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with Stochastic Volatility for the Market Portfolio

I examine the effects of return predictability on option prices for the market portfolio in the

presence of stochastic volatility and/or stochastic interest rates. The analysis is implemented

in an equilibrium framework where a consistent option pricing model is derived with the return

predictability and stochastic volatility and the precise link between the actual and the risk neutral

measures is endogenized. The equilibrium analysis indicates that the return predictability is induced

by the mean-reverting and heteroskedastic features of aggregate dividends. It is shown that risk-

neutral option pricing model with the stochastic volatility and/or stochastic interest rates can be

consistent with return predictability. Numerical results suggest that (i) models with either perfect

predictability or no predictability will significantly overprice long-term options across different strike

prices when the return of the underlying exhibits modest predictability; (ii) the stochastic volatility

does not affect option prices in a significant way when asset return predictability is properly reflected

in the actual stock price process; (iii) when return predictability is correctly specified, the effects

of stochastic interest rates are not uniform.
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There exists a fair amount of empirical evidence on asset return predictability and stochastic

volatility.1 However only the stochastic volatility feature has drawn enough attention from the

academic researchers on option pricing. Lo and Wang (1995) is the first study which examines the

effects of return predictability on option price while maintaining a constant return volatility. In

their study, the return predictability is modeled as a mean-reverting process. Given the common

belief that the Black-Scholes (BS) option pricing model is valid in the presence of the return

predictability and a constant volatility, they argue that the constant volatility in the BS model

should not be estimated from the unconditional standard deviation of the historical returns, a

popular approach used in the real world (please see the detailed description in Hull 2005). Instead,

it should be estimated from the conditional standard deviation of the historical returns if the

risk-neutral return is the BS’s log-normal and the actual return follows a mean reverting.2

Lo and Wang’s study is an important first step towards examining how asset return predictabil-

ity affects option prices in a context of constant volatility and constant interest rates. The current

paper extends their study the market portfolio while allowing both the return predictability and

the stochastic volatility. To carry out the analysis, I need to identify an option pricing model which

is consistent with the return predictability and stochastic volatility since the BS model is not valid.

At the same time, I also need to know the precise link between the risk-neutral distribution and

the actual distribution. To ensure the consistency and to obtain the precise link, I derive an option

pricing formula based on the assumed actual return dynamics in a general equilibrium framework

and establish a precise link between the actual and the risk neutral measures by endogenizing the

price of the market portfolio and the risk-free rate from economic fundamentals. The endogenous

processes for the market return, its volatility and the interest rate generated from an equilibrium

apporach are in sharp contrast to the exgoenous processes assumed by the BS approach. The equi-

librium model in the current paper is a continuous-time extension of the Lucas (1978) model where

the aggregate dividend follows a mean-reverting process, supported by the empirical evidence in

Marsh and Merton (1987). Given this aggregate dividend process and logarithmic preferences, the

endogenous return of the market portfolio is mean-reverting and its return volatility, as well as the

risk-free rate, is stochastic in equilibrium.

Under various parameter restrictions, this simple one-factor model can generate closed-form

option pricing formulas for six useful cases. The generic case corresponds to mean-reverting returns,
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stochastic volatility and stochastic interest rates. Other special cases include mean-return return

with a constant volatility and/or a constant interest rate. Given these results, this paper further

examines the effects of return predictability on option prices, by allowing for stochastic volatility

and/or stochastic interest rates. Since the precise effects cannot be analytically determined, I

resort to numerical analysis based on empirically estimated parameters for the six cases in the

model. The numerical results show that (i) the cases with either perfect predictability or no

predictability significantly overprice long-term options across different strike prices when the return

of the underlying asset exhibits moderate predictability; (ii) when return predictability is properly

reflected into option prices through the correct specification of the actual return, stochastic volatility

does not influence option prices significantly, especially for long-run options; (iii) when return

predictability is correctly specified, interest rates influence option prices in a complicated way.

For example, the case with stochastic volatility and constant interest rates would underprice long-

term options, but overprice short-term options, relative to the case with stochastic volatility and

stochastic interest rates.

This paper differs from the existing option pricing studies with stochastic volatility and/or

stochastic interest rates, including the models by Hull and White (1987), Stein and Stein (1991),

Heston (1993) and Hobson and Rogers (1998). First, the current focus on return predictability

is new. Second, volatility and interest rates here are both endogenous variables that depend on

economic fundamentals. Third, stochastic volatility here is a function of the stock price, implying

that options can be hedged with the underlying stock. This feature is extremely desirable for

practical application (see Dupire 1994). Although the feature of complete markets draws a similarity

to Hobson and Rogers (1998), their partial equilibrium model contrasts to my general equilibrium

model. The equilibrium approach here is shared with Bailey and Stulz (1989) who price stock

index options, Bakshi and Chen (1997) who price many different contingent claims, Naik and

Lee (1990) who address systematic jump risks in the market portfolio, and Amin and Ng (1993)

who focus on systematic volatility in individual stock options. To this literature the current paper

contributes mainly in the emphasis on predictability and the explicit analysis of the effects of return

predictability on option prices with stochastic volatility and/or stochastic interest rates.

This paper is organized as follows. Section 1 describes the economy and derives the equilibrium

price of the market portfolio and the spot interest rate. Section 3 examines the relationship between
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the actual asset price process and its risk-neutral counterpart. Section 3 derives equilibrium pricing

formulas for options written on the market portfolio. Section 4 quantifies the effects of return

predictability on option prices with stochastic volatility and/or stochastic interest rates. Section 5

concludes the paper and the appendices provide necessary proofs.

1. The Economy

1.1. Structure of the Economy

Consider a continuous-time extension of the Lucas (1978) pure exchange economy in which there is a

representative investor with an infinite lifetime horizon. In the financial market, the representative

agent can trade a single risky stock, pure discount bonds and a finite number of other contingent

claims at any time. The risky stock can be viewed as the market portfolio, whose total supply is

normalized to one share and its dividend stream {δt} can be understood as aggregate dividends
in the economy. The contingent claims and the risk-free bond are all in zero net supply. The

aggregate dividend follows an exogenous Markov process on a given probability space (Ω, F , P),
which creates the fundamental uncertainty in the economy. Denote the security prices at time t

by a vector Xt and the corresponding vector of dividends by qt. The cumulative dividends up to

time t are defined as Dt ≡
R t
0 qτdτ . The agent’s information structure is given by the filtration

Ft ≡ σ( δτ , 0 ≤ τ ≤ t). His preferences are described by a smooth time-additive expected utility
function, V (c) = E

R∞
0 U(ct, t)dt. For analytical tractability, I adopt a logarithmic utility for the

agent’s period preference, as in Merton (1971) and Cox-Ingersoll-Ross (1985b):

Assumption 1. The representative agent’s period utility is described by U(ct, t) = e−ρt ln ct,

where ρ is the rate of time preference.

Initially, the agent is endowed with one share of the risky stock. Denote his portfolio holdings

at time t as θt = (θ
s
t , θ

B
t , θ

x0
t ), where θ

s
t , θ

B
t and θ

x0
t indicate the number of shares held in the stock,

the discount bond and other contingent claims, respectively. The agent finances his consumption

by a continuous trading strategy {θt, t ≥ 0} and maximizes his expected lifetime utility:3

max
{ct,θt}

E

Z ∞

0
U(ct, t)dt

s.t.
R t
0 cτdτ = θ0 ·X0 − θt ·Xt +

R t
0 θτ · dDτ +

R t
0 θτ · dXτ. (1.1)
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(1.1) states that the agent’s cumulative consumption up to t is financed by the net selling of his

securities (θ0 ·X0 − θt ·Xt) plus the cumulative dividends and cumulative capital gains. The first
order conditions give the usual stochastic Euler equation: Xt =

1
Uc(ct,t)

Et
¡R∞
t Uc(cτ , τ)dDτ

¢
. Thus,

the price of any security equals the expected discounted sum of its dividends, with the marginal

rate of substitution being the stochastic state price deflator.

In equilibrium, the financial market clears and so the demand for the stock equals the supply

of shares, which is one share. Also, equilibrium prices are such that the representative agent holds

nothing of the claims other than the risky stock because the corresponding net supply is zero. In

addition, the goods market clears so that consumption equals dividends generated from the risky

stock. Therefore, the equilibrium price of any security given by the Euler equation becomes

Xt =
1

Uc(δt, t)
Et

µZ ∞

t
Uc(δτ , τ)dDτ

¶
, ∀ t ∈ (0,∞). (1.2)

1.2. Mean-Reverting Dividend Process and Return Predictability

To facilitate discussions and obtain closed form solutions, let us restrict our attention to a specific

dividend process for the market portfolio by appealing to the study of Marsh and Merton (1987) on

the dynamic behavior of aggregate dividends. Their estimation suggests that changes in the rate

of dividend conform with the following description:

(divt − divt−1) /divt−1 = speed of adjustment× (target ratio× change in stock pricet − ln divt−1).

