(c)

Fig. 2. Characterizing the linewidth. (a), (b) Theoretical fluorescence
maps of emission from a QD transition with (a) inhomogeneous or
(b) homogeneous broadening. The shape of the intensity distribution
in the diagonal ωph � ωL is Gaussian in the inhomogeneous case and
Lorentzian in the homogeneous case, as indicated by the white dotted
lines. (c) Experimental fluorescence map obtained by sweeping the fre-
quency of a laser ωL and of a Fabry–Pérot filter ωph around the QD
frequency, ω0. (d) Shaded curves: resonance fluorescence spectra ob-
tained for different laser frequencies, as indicated by dotted lines in
(c). The red dots indicate the resonance fluorescence maximum for each
laser frequency. The envelope intensity is Gaussian (black line).

Research Article Vol. 5, No. 4 / April 2018 / Optica 355

https://doi.org/10.6084/m9.figshare.5910070


homogeneous broadening [33]. Thus, one can distinguish
between inhomogeneous and homogeneous broadening by
evaluating the diagonal lineshape. Calculated maps are plotted
in Figs. 2(a) and 2(b).

A measured fluorescence map IExp�ωPh;ωL� is shown in
Fig. 2(c) in the elastic scattering regime with the additional
HeNe laser (≈20 nW). We observe that the fluorescence map
has an oval-like shape strongly elongated along the ωL � ωPh

diagonal. From this fluorescence map, we take resonance fluores-
cence spectra for specific values of ωL [vertical dotted lines in
Fig. 2(c)]. Example resonance fluorescence spectra are plotted in
Fig. 2(d) for these laser frequencies. Each spectrum has 200 MHz
Lorentzian line shape, which is determined by a convolution of
the laser line and the Fabry–Pérot interferometer response. Red
dots in Fig. 2(d) represent the resonance fluorescence peak inten-
sity for different laser frequencies in the fluorescence map. Here,
the intensity of the spectra corresponds to the probability of over-
lap of the broadened QD transition frequency with the laser
frequency. We observe that the intensity of the resonance fluo-
rescence spectrum as a function of the laser detuning is fit by
a Gaussian distribution function (solid black line) and thus de-
duce that the broadening is inhomogeneous. This means that the
QD transition energy is not constant in time but varies. We pre-
viously reported an energy jitter timescale of ≈24 ns with a sim-
ilar sample by using second-order autocorrelation measurements
[34]. We measure here that the full width at half-maximum of the
Gaussian distribution of the emission is ≈2.5 GHz in Fig. 2(d).
The small feature on the low-energy side of the resonance peak is
likely to due to the Fabry–Pérot filter.

4. ENHANCED INTENSITY AND RESONANT-

LASER-INDUCED LOSS

In this section, we investigate the effects of carrier population dy-
namics on the resonance fluorescence in the inelastic scattering
regime with the addition of above-band light of variable intensity.
Because we have established that the broadening is predominantly
inhomogeneous, we no longer need to scan the detection wave-
length as in the resonance fluorescence maps above. In each spec-
trum, we sweep the CW laser through the QD transition and
count detected QD photons as a function of the laser frequency.
Since the remaining Lorentzian component is due to the radiative
lifetime and power broadening induced by the laser, the resonance
fluorescence spectrum line shape is the convolution of the
Lorentzian and the Gaussian broadening components of the
QD emission, a Voigt function. The full width at half-maximum

of the Lorentzian is determined by the relation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T −2
1 � 2Ω2

r

p

,

where Ωr is the Rabi frequency [35]. Ω2
r is proportional to the

laser power and is determined using CW second-order autocor-
relations on the QD photons [35], shown in Fig. 3(a). We fit the
resonance fluorescence spectra using a Voigt function to extract
the amplitude and the linewidth of the Gaussian component.

We plot in Fig. 3(b) the integrated resonance fluorescence
spectra intensity as a function of the HeNe laser power. The data
show that adding the above-band laser initially increases the
resonance fluorescence-integrated intensity. The peak intensity
also increases, as shown in Fig. 3(c) and in more detail in
Supplement 1. The maximum peak intensity increases by a factor
≈30 and the integrated intensity by a factor ≈17, as illustrated
in Fig. 3(c). Figure 3(b) also shows that the peak brightness is

retarded with the HeNe power as the resonance fluorescence
power increases [black crosses in Fig. 3(b)]. This is discussed
in more detail below.

To gain more insight into the dynamics of the resonant exci-
tation with additional HeNe laser, we programmed a Monte
Carlo simulation to model the emission dynamics. The model
is based on probabilities of events occurring in a single particle
picture. It considers separate electron (e−) and hole (h�) empty
and occupied ground states, with fermion statistics. A higher ex-
cited state for each carrier type (with infinite occupation) can also
be populated (see Supplement 1).
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Fig. 3. Enhanced intensity and resonant-laser induced loss.
(a) Autocorrelation measurements performed under CW resonant exci-
tation and for different Rabi frequencies (i.e., resonant laser powers).
(b) Integrated intensity as a function of HeNe power and for several
resonant laser powers (red circles: Ωr � 0.23 GHz, green squares:
Ωr � 0.30 GHz, blue diamonds: Ωr � 0.47 GHz, violet triangles:
Ωr � 0.65 GHz). The solid lines represent the simulation; see text
for details. The data with Ωr � 0.47 GHz (blue diamonds) has an in-
crease of integrated brightness of 17 with respect to its lowest value. The
four curves were offset by 5000 counts each for clarity. The HeNe spot
size is approximately 1 μm in diameter. (c) Resonance fluorescence ex-
citation spectroscopy of a QD transition for two above-band 633 nm
laser powers (red dots: 1.3 nW; blue dots: 40 nW). The intensity is
not normalized to show the strong brightness improvement by a factor
of 30. (d) Plot of the resonant-laser-induced loss term, obtained by fitting
the data with the Monte Carlo simulation, as a function of the Rabi
frequency ΩR.
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We simulate all the experiments with a negatively charged ex-
citon as the resonant state and a single parameter set, taking only
the five most crucial parameters into account. They are coherent
resonant scattering of photons on a trion transition if a single e−