Their regression results also show that the random components in the change of dividend growth

exhibit heteroskedasticity. Based on this empirical evidence, I assume that aggregate dividend

follows a mean-reverting process with a positive time trend.

Assumption 2. The aggregate dividend process is governed by the following stochastic process:

dδt
δt
= [b1 − a1(ln δt − ut]dt+

p
b2 + a2(ln δt − ut) dzt, (1.3)

where zt is the standard Wiener process and a1, a2, b1, b2 are constant with the restrictions

a1 + 0.5a2 > 0 and 2(a1b2 + a2b1 − a2u) ≥ a22.

Note that the parameter restrictions in the above assumption are needed to ensure the existence

of distributions (see Appendix A.1). Also, when b2 = u = 0, process (1.3) encompasses the single

state variable assumed by Cox-Ingersoll-Ross (1985b).
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With Assumptions 1 and 2, the following proposition and corollary summarize equilibrium

results for the market portfolio and the instantaneous risk-free rate (see Appendix A for a proof):

Proposition 1.1. The equilibrium price of the market portfolio St, the instantaneous risk-free

rate rt and the yield-to-maturity R(t, T ) at time t are, respectively

St = S(δt) = δt/ρ,

rt = ρ+ b1 − b2 − (a1 + a2)(ln δt − ut),

R(t, T ) = ρ+ u− v ln(A(t,T ))T−t − [b2 + a2(ln δt − ut)]A(t, T )(a1a2 + 1)1−e
−(a1+a2/2)(T−t)

(a1+a2/2)(T−t) ,

with T being the maturity, α(t, T ) = (2a1+a2)
a22(1−exp(−(a1+a2/2)(T−t)))

,

ξ = a1b2+a2(b1−u)
a1+0.5a2

, v = a1+a2/2
a22

ξ, A(t, T ) = α(t,T )a2
α(t,T )a2+1

.

Proposition 1.1 intuitively states that the stock price equals the present value of future dividends

discounted at the rate of time preference. That is, the stock generates a constant dividend yield

which is equal to the rate of time preference, ρ. Applying Ito’s Lemma yields the equilibrium

dynamics for the de-trended log price:

d(lnSt − ut) =
µ
b− (a1 + 1

2
a2)(lnSt − ut)

¶
dt+

p
b2 + a2(ln δt − ut)dzt, (1.4)

with b = b1 − u− 1
2b2 + (a1 +

1
2a2) ln ρ. The de-trended log price follows a mean-reverting process

with a heteroskedastic volatility structure.

Denote µt as the instantaneous return of the stock and Vt the instantaneous variance.
4 Express

the endogenous stock price process as dSt/St ≡ (µt − ρ)dt+
√
Vtdzt. Then

µt = ρ+ b1 − a1(ln δt − ut) and Vt = b2 + a2(ln δt − ut). (1.5)

Given the instantaneous risk-free rate in Proposition 2.1, it is clear that µt = rt + Vt. That is, the

drift of the market portfolio is the sum of the risk-free rate and the variance of its return. In other

words, the risk premium of the market portfolio is equal to the variance of its return. Now, let us

focus on the dynamics of rt, µt and Vt, respectively. Applying Ito’s Lemma yields the spot risk-free

rate dynamics:

drt = (a1 +
1

2
a2)(ρ+ u− 1

2
ξ − rt)dt− (a1 + a2)

p
Vtdzt,
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The spot risk-free rate obeys a mean-reverting process which resembles the so-called affine class

of the term-structure model (see Duffie, 1992).5 The reversion speed for the spot risk-free rate is

a1+0.5a2 and the long-run mean is ρ+u−0.5ξ. The Vasicek (1977) interest rate model corresponds
to a2 = 0 and the Cox-Ingersoll-Ross (1985b) interest rate model to ρ = −u− (2a1/a2 + 1)ξ.

The instantaneous return is shown to obey the following process

dµt = (a1 +
1

2
a2)(ρ+ u+

1

2
ξ − µt)dt− a1

p
Vtdzt,

which corresponds to a mean-reverting process with a speed of mean reversion being a1 + 0.5a2

and a long-run mean being ρ + u + 0.5ξ. This reversion speed is different from that of aggregate

dividends, a1. Thus, the stock return predictability, largely determined by the reversion speed,

is generated by the mean-reverting and heteroskedastic features of aggregate dividends. Stated

differently, a1 and a2 determine return predictability for the market portfolio. The higher the

reversion speed, a1+0.5a2, the higher the level of return predictability. There are two polar cases of

return predictability: perfect predictability (certainty) and complete unpredictability (the random

walk). With a1 = 0, the instantaneous return becomes constant and hence is perfectly predictable.

With a1 = −0.5a2, the instantaneous return follows a random walk with heteroskedastic volatility.

When a1 6= 0 or a1 6= −0.5a2, the actual instantaneous return shows moderate predictability. Thus,
this model is capable of accommodating different degrees of return predictability.

1.3. The Volatility of the Market Portfolio

An important feature of the current model is that the volatility dynamics of the market portfolio

depends on the dividend drift, despite the fact that the dividend drift and volatility of the market

portfolio do not share common parameters. This dependence is evident from the earlier result on the

instantaneous variance of the market portfolio, Vt = b2 + a2(ln δt − ut). Because the instantaneous
variance depends on log dividends, provided a2 6= 0, parameters that affect the dividend drift affect
the volatility dynamics of the market portfolio directly through δ. Applying the Ito’s lemma, I

can obtain the following dynamics of V :

dVt = (a1 +
1

2
a2)(ξ − Vt)dt+ a2

p
Vtdzt, ∀ a2 6= 0. (1.6)

Such dynamics are influenced by parameters a1 and b1, in addition to a2 and b2. Specifically, the

speed of mean reversion is determined by a1 + 0.5a2 and the long-run mean is by ξ, which is a
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function of (a1, b1, a2, b2, u) as specified in Proposition 2.1. Note that when a1 = 0.5a2, the mean-

reverting feature is no longer present; instead, the instantaneous variance follows a random walk.

Of course, if a2 = 0, then the instantaneous variance is a constant, b2.

The dependence of the variance (or volatility) dynamics of the market portfolio on the dividend

drift is not restricted to the specific model in the current paper. Rather, it is a general feature of

all models where the volatility of the dividend depends on the dividend level directly. To see this

generality, consider the following process for aggregate dividends:

dδ

δ
= µδ(t,Xt, δt)dt+ σδ(t, δt, Yt)dzt,

where µδ(t,Xt, δt) and σδ(t, δt, Yt) are the drift and the volatility of dividends and X, Y are two

state variables with the following dynamics

dX = µX(t,Xt)dt+ σX(t,Xt)dzt and dY = µY (t, Yt)dt+ σY (t, Yt)dzt.

With logarithmic utility, the stock price is still St = δt/ρ. As a result, the instantaneous

volatility of the market portfolio is equal to that of the dividends. Given the direct dependence of

σδ on δ, the dynamics of the volatility of the market portfolio will be influenced by the dividend

drift through δ, as well as by other parameters and the state variables (X,Y ). My model captures

this direct effect of the dividend drift on the volatility, but it maintains tractability by suppressing

the variables X and Y . Of course, if σδ does not depend on δ, then the volatility will not depend

on the dividend drift, but this case does not encompass my model as a special case despite the

appearance of the state variables (X,Y ).

2. Actual and Risk-Neutral Price Processes for the Market Portfolio

This section examines the precise relationship between the actual price process and its risk-neutral

counterpart for the market portfolio. With the determined precise relation, I will provide answers

to the two questions raised in the introduction.

2.1. Relationship between the Actual Price Process and Its Risk-Neutral Counterpart

The equivalent martingale process for the market portfolio is obtained as follows: the equilibrium

relation, µt = rt + Vt, implies that the risk premium of the stock is equal to its instantaneous
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variance. Thus, the market price of risk of dzt is
√
Vt, derived from the common definition (µt −

rt)/
√
Vt. Then, the unique equivalent martingale process for the stock price is

dSt = (µt − ρ)Stdt+ St
p
Vtdzt = (rt − ρ)Stdt+ St

p
Vtdz

∗
t ,

where dz∗t = dzt+
√
Vtdt is the risk-neutral measure.

6 With this unique relation dz∗t = dzt+
√
Vtdt,

the processes for µt, Vt and rt under the equivalent martingale are

drt = (a1 + 1.5a2)
³
ρ+ u− 1

2
a1+0.5a2
a1+1.5a2

ξ − rt
´
dt− (a1 + a2)

√
Vtdz

∗
t ,

dµt = (a1 + 1.5a2)
³
ρ+ u+ 3

2
a1+0.5a2
a1+1.5a2

ξ − µt
´
dt− a1

√
Vtdz

∗
t ,

dVt = (a1 + 1.5a2)
h
a1+0.5a2
a1+1.5a2

ξ − Vt
i
dt+ a2

√
Vtdz

∗
t , ∀ a2 6= 0.

(2.1)

The key difference between the actual processes and the risk-neutral processes for µt, Vt and

rt lies in the speeds of reversion and the corresponding long-run means. Take the variance as an

example. The speed of reversion is a1 +0.5a2 under the actual probability measure and a1 +1.5a2

under the equivalent martingale. In addition, the long-run mean of the variance under the equivalent

martingale is a1+0.5a2a1+1.5a2
ξ, not ξ.

To illustrate the importance of a link between the actual and risk-neutral processes for empirical

estimation purposes, let us consider the following situation. Suppose one starts with a partial

equilibrium model and directly assumes a risk-neutral process for the volatility, like that in (2.1),

to price options. To implement his option pricing model, he uses the actual volatility process

described in (1.6) to infer the parameters for the risk-neutral process. Suppose that he uses the

following parameterization for the risk-neutral and the actual volatility processes:

Actual Processes Risk-neutral Processes

dVt = aV (V − Vt)dt+ bV
√
Vtdzt dVt = a

∗
V

h
V
∗ − Vt

i
dt+ b∗V

√
Vtdz

∗
t .

Then the estimated parameters for the risk-neutral process should be determined as

b∗V = bV , a∗V = aV + bV , V
∗
= aV

aV +bV
V .

Clearly, this unique link between the actual and the risk-neutral processes for volatility is the

equilibrium result. Without this link, it is difficult to correctly identify the parameters for the

risk-neutral process from the actual probability distribution.7
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2.2. Different Levels of Return Predictability

Under different parameter values, this model can generate three different levels of return predictabil-

ity: Perfect Predictability, No Predictability and moderate Predictability.

Table 1: Relations among µt, Vt and rt under Different Levels of Return Predictability

C :  C o n s ta n t           S :  S to c h a s t ic           R :  R e tu rn           V :  V o la t i l i ty           I :  I n te r e s t  R a te

C R C V C I  -  P P  (  =  B S )
a 1  =  a 2  =  0 , µ t  =  ρ  +  b 1 C R
b 1  >  0 ,   b 2  >  0 V t  =  b 2 C V

R e tu rn  h a s r t  =  ρ  +  b 1  -  b 2 C I

P e r fe c t C R S V S I  -  P P
P r e d ic t a b i l i ty a 1  =  0 µ t  =  ρ  +  b 1 C R

      ( P P ) a 2   >  0 ,       b 2  >  0 V t  =  b 2  +  a 2  ( ln δ t  -  u t )
b 1  >  u  +  b 2  /2  d V t  = 0 .5 a 2 ( ξ  -  V t )d t  +  a 2 V t

1 /2  d z t  S V

r t  =  ρ  +  b 1  -  V t

d r t  = 0 .5 a 2 ( ρ +  u  -  0 .5 ξ  -  r t ) d t  -  a 2 V t
1 /2  d z t S I

µ t  =  ρ  +  b 1  - a 1  ( ln δ t  -  u t )
R e tu rn  h a s S R S V S I  -  N P d µ t  = 0 .5 a 2 (b 1  -0 .5  b 2  -  u )d t  +  0 .5 a 2 V t

1 /2  d z t  S R

N o  P r e d ic ta b i l i t y a 1  +  a 2  /2  =  0 V t  =  b 2  +  a 2  ( ln δ t  -  u t )
      ( N P ) a 1  > 0 ,    b 2  >  0 d V t  = a 2 (b 1  -  0 .5 b 2  -  u )d t  +  a 2 V t

1 /2  d z t S V

b 1  >  u  +  (a 2  +  b 2  ) /2  r t  =  ρ  +  b 1  -0 .5 b 2  -  0 .5 V t

d r t  = − 0 .5 a 2 (b 1  -  0 .5 b 2  -  u ) d t  -  0 .5 a 2 V t
1 /2  d z t S I

µ t  =  ρ  +  b 1  - a 1  ( ln δ t  -  u t )
T h e  G e n e r ic  C a s e : d µ t  = (a 1 + 0 .5 a 2 ) ( ρ + u + 0 .5 ξ -  µ t ) d t  -  a 1 V t

1 /2  d z t  S R

S R S V S I  -  P V t  =  b 2  +  a 2  ( ln δ t  -  u t )
a 1  +  a 2  /2  >  0 ,    a 1   > 0 , d V t  = ( a 1 + 0 .5 a 2 ) ( ξ  -  V t )d t  +  a 2 V t

1 /2  d z t  S V

a 2 b 1  + a 1 b 2 > a 2 (0 .5 a 2  + u )  r t  =  ρ  +  b 1  -b 2  -  (a 1 + a 2 ) ( ln δ t  -  u t )
d r t  = (a 1 + 0 .5 a 2 ) ( ρ +  u  -  0 .5 ξ -  r t ) d t  -  (a 1 + a 2 ) V t

1 /2  d z t  S I

R e tu rn  h a s µ t  =  ρ  +  b 1  - a 1  ( ln δ t  -  u t )
m o d e r a te S R S V C I  -  P d µ t  = 0 .5 a 1 ( ρ + u + 0 .5 ξ -  µ t ) d t  -  a 1 V t

1 /2  d z t S R

P r e d ic t a b i l i ty a 1  =  -  a 2   >  0 V t  =  b 2  -  a 1  ( ln δ t  -  u t )
      ( P ) u + 0 .5 b 2  <  b 1  <  u + b 2 -  0 .5 a 1  d V t  = 0 .5 a 1 ( ξ  -  V t )d t  -  a 1 V t

1 /2  d z t  S V

r t  =  ρ  +  b 1  -  b 2 C I

µ t  =  ρ  +  b 1  - a 1  ( ln δ t  -  u t )
S R C V S I  -  P d µ t  = a 1 ( ρ + u + 0 .5 ξ -  µ t ) d t  -  a 1 V t

1 /2  d z t S R

a 2  =  0 V t  =  b 2  C V

a 1  ,   b 1  ,   b 2  >  0  r t  =  ρ  +  b 1  -b 2  -  a 1 ( ln δ t  -  u t )
d r t  = a 1 ( ρ +  u  -  0 .5 ξ -  r t ) d t  -  a 1 V t

1 /2  d z t  S I

Combined with the return volatility and the interest rate, there are six cases of the model listed

in Table 1: CRCVCI-PP and CRSVSI-PP under Perfect Predictability, SRSVSI-NP under No

Predictability and SRSVSI-P, SRSVCI-P and SRCVSI-P under moderate Predictability. The first

case CRCVCI-PP corresponds to the BS’s risk-neutral model where the interest rate and the

volatility of the asset are constant. At the same time, the return is also constant. The second case
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CRSVSI-PP indicates a constant return, stochastic volatility and a stochastic interest rate. It shows

that stochastic volatility and stochastic interest rates can be consistent with perfect predictability.

The third case SRSVSI-NP stands for stochastic return, stochastic volatility and stochastic interest

rate, none of which is predictable. The fourth case SRSVSR-P is the generic case where the return

has moderate predictability with stochastic and mean-reverting Vt and rt. The fifth case SRSVCI-

P permits return predictability and stochastic volatility while preserving a constant interest rate.

The sixth case SRCVSI-P permits return predictability and stochastic interest while preserving

constant volatility. In summary, the cases with stochastic volatility and/or stochastic interests

(e.g., SRSVSI-P SRCVSI-P SRSVCI-P) are consistent with return predictability for the market

portfolio.

It is important to note that the degree of return predictability under the actual probability

measure is not necessarily the same as that under the risk-neutral measure. Table 2 summarizes

parameter restrictions and the corresponding degrees of return predictability under both measures.

The degrees of predictability in most cases are similar except the no-predictability cases. When

a1 + 0.5a2 = 0, the return has no predictability under the actual measure while it is predictable

under the risk neutral measure. On the other hand, when a1 + 1.5a2 = 0, the return has no

predictability under the risk neutral measure while it is predictable under the actual measure.