ground state (of either spin) is present, creation and capture of
charges generated by the above-band light source, non-radiative
relaxation from the excited state to the ground state, radiative de-
cay of bright exciton states for which only the negatively charged
ground-state exciton decay contributes to observed intensity, and
a resonant-laser-induced charge-carrier loss term. The model
could consider radiative decay from the excited state, asymmetric
capture of carriers, spin flip of charges, and loss of charges only
from the excited level, but those parameters are not relevant to fit
the experimental data. The results of the simulation are plotted
with solid lines in Fig. 3(b) and the values of the parameters that
we consider are in Table S1 of Supplement 1. The parameters are
simultaneously fit for all four Rabi frequencies. The error (≈5%)
is determined from repeated measurements.

The Monte Carlo simulations show that because of the pres-
ence of loss, if additional carriers are provided to the QD by the
above-band light, the time the QD spends in the desired exciton
state can be extended, increasing the photon flux. However, if the
above-band light creates too many charges, the total amount of
emitted photons will decrease again [Fig. 3(b)]. Experimentally,
the photoluminescence signal created directly by the HeNe laser is
seen for powers larger than ≈103 nW.

The shift of the maximum of intensity when the resonant laser
power increases [black crosses in Fig. 3(b)] is due to charge loss
that depends on the resonant-laser power. To reestablish the
proper carrier configuration in the quantum dot additional car-
riers are needed, and these carriers are provided by the above-band
light source. The values of the resonant-laser-induced charge loss
rate are plotted in Fig. 3(d). As we enter the Mollow triplet regime
[ΩR � 0.65 GHz, Fig. 3(a)], the resonant laser loss term rate is
approximately 10 MHz.

The Monte Carlo simulations show that the resonant laser
affects the carrier population inside the QD. Neutralizing this loss
with carriers from the above-band laser increases the resonance
fluorescence. Voltage-biased devices (i.e., with no current flow)
have been used in several QD experiments [36,37], and have been
recently used in QD single-photon sources [16,38]. While these
structures should aid in stabilizing the local charge environment
around the QD [39], they may not neutralize the resonant-laser-
induced loss from the QD [40,41].

5. LINEWIDTH NARROWING

Using the resonance fluorescence fits described above, we now
plot in Fig. 4(a) the inhomogeneous linewidth as a function of
the HeNe power and for several resonant laser powers. We ob-
serve the Gaussian linewidth is reduced by a factor of ≈2 [as illus-
trated in Fig. 4(b)]. An exponential dependent change in the
inhomogeneous exciton emission linewidth with above-band laser
power is observed for over two decades of laser power in Fig. 4(a).
The measured linewidth as a function of the HeNe laser power
PHeNe is fitted in Fig. 4(a) by �Δω0 − Δω1�e

−PHeNe∕P0 � Δω1,
where Δω0 is the linewidth without the above-band laser, and
Δω1 is the linewidth for a large HeNe laser power. Two processes
associated with additional carriers in the vicinity of the QD could
explain the linewidth change. Screening of fluctuating charges
and trap states with the addition of charge carriers can result

in motional narrowing [42,43] and will be exponential in carrier
population. Such traps could be local wetting layer fluctuations,
nearby QD states, or defects [37]. Alternatively, stabilizing [44],
as opposed to screening, fluctuating traps populations with addi-
tional carriers will have a Poissonian cumulative distribution func-
tion with a similar dependence.

Figure 4(a) shows that the linewidth narrowing is also a func-
tion of the resonant laser power. For each resonant laser power,
the linewidth narrows with increased HeNe power. For higher
resonant laser power, the linewidth narrowing requires stronger
HeNe powers. The linewidth reaches a minimum of ≈1.4 GHz
above the power-broadened radiative linewidth limit (≈0.44 GHz
at Ωr � 0.23 GHz and ≈0.9 GHz at Ωr � 0.65 GHz).

In conclusion, we have experimentally investigated the radia-
tive fluorescence from single QD states under resonant excitation.
To study these effects we have introduced fluorescence maps
produced by varying the detection frequency in subsequent
resonance fluorescence scans near the emission resonance. This
method can be used to distinguish homogeneous and inhomo-
geneous broadening mechanisms in solid-state two-level systems.
Using a weak above-band light to provide charge carriers to the
quantum dot, the QD peak emission increases by over 30 times,
where the integrated intensity increases 17 times. Simultaneously,
the inhomogeneous emission linewidth decreases by a factor of
about 2. The change in total integrated intensity is well modeled
by a simple Monte Carlo simulation where a loss term that de-
pends on the resonant laser power must be included to replicate
the observed shift in the brightness maximum with the resonant
laser power. This resonant laser loss term could have implications
in quantum information applications and may be present in other
solid-state systems.
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