Table 2: Level of Return Predictability under the Actual and the Risk-Neutral Measures

C : C o n stan t          S : S to ch astic           R : R e tu rn           V : V o la tility           I : In te res t R a te
P P : P erfec t P rd ic tab ility             N P : N o  P red ic tab ility           P  :P red ic tab ility

P aram e ter R estric tio n s U n d er th e  A ctu a l P ro b ab ility  M easu re U n d er th e  R isk -N eu tra l M easu re

a 1  =  a 2  =  0 C R C V C I - P P C R C V C I - P P

a 1  =  0 C R S V S I - P P C R S V S I - P P

a 1  +  a 2  /2  =  0 S R S V S I - N P S R S V S I -  P

a 1  +  3 a 2 /2  =  0 S R S V S I - P S R S V S I -N P

T h e  g ene ric  ca se S R S V S I - P S R S V S I -  P

a 1  =  -a 2  S R S V C I - P S R S V C I - P

a 2  =  0 S R C V S I - P S R C V S I - P

10



3. Pricing European Options on the Market Portfolio

I now examine the option prices under different parameter restrictions. Consider a European call

option written on the market portfolio with a strike price K and a maturity T . Its price at time

t ≤ T , Ct(St,K, T ), can be determined through the Euler equation (1.2) as

Ct(St,K, T ) = Et

µ
Uc(cT , T )

Uc(ct, t)
max(ST −K, 0)

¶
= e−ρ(T−t)δtEt

µ
1

δT
max(ST −K, 0)

¶
.

To simplify the presentation of equilibrium option pricing formulas, denote

χ(a, b, c) ≡
∞X
j=0

e−aaj

j!

Γ(b+ j, c)

Γ(b+ j)
, and 1− χ(a, b, c) ≡

∞X
j=0

e−aaj

j!

γ(b+ j, c)

Γ(b+ j)
,

where Γ(a, x) ≡ R∞x e−yya−1dy and γ(a, x) ≡ R x0 e−yya−1dy for positive x and γ(a, x) + Γ(a, x) ≡
Γ(a). The following proposition states the European stock option price formulas for the six cases

identified in Table 1 (see Appendix B for a proof).

Proposition 3.1. The equilibrium option prices on the market portfolio are:

For a2 > 0, Ct(St,K, T ) = Ste
−ρ(T−t)χ1 −Ke−R(t,T )(T−t)χ2 (4.1)

with d(K) = Vt − a2[lnSt/K + u(T − t)];

χ1 = χ
¡
α(t, T )Vte

−(a1+0.5a2)(T−t), v,α(t, T )d(K)
¢

χ2 = χ
³
A(t, T )α(t, T )Vte

−(a1+0.5a2)(T−t), v, α(t,T )A(t,T )d(K)
´
.

For a2 < 0, Ct(St,K, T ) = Ste
−ρ(T−t)(1− χ1)−Ke−R(t,T )(T−t)(1− χ2). (4.2)

For a2 = 0, Ct(St,K, T ) = Ste
−ρ(T−t)N(d1)−Ke−R(t,T )(T−t)N(d2), (4.3)

with R(t, T ) = lima2→0R(t, T ), Σ =
q
b2
1−e−2a1(T−t)
2a1(T−t) ,

d1 =
lnSt/K+(R(t,T )−ρ+ 1

2
Σ2)(T−t)

Σ
√
T−t and d2 = d1 − Σ

√
T − t.

The corresponding European put prices can be computed from the put-call parity condition with

ρ as the constant dividend yield.
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Formula (4.1) is applicable to the perfectly predictable case CRSVSI-PP and the no-predictability

case SRSVSI-NP. Formula (4.2) is applicable to the constant interest rate case SRSVCI-P with re-

turn predictability. Depending on the sign of a2, the generic case SRSVSI-P can use either (4.1) or

(4.2). Finally, (4.3) is applicable to the constant volatility case SRCVSI-P with return predictabil-

ity. In the limit a1 + 0.5a2 → 0, (4.3) reduces to the case CRCVCI-PP or the BS model. Note

that the option formulas in Proposition 4.1 can also be derived through the equivalent martingale

pricing principle with the unique transformation dz∗t = dzt +
√
Vtdt.

8

The generic case SRSVSI-P incorporates moderate return predictability, while allowing for sto-

chastic volatility and stochastic interest rates. The probability of exercising an option at maturity

is described by a non-central χ2 distribution which captures the skewness and kurtosis of the return

for the market portfolio much better than a normal distribution. From a practical point of view,

option prices in (4.1) and (4.2) can be easily computed since Γ functions are readily available in

many software packages.

It is inappropriate to provide a direct comparison between the current model and Lo and Wang’s

(1995) analysis, since the former allows for stochastic volatility and/or stochastic interest rate and

the latter deals with constant interest rates and constant volatility. The closest case is SRCVSI-P

with a2 = 0, which permits constant volatility but stochastic risk-free rates. SRCVSI-P corresponds

to formula (4.3). It is clear that parameter a1 affects the probability calculation N(d1) and N(d2)

through the volatility-to-maturity Σ =
£
b2
¡
1− e−2a1(T−t)¢ / (2a1(T − t))¤1/2.

As expected, the risk-free yield, not the drift of the market portfolio, explicitly enters option

pricing formulas in (4.1), (4.2) and (4.3) as the discount rate. However, it would be erroneous

to infer that parameters determining return predictability (a1 and a2) do not affect option prices

for the market portfolio. They affect option prices through the endogenous stochastic volatility

and the risk-free yield. This result is quite different from that in Lo and Wang (1995), who

conclude that return predictability influences only the volatility parameter. The difference arises

for two reasons: (i) because the current model uses an equilibrium framework where interest rates

endogenously depend on parameters underlying the aggregate dividend process; (ii) the asset under

consideration is the market portfolio, not individual stocks.9

However, parameters (a1 and a2) that determine return predictability affect stochastic volatility

and the risk-free yield in a very complicated way, which makes it difficult to analytically determine

12



their overall effects on option prices. Therefore, I quantify the effects with numerical analysis in

the next section.

4. Empirical Estimation and Numerical Analysis

I conduct numerical analyses in two steps. First, I empirically estimate the model parameters.

Second, with the estimated parameters, I calculate option prices for the six cases and identify the

effects of return predictability under different conditions.

4.1. Parameter Estimation for S&P500

The S&P500 is taken as a proxy for the market portfolio. The model parameters are estimated

through the price movements described in (1.4). The S&P 500 daily ex-dividend closing prices are

obtained from Bloomberg for the period of January 1, 1979 to December 31, 1998 and are used to

estimate parameters (u, a1, b1, a2, b2).
10 The rate of time preference, ρ, is equal to the dividend

yield on the market portfolio in equilibrium; so it is set to be 2.5% to match the long-run average

dividend yield of S&P500. The daily return file is first created by computing lnSt/St−1 from the

daily price data. Based on the daily return file, weekly, monthly and quarterly returns and the

corresponding variances are created. For example, the weekly return is the sum of the daily returns

for a week. The corresponding variance is the variance of the daily return during the week. The

implicit assumption is that the variance is constant during the week but changes from week to

week, as in Wiggins (1987). It is important to note that the return is negatively correlated with

its variance for all horizons. The negative correlation ranges from −.22276 for the weekly data to
−.41843 for the quarterly data. The negative correlation confirms a similar result in Cox (1996),
Das and Sundaram (1999), Wiggins (1987) and many others.11

To begin with the estimation, I first de-trend the log stock price. The OLS regression shows

that S&P500 was growing at a rate of 11% ∼ 12% during 1979 - 1998. In the estimation, I

utilize the de-trended log price in (1.4) and the equilibrium restriction on volatility, i.e., Vt =

b2 + a2(lnSt − ln ρ − ut). Maximum likelihood method is performed with weekly, monthly and

quarterly data. Table 3 presents the estimation results for model parameters (u, a1, b1, a2, b2)

under the six cases identified in Table 1. A few observations are in order.

(1) For the generic case SRSVSI-P, the estimated parameters are sensitive to return horizons.

13



Notably, parameter a1, a key parameter determining the reversion speed, increases from 0.06967

with the weekly horizon to 0.43332 for the quarterly horizon. This suggests that return predictabil-

ity is more pronounced for longer horizons.

(2) The cases with modest predictability, SRSVCI-P and SRCVSI-P are the restricted versions

of the generic case SRSVSI-P. In order to guarantee a similar behavior of the volatility structure,

I set the long-run means of the volatility in these two restrictive cases to be equal to that of

the generic case SRSVSI-P. The estimated a1 under SRCVSI-P is usually bigger than that of the

generic case SRSVSI-P. Such a larger magnitude of a1 may be a result of compensating for the

constant volatility restriction. SRSVCI-P is the most restrictive case, which requires a2 = −a1.
This restriction forces a2 to take a negative value which imposes a positive relation between the

return and its variance. This imposed positive relation contradicts the true negative relation as

shown in the data.

(3) Under CRSVSI-PP where the instantaneous return is constant, the estimated long-run mean

of volatility is bigger than that of the generic case SRSVSI-P. Consequently, it may imply a higher

expected stock price compared with the generic case which has a lower long-run mean of volatility,

as shown in the numerical comparison.

(4) The no-predictability case SRSVSI-NP restricts the reversion speed to be zero. As a result,

the estimated b1 under this case is significantly higher than that of the generic case SRSVSI-P.

The analysis below is carried along two dimensions. Section 5.2 investigates the effects of differ-

ent levels of return predictability on option prices in a Stochastic-Volatility-Stochastic-Interest-Rate

context. Namely, I contrast the perfect predictability case CRSVSI-PP and the no-predictability case

SRSVSI-NP to the generic case SRSVSI-P with a moderate predictability. Section 5.3 examines the

effects of stochastic volatility or stochastic interest rates on option prices when actual returns

exhibit modest predictability. This analysis is carried out with SRSVCI-P, SRCVSI-P and the

generic case SRSVSI-P. In addition, I make comparisons to the BS model (or the CRCVCI-PP

case) throughout the analysis.

4.2. Effects of Predictability on Option Prices with Stochastic Volatility and Stochastic
Interest Rate

This section analyzes the effects of different degrees of return predictability on option prices in a

SVSI environment. CRSVSI-PP, SRSVSI-NP and the generic case SRSVSI-P all allow for stochastic
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volatility and stochastic interest rate. To follow the standard practice, I compare these three cases

with the modified-BS option prices which are defined as follows: the constant volatility and the

constant interest rate in the BS model are replaced with the volatility term structure and yield

curve for different maturities. It explicitly incorporates non-constant volatility and non-constant

interest rate into the BS model.12 In addition, CRCVCI-PP is taken as a benchmark case and is

strictly computed with a constant interest rate and constant volatility.

Call and put option prices are calculated for a short maturity T − t = 0.25 year, a medium

maturity T−t = 1 year and a long maturity T−t = 5 years. Strikes are chosen so that the moneyness
of an option is linked to the expected index level, not the spot index level, for a specific maturity

under each case. For example, the out-of-the-money call option strike is set at K = 0.95Et(ST )

while the in-the-money call option strike at K = 1.05Et(ST ) and the at-the-money call option

strike at K = Et(ST ). There are two important reasons for doing so. First, it is not appropriate

to set the same strike price for different maturities for the same case. Given the positive growth

trend in the stock return, the index is likely to increase more in a long horizon than in a short

horizon. This would suggest that a longer-maturity option would more likely be in the money if the

moneyness were defined by the spot index and hence would create some “systematic” bias towards

longer-maturity option prices in the same case. The proposed adjustment of moneyness eliminates

this bias. For comparison, I examine the percentage price differences, not the price differences.

The percentage price is calculated as the ratio between the option price and the spot index. In

this way, I can effectively illustrate the impact of different maturities on options under the same

level of return predictability. Second, it is not proper to set the same strikes across different cases

for the same maturity since each of the six cases permits different price dynamics for the stock.

The adjusted moneyness for each strike permits a fair comparison based on the percentage pricing

differences between different cases for the same maturity, and hence effectively demonstrates the

influence of different levels of return predictability on options under the same maturity.

For all calculations, the spot index level is set at St = 1300, which resembles the average level

in the sample period. The conditional expected stock prices, Et(ST ), derived in Appendix C,

are also computed for each case. Tables 4 and 5 compare call/put options among CRCVCI-PP,

CRSVSI-PP, SRSVSI-NP and the generic case SRSVSI-P. Each table contains option prices and

delta hedging ratios for each case with three maturities and three strikes.13 The modified-BS option
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value is computed for each case and each maturity, according to the procedure defined earlier. I

summarize the general results as follows.

(1) The conditional expected stock prices, Et(ST ), are very similar across different cases for

short horizons. For example, the 3-month conditional expected stock prices implied by these 4

cases range from 1371.46 to 1376.62. However, as the horizon gets longer, the differences among

these four cases become larger. For the maturity T − t = 1 year, the conditional expected stock

prices range from 1500.00 to 1527.17. For the maturity T − t = 5 years, the conditional expected
stock prices range from 2373.27 to 2689.18. In general, the generic case SRSVSI-P always yields

the lowest expected stock price while SRSVSI-NP gives the highest, which may be attributed to

the no-predictability feature and the higher long-run mean of volatility.

(2) For the interest rate structure, CRSVSI-PP, SRSVSI-NP and SRSVSI-P generate upward

sloping yield curves. For the volatility structure, only the generic case SRSVI-P generates a realis-

tic downward sloping volatility structure while CRSVSI-PP and SRSVSI-NP generate unrealistic

upward sloping volatility structure.

(3) The modified-BS call price for each maturity and each strike is computed. It is almost

always higher than the option price for the corresponding case. This suggests that the modified-BS

approach described here would generally overprice options.

(4) The percentage option prices with short maturity are very similar under CRCVCI-PP,

CRSVSI-PP, SRSVSI-NP and the generic case SRSVSI-P. For example, the at-the-money call

prices with maturity T − t = 0.25 year range from 2.694% and 2.862% of the spot index while the

corresponding put option prices range between 3.25% and 3.481%. However, the percentage price

difference gets larger as maturity increases. For the maturity T − t = 1 year, the at-the-money

call prices range from 4.23% to 5.074% while the at-the-money put prices from 5.815% to 7.561%.

The difference is even larger for options with maturity T − t = 5 years. The at-the-money call

prices range from 4.606% to 7.912% while the corresponding put prices from 6.956% to 20.566%.

These patterns are illustrated in Exhibit 1. Under all circumstances, the generic case SRSVSI-P

almost always generates the lowest call prices, implying that call options would be overpriced by

the modified-BS, or CRCVCR-PP, CRSVSI-PP and SRSVSI-NP which did not correctly reflect the

level of return predictability.

(5) Since the one-factor set-up in the current model allows for a perfect hedge with the un-
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derlying stock in a SVSI context, it is interesting to examine the implication of delta hedging in

the presence of return predictability. Tables 4 and 5 show that delta hedge ratios for options with

short-maturity are similar for different levels of return predictability. In particular, the delta ratio

ranges from 0.4467 to 0.4971 for the at-the-money call option, and from -0.4314 to -0.5112 for the

at-the-money put option. The difference in the delta hedging ratio gets larger as the maturity

increases. More precisely, for the medium maturity, the delta ratio ranges from 0.3250 to 0.4810 for

the at-the-money call option, from -0.2680 to -0.5159 for the at-the-money put option. For the long

maturity, the delta ratio ranges from 0.0806 to 0.3960 for the at-the-money call option, and from

-0.2150 to -0.4982 for the at-the-money put option. The generic case requires the least percentage

of the underlying stock to hedge a call. These observations are illustrated in Exhibit 2.

It is worth noting that the differences in delta ratio across difference cases are generally much

larger than the differences in prices. This observation has important implications for hedging

practice. For example, when delta hedging is carried out based on a wrong model, the hedging

errors can be significant even if the prices generated by this model is close to the “correct” prices.

Take the 1-year at-the-money call options as an example. The delta ratios are 0.325, 0.469 and

0.481 under SRSVSI-P, CRSVSI-PP and SRSVSI-NP, respectively. Suppose the SRSVSI-P case is

correct, the unnecessary hedging costs for each call option are $187. 2 (= 1300 ∗ (0.469 − 0.325))
under CRSVSI-PP and $202. 8 = (1300∗ (0.481−0.325)) under SRSVSI-NP. Stated differently, the
unnecessary hedging costs are worth 14.4%(= 187.2/1300) of the stock index under CRSVSI-PP,

or 15.6% (= 202.8/1300) under SRSVSI-NP.

In summary, the numerical results show that if the level of return predictability is not properly

reflected, long-term options will be significantly overpriced in a SVSI environment.

4.3. Effects of Volatility and Interest Rate Under Moderate Return Predictability

This section analyzes the effects of SV and/or SI on option prices when actual returns exhibit modest

predictability. Namely, I compare the constant volatility cases SRCVSI-P and the constant interest

rate case SRSVCI-P with the generic case SRSVSI-P. Tables 6 and 7 present the comparisons for

calls and puts, respectively. Similar to Tables 4 and 5, they contain option prices and delta hedging

ratios for each case with three maturities and three strikes. In addition, the modified-BS option

value is also computed. The general results can be summarized as follows.
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(1) The conditional expected stock prices, Et(ST ), are very similar across different cases for short

horizons. As the horizon gets longer, the differences among the three cases become larger. The

generic case SRSVSI-P yields the modest expected stock level. SRSVCI-P always gives the lowest

prediction. This may be a result of the incorrect correlation between returns and the variances

imposed by a negative a2.

(2) This constant interest rate case SRSVCI-P generates an unrealistic upward sloping volatility

structure. Such unrealistic volatility structures have direct consequences on the option prices. As

shown by the numerical results, long-term options with 5-year maturity calculated by SRSVCI-P

are much lower than those given by the generic case SRSVSI-P. However, for in-the-money short-

term options, SRSVCI-P gives higher prices than the generic case SRSVSI-P. Similar observations

can be made for delta hedging ratios.

(3) The constant volatility case SRCVSI-P produces very similar percentage option prices to

those of the generic case SRSVSI-P. For the short maturity at-the-money call option, the percentage

price is 2.706% under SRCVSI-P and 2.712% under the generic case SRSVSI-P. For the medium

maturity at-the-money call option, the percentage price is 4.248% under SRCVSI-P and 4.23%

under the generic case SRSVSI-P. For the long maturity at-the-money call option, the percent-

age price is 4.692% under SRCVSI-P and 4.606% under the generic case SRSVSI-P. In terms of

delta hedging, the constant volatility case SRCVSI-P and the generic case SRSVSI-P behave very

similarly. For example, the delta hedging ratio for the short maturity at-the-money call option is

0.4316 under SRCVSI-P and 0.4467 under the generic case SRSVSI-P. For the medium maturity

at-the-money call option, the hedging ratio is 0.3043 under SRCVSI-P and 0.3250 under the generic

case SRSVSI-P. For the long maturity at-the-money call option, the hedging ratio is 0.0802 under

SRCVSI-P and 0.0868 under the generic case SRSVSI-P.

In summary, the two-dimensional comparisons in Sections 5.2 and 5.3 suggest that (i) stochastic

volatility does not influence European option prices or the hedging ratios in a significant way when

moderate predictability is properly reflected in option prices through the correct specification of

the actual returns;14 and (ii) when return predictability is correctly specified, interest rates affect

the option prices in a more complicated way. If the interest rate were assumed constant, the model

with stochastic volatility would underprice the long-term options while overpricing short-term in-

the-money options.
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5. Conclusion

This paper examines the effects of return predictability on option prices in the presence of stochastic

volatility and/or stochastic interest rates. The analysis is carried out in a general equilibrium

framework where the option pricing formula is derived with the return predictability and stochastic

volatility and the precise link between the actual and the risk neutral measures is endogenized. Five

important results are established. First, equilibrium results indicate that return predictability of

the market portfolio can be induced by the mean-reverting and heteroskedastic features of the

aggregate dividend. Second, risk-neutral option pricing model with either the stochastic volatility

or the stochastic interest rate or both can be consistent with return predictability. Third, models

with either perfect predictability or no predictability will significantly overprice long-term options

across different strike prices when the return of the underlying asset exhibits modest predictability.

Such large overpricing suggests that return predictability should be properly incorporated into long-

term option prices. Fourth, the numerical analysis indicates that stochastic volatility does not affect

option prices in a significant way when asset return predictability is properly reflected in the actual

stock price process. Fifth, when return predictability is correctly specified, the stochastic interest

rate affects the option prices in a very complicated way. For example, when return predictability is

correctly specified, a constant-interest-rate-stochastic-volatility model would underprice the long-

term options while overpricing in-the-money short-term options.
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Footnotes

1. For evidence on return predictability, see Bekaert and Hodrick (1992), Breen, Glosten and

Jagannathan (1989), Campbell and Hamao (1992), Fama and French (1988a), (1988b) and

Ferson and Harvey (1991). For evidence on stochastic volatility, see Rosenberg (1972) and

Wiggins (1987).

2. The risk-neutral measure (or the equivalent martingale measure) is not empirically observed.

To implement an option pricing model derived under the risk-neutral approach (such as the

BS model), one way is to infer the equivalent martingale measure from the actual stock price

movement, which is what Lo and Wang did. To do so, one must know (or make assumptions

on) the actual probability distribution of the underlying asset price. Furthermore, one needs

to know the precise relationship between the two probability measures in order to correctly

infer the equivalent probability measure from the actual probability distribution.

3. All expectations in this paper are taken with respect to the filtration specified earlier, unless

otherwise specified. The budget constraint is similar to that defined in Duffie (1992) for the

security market equilibrium. This Euler equation approach has been adopted by Naik and

Lee (1990).

4. The instantaneous volatility of the market portfolio is
√
Vt. For presentational simplicity, I

choose to discuss the instantaneous variance. The two concepts are equivalent.

5. In an endowment economy, equilibrium risk-free rates generally depend on agents’ risk prefer-

ences and parameters underlying the dynamics of aggregate dividends (see Lucas 1978, Bailey

and Stulz 1989). However, the particular instantaneous risk-free rate obtained here is specific

to the current set-up.

6. It is straightforward to show that the market price of risk,
√
Vt, satisfies the Novikov condition

E
h
exp

³
1
2

R∞
0

°°√Vs°°2 ds´i <∞ (see Karatzas and Shreve, 1998). This, in turn, ensures the

uniqueness of the equivalent martingale measure.

7. In a similar spirit, Broadie, Detemple, Ghysels and Torres (2000) extensively discussed the

joint restrictions on the equilibrium drift and volatility of the stock prices and the equilibrium

interest rate.
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8. This is discussed in Appendix C.

9. Bailey and Stulz (1989) obtain a similar result in the absence of return predictability. They

find that option prices are influenced by parameters underlying the economic fundamentals

through the endogenous volatility function and the risk-free rate in equilibrium. Evidently,

the influence of the drift of aggregate dividends on risk-free rates and hence on option prices

is only true for the market portfolio. This argument may not be applied to individual stocks.

10. The returns of S&P 500 in this sample period showed relatively less mean-reverting. The

reason that I chose this period is to illustrate the significance of a moderate predictability on

option prices. The effect of return predictability could be more pronounced for other periods,

especially for the most recent years.

11. For further discussions and references on this negative correlations, see Das and Sundaram

(1999).

12. This modified approach is equivalent to using Merton’s (1973) extension of the Black-Scholes

model. For further discussion on this modification, see Chapter 16 in Hull (2005).

13. Precise formulas for delta hedging ratios are provided in Appendix E.

14. This result is true for European-style options. It is possible that models generating similar

prices for European options may not necessarily produce similar prices for American-style

options or exotic options.
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Appendices

A. Proofs of Proposition 1.1

A.1. The Price of the Risky Stock

Proof. Since the volatility process in (1.6) resembles the single state variable in Cox-Ingersoll-Ross

(1985b), it satisfies all the properties identified by Cox-Ingersoll-Ross (1985b, page 391): (i) Vt is

strictly positive if a1+0.5a2 > 0 and (2a1+a2)ξ ≥ a22; (ii) VT conditional on (Vt, t) has a non-central

χ2 distribution with the following density function:1

where

f(VT , T ;Vt, t) = α(t, T )e−(x+λ)
P∞
j=0

(xλ)j

Γ(v+j)j!

λ ≡ α(t, T )Vte
−(a1+ 1

2
a2)(T−t), x ≡ α(t, T )VT ,

(A.1)

and α(t, T ) is specified in Proposition 2.1. The Euler equation (2.3) implies the following price for

the market portfolio at time t

St(δt) = e
ρtδtEt

µZ ∞

t
e−ρT

1

δT
× δTdT

¶
=

δt
ρ
, ∀ t ∈ (0,∞).

Since the stock price is linear in δ, the dynamics of the stock price are

dS

S
= (µt − ρ)dt+

p
Vtdzt with

µt = ρ+ b1 − a1(ln δt − ut) and Vt = b2 + a2(ln δt − ut).

A.2. The Instantaneous Risk-free Rate and the Yield-to-Maturity

Proof. I first calculate the pure discount price with maturity T at time t ≤ T. From the Euler

equation (2.3), I have

Bt(T ) = e
ρtδtEt

µ
e−ρT

1

δT
× 1
¶
= e−ρ(T−t)δtEt

µ
1

δT

¶
, ∀ t ∈ (0, T ).

1See Johnson and Kotz (1970) for the non-central χ2 distribution and Feller (1951) for the corresponding proba-
bility transition function.
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The price of a pure discount bond can be computed based on the conditional density in (A.1):

Bt(T ) = e−ρ(T−t)e
−b2+Vt

a2
+ut

Z ∞

0
e
b2−VT
a2

−uT
α(t, T )e−(x+λ)xv−1

∞X
j=0

(xλ)j

j!Γ(v + j)
dVT

= e
−(ρ+u)(T−t)+ Vt

a2

∞X
j=0

e−λλj

j!Γ(v + j)
Γ(v + j)(

α(t, T )a2
α(t, T )a2 + 1

)v+j

=

µ
α(t, T )a2

α(t, T )a2 + 1

¶v
e
−
µ
ρ+u− 2(a1+a2)A(t,T )Vt

a32α(t,T )(T−t)

¶
(T−t)

.

The yield-to-maturity, R(t, T ), is defined through e−R(t,T )(T−t) ≡ Bt(T ). Therefore,

R(t, T ) = ρ+ u− v ln (A(t, T ))
T − t − [b2 + a2(ln δt − ut)]A(t, T )(a1

a2
+ 1)

1− e−(a1+a2/2)(T−t)
(a1 + a2/2)(T − t) .

Then, the spot instantaneous interest rate rt is

rt = lim
T→t

R(t, T ) = ρ+ u+
v

a2
− (a1
a2
+ 1)[b2 + a2(ln δt − ut)].

B. Proof of Proposition 3.1:

B.1. Stock Option Valuation under a2 > 0

Under a2 > 0, ST ≥ K implies VT ≥ d(K) = Vt − a2[lnSt/K + u(T − t)]. Thus

Ct(St,K, T ) = e
−ρ(T−t)
t δtEt

µ
1

δT
×max(ST −K, 0)

¶
= e−ρ(T−t)StProb[VT ≥ d(K)]− e−ρ(T−t)Kδt

Z ∞

d(K)

1

δT
f(VT | Vt)dVT .

Then,

e−ρ(T−t)StProb[VT ≥ d(K)] = e−ρ(T−t)St
R∞
d(K) α(t, T )e

−(x+λ)xv−1
P∞
j=0

(xλ)j

j!Γ(v+j)dVT

= e−ρ(T−t)St
P∞
j=0

e−λλj
j!

Γ(v+j,α(t,T )d(K))
Γ(v+j) = e−ρ(T−t)Stχ1,

and

e−ρ(T−t)Kδt
R∞
d(K)

1
δT
f(VT | Vt)dVT

= Ke
−ρ(T−t)+−b2+Vt

a2
+ut R∞

d(K) e
b2−VT
a2

−uT
α(t, T )e−(x+λ)xv−1

P∞
j=0

(xλ)j

j!Γ(v+j)dVT
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= Ke
−(ρ+u)(T−t)+ Vt

a2
P∞
j=0

e−λλj
j!Γ(v+j)

R∞
d(K) α(t, T )e

−VT
a2 e−α(t,T )VT (α(t, T )VT )v+j−1dVT

= Ke
−(ρ+u)(T−t)+ Vt

a2
P∞
j=0

e−λλj
j!Γ(v+j)Γ[v + j,

α(t,T )
A(t,T )d(K)]A(t, T )

v+j

= Ke−R(t,T )(T−t)
P∞
j=0

e−A(t,T )λ(A(t,T )λ)j
j!

Γ(v+j, α(t,T )
A(t,T )

d(K))

Γ(v+j) = Ke−R(t,T )(T−t)χ2.

Therefore,

Ct(St,K, T ) = e
−ρ(T−t)Stχ1 −Ke−R(t,T )(T−t)χ2.

B.2. Stock Option Valuation under a2 < 0

Proof. Under a2 < 0, ST ≥ K implies VT ≤ d(K) = Vt − a2[lnSt/K + u(T − t)]. Thus

Ct(St,K, T ) = e
−ρ(T−t)
t δtEt

µ
1

δT
×max(ST −K, 0)

¶
= e−ρ(T−t)StProb[VT ≤ d(K)]− e−ρ(T−t)Kδt

Z d(K)

0

1

δT (VT )
f(VT | Vt)dVT .

Tedious algebra shows that

Ct(St,K, T ) = Ste
−ρ(T−t) (1− χ1)−Ke−R(t,T )(T−t) (1− χ2) .

B.3. Stock Option Valuation under a2 = 0

When a2 = 0, ln δT | ln δt has a Gaussian distribution:

f(ln δT | δt) =
1p

2πΣ2(T − t) exp
µ
−(ln δT −Ψ)

2

2Σ2(T − t)
¶
with Σ2 = b2

1− e−2a1(T−t)
2a1(T − t)

and Ψ = ln δte
−a1(T−t) + u(T − te−a1(T−t)) + b1 − u−

1
2b2

a1
(1− e−a1(T−t)).

European call options under a2 = 0 can be priced as follows:

Ct(St,K, T ) = e
−ρ(T−t)
t δtEt

µ
1

δT
×max(ST −K, 0)

¶
.

It can be easily shown that

Ct(St,K, T ) = e
−ρ(T−t)StN(d1)− e−R(t,T )(T−t)KN (d2)
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where

d1 =
lnSt/K+(R(t,T )−ρ+ 1

2
Σ2)(T−t)

Σ
√
T−t and d2 = d1 − Σ

√
T − t

R(t, T ) = lima2→0R(t, T )

= ρ+ u+
¡
b1 − u− 1

2b2 − a1(ln δt − ut)
¢
1−e−a1(T−t)
a1(T−t) − b2

2
1−e−2a1(T−t)
2a1(T−t) .

C. The Partial Differential Equation Approach

Based on Assumption 2 for the de-trended log aggregate dividend, the process for aggregate dividend

can be written as

dδ

δ
= µδdt+ σδdzt with

µδ = (b1 − a1(ln δt − ut)) and σδ =
p
b2 + a2(ln δt − ut).

Denote the process for the price of asset i, Xi, as

dXi

Xi
=

µ
µi − qi

Xi

¶
dt+ σidz with

µiXi =
∂Xi

∂δ
µδδ+

∂Xi

∂t
+
1

2

∂2Xi

∂δ2
σ2δδ

2 + qi and σiXi =
∂Xi

∂δ
σδδ.

The price processes of for all assets are determined in equilibrium.

Define the total wealth as W =
PN
i=0 θ

iXi and the percentage wealth invested in asset i as

wi = θiXi

W . Then,
PN
i=0w

i = 1. For simplicity, assume the pure discount bond is asset 0. Therefore,

w0 = 1−
NX
i=1

wi and
dB

B
= rdt.

The budget constraint below is similar to that in Merton (1971)

dW

W
= µWdt+ σWdzt with

µW =

Ã
r +

NX
i=1

wi(µi − r)− c

W

!
and σW =

Ã
NX
i=1

wiσi

!
.

Denote

J(W, δ, t) = max
w,c

Et

µZ ∞

t
U(cτ , τ)dτ

¶
and Ψ(w, c;W, δ, t) = U(ct, t) + L[J ]
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where L[J ] is the differential generator of J associated with its control

L[J ] = Jt + JWWµW + Jδδµδ + JWδδσδWσW +
1

2
JWWW

2σ2W +
1

2
Jδδδ

2σ2δ .

The agent solves w, c by maximizing Ψ(w, c;W, δ, t). The first order conditions are:

∂Ψ
∂c = Uc − JW = 0

∂Ψ
∂wi

= JWW (µ
i − r) + JWδδσδWσi + JWWW

2σWσi = 0 ∀ i = 1, 2, ...,N.

Thus, the Partial Differential Equation (PDE) satisfied by the price of asset i is derived from the

first order conditions as

∂Xi

∂δ
µδδ+

∂Xi

∂t
+
1

2

∂2Xi

∂δ2
σ2δδ

2 + qi +
JWδ

JW

∂Xi

∂δ
δ2σ2δ +

WJWW

JW

∂Xi

∂δ
σWσδδ = rX

i.

Since the period utility is U(ct, t) = e
−ρt ln ct, then JWδ

JW
= 0 and WJWW

JW
= −1 (see Merton 1971 ).

Then the PDE is further reduced to

∂Xi

∂δ
µδδ+

∂Xi

∂t
+
1

2

∂2Xi

∂δ2
σ2δδ

2 + qi − ∂Xi

∂δ
σWσδδ = rX

i.

Applying Lemma 4 of Cox-Ingersoll-Ross (1985a, p. 380) to the above PDE, one can obtain

the same solution as that of the Euler equation.

D. Conditional Expected Stock Price

The conditional expectation of the price for the market portfolio is computed based on the condi-

tional density in (A.1):

Et(ST ) = Et

µ
δT
ρ

¶
=
1

ρ

Z ∞

0
e
−b2+VT

a2
+uT

α(t, T )e−(x+λ)xv−1
∞X
j=0

(xλ)j

j!Γ(v + j)
dVT

=
e
−b2
a2
+uT

ρ

∞X
j=0

e−λλj

j!Γ(v + j)
Γ(v + j)

µ
α(t, T )a2

α(t, T )a2 − 1
¶v+j

= St exp

Ã
u(T − t)− Vt

a1
¡
1− e−(a1+a2/2)(T−t)¢
a2 (a1 + a2/2)

!µ
α(t, T )a2

α(t, T )a2 − 1
¶v
.
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E. Delta Ratios for Call and Put Options

For a2 > 0,

∆call =
∂Ct
∂St

= Ct
St
+ K

St
A(t, T )e−[a1+

1
2
a2+R(t,T )](T−t)P∞

j=0
e−αλ(Aλ)j

j!

Γ(v+j+1, α(t,T )
A(t,T )

d(K))

Γ(v+j+1)

∆put =
∂Pt
∂St

= ∂Ct
∂St

+ K
St
e−R(t,T )(T−t)

³
1−A(t, T )e−(a1+ 1

2
a2)(T−t)

´
− e−ρ(T−t).

For a2 < 0,

∆call =
∂Ct
∂St

= Ct
St
+ K

St
A(t, T )e−[(a1+

1
2
a2)+R(t,T )](T−t)P∞

j=0
e−αλ(Aλ)j

j!

γ(v+j+1, α(t,T )
A(t,T )

d(K))

Γ(v+j+1)

∆put =
∂Pt
∂St

= ∂Ct
∂St

+ K
St
e−R(t,T )(T−t)

³
1−A(t, T )e−(a1+ 1

2
a2)(T−t)

´
− e−ρ(T−t).

For a2 = 0,

∆call =
∂Ct
∂St

= Ct
St
+ K

St
e−[a1+R(t,T )](T−t)N(d2)

∆put =
∂Pt
∂St

= ∂Ct
∂St

+ K
St
e−R(t,T )(T−t)

¡
1− e−a1(T−t)¢− e−ρ(T−t).

30



Table 3: Estimation Results

W eekly D ata M onthly D ata Q uarterly D ata
            R eturn w ith  P erfect P redictab ility

C R C V C I - P P  ( =  B lack-Scholes M odel ) :   a 1 =  a 2  =  0 ;   b 1  ,   b 2  >  0
a 1 0.00000 0.00000 0.00000
b 1 0.14297 (0 .10740) 0 .13761 (0 .02039) 0 .13549 (0 .00586)
a 2 0.00000 0.00000 0.00000
b 2 0.02272 (0 .09412) 0 .02536 (0 .00791) 0 .02112 (0 .00064)

C R SV SI - P P  :   a 1 =  0 ,  a 2  >  0;   b 1  >  u  +   b 2  /2    and    b 2  >    0
u 0.12011 (0 .00000) 0 .11400 (0 .00002) 0 .11400 (0 .00004)

a 1 0.00000 0.00000 0.00000
b 1 0.15091 (0 .00072) 0 .15566 (0 .00094) 0 .13681 (0 .00141)
a 2 0.03246 (0 .00091) 0 .08233 (0 .00072) 0 .06050 (0 .00160)
b 2 -0 .00078 (0 .00076) -0 .04456 (0 .00061) -0 .02568 (0 .00134)

ξ 1/2 0.24820 0.28864 0.21358

            R eturn w ith  N o P redictab ility

SR SV SI - N P  :   a 1  +  0 .5a 2  =   0;  b 2  >  0   and   b 1   >  u  +  (a 2  +  b 2  )/2  
u 0.12011 (0 .00000) 0 .11400 (0 .00002) 0 .11400 (0 .00004)

a 1 -0 .01623 (0 .00046) -0 .04117 (0 .00036) -0 .03025 (0 .00080)
b 1 0.13831 (0 .00072) 0 .12258 (0 .00094) 0 .11272 (0 .00141)
a 2 0.03246 (0 .00091) 0 .08233 (0 .00072) 0 .06050 (0 .00160)
b 2 -0 .00078 (0 .00076) -0 .04456 (0 .00061) -0 .02568 (0 .00134)

               R eturn w ith  M oderate P redictability

SR SV SI - P  :    a 1  +  0 .5a 2  >   0    and    b 1  a 2   +   b 2  a 1   >   a 2 (0 .5a 2  +  u ) 
u 0.12011 (0 .00000) 0 .11400 (0 .00002) 0 .11400 (0 .00004)

a 1 0.06967 (0 .02573) 0 .06229 (0 .05670) 0 .43332 (0 .06940)
b 1 0.20496 (0 .01649) 0 .20575 (0 .03789) 0 .48137 (0 .04586)
a 2 0.03246 (0 .00091) 0 .08233 (0 .00072) 0 .06050 (0 .00160)

b 2 -0 .00078 (0 .00076) -0 .04456 (0 .00061) -0 .02568 (0 .00134)
ξ 1/2 0.17729 0.21491 0.15473

SR SV C I - P  :   a 2  =  - a 1  ;   u  +  0 .5b 2  <  b 1  <  u  - 0 .5a 1  +  b 2  

u 0.12011 (0 .00000) 0 .11400 (0 .00002) 0 .11400 (0 .00004)
a 1 0.17179 (0 .05236) 0 .20692 (0 .11412) 0 .92715 (0 .14041)
b 1 0.30630 (0 .01611) 0 .37402 (0 .03757) 0 .88639 (0 .04515)
a 2 -0 .17179 (0 .05236) -0 .20692 (0 .11412) -0 .92715 (0 .14041)
b 2 0.20190 (0 .00005) 0 .29198 (0 .00046) 0 .78436 (0 .01184)

ξ 1/2 0.17729 0.21491 0.15473

SR C V SI - P  :   a 2 =   0 ,     a 1  >   0  ,    b 1   >   0    and    b 2  >    0
u 0.12011 (0 .00000) 0 .11400 (0 .00002) 0 .11400 (0 .00004)

a 1 0.45565 (0 .09071) 0 .51412 (0 .10034) 0 .47387 (0 .10737)
b 1 0.52069 (0 .06263) 0 .57414 (0 .07112) 0 .52194 (0 .07446)
a 2 0.00000 0.00000 0.00000
b 2 0.03143 (0 .00032) 0 .04619 (0 .00021) 0 .02394 (0 .00045)

ξ 1/2 0.17729 0.21491 0.15473

Note: 1. ξ = [a1b2 + a2(b1 − u)]/(a1 + 0.5a2) is the long-run mean of variance.
2. Parameters are annualized. 3. Numbers in parentheses are estimation errors.

31



Table 4: Call Option Prices under Different Predictability
With Stochastic Volatility and Stochastic Interest Rate

CRCVCI CRSVSI SRSVSI SRSVSI CRCVCI CRSVSI SRSVSI SRSVSI CRCVCI CRSVSI SRSVSI SRSVSI
 - PP  - PP  - NP  - P  - PP  - PP  - NP  - P  - PP  - PP  - NP  - P

St = 1300 ( = BS) ( = BS) ( = BS)

T - t  =  0.25  year T - t  =  1.00  year T - t  =  5.00  years

 Et(ST) 1375.82 1376.28 1376.62 1371.46 1522.98 1525.00 1527.17 1500.00 2618.57 2635.96 2689.18 2373.27
VTM 0.1453 0.1562 0.1562 0.1556 0.1453 0.1577 0.1579 0.1553 0.1453 0.1650 0.1665 0.1548
R(t,T) 0.1394 0.1377 0.1385 0.1262 0.1394 0.1380 0.1386 0.1295 0.1394 0.1391 0.1392 0.1357

Adjusted Moneyness:  K  =  0.95 Et ( ST )

K 1307.03 1307.46 1307.79 1302.89 1446.83 1448.75 1450.81 1425.00 2487.64 2504.16 2554.72 2254.61
K/St 1.005 1.006 1.006 1.002 1.113 1.114 1.116 1.096 1.914 1.926 1.965 1.734
M-BS Call 74.440 76.057 76.054 76.474 94.878 99.189 98.761 103.584 125.116 142.089 135.112 174.523
Call 74.440 74.669 74.784 73.494 94.878 94.133 94.784 86.069 125.116 114.052 117.079 84.957
Call/St 5.726% 5.744% 5.753% 5.653% 7.298% 7.241% 7.291% 6.621% 9.624% 8.773% 9.006% 6.535%
∆call 0.7438 0.7402 0.7446 0.6817 0.5953 0.5926 0.6058 0.4314 0.4396 0.4028 0.4406 0.1143

Adjusted Moneyness:  K  =  1.00 Et ( ST )

K 1375.82 1376.28 1376.62 1371.46 1522.98 1525.00 1527.17 1500.00 2618.57 2635.96 2689.18 2373.27
K/St 1.058 1.059 1.059 1.055 1.172 1.173 1.175 1.154 2.014 2.028 2.069 1.826
M-BS Call 35.020 37.404 37.407 37.614 62.890 67.792 67.472 71.044 102.852 119.992 113.822 148.568
Call 35.020 37.058 37.208 35.250 62.890 65.150 65.957 54.991 102.852 96.806 100.608 59.884
Call/St 2.694% 2.851% 2.862% 2.712% 4.838% 5.012% 5.074% 4.230% 7.912% 7.447% 7.739% 4.606%
∆call 0.4826 0.4935 0.4971 0.4467 0.4594 0.4690 0.4810 0.3250 0.3843 0.3590 0.3960 0.0868

Adjusted Moneyness:  K  =  1.05 Et ( ST )

K 1444.61 1445.09 1445.45 1440.03 1599.13 1601.25 1603.53 1575.00 2749.50 2767.76 2823.64 2491.94
K/St 1.111 1.112 1.112 1.108 1.230 1.232 1.233 1.212 2.115 2.129 2.172 1.917
M-BS Call 13.075 15.092 15.097 15.159 39.709 44.523 44.299 46.771 84.144 101.044 95.631 125.975
Call 13.075 15.784 15.909 14.216 39.709 44.205 45.038 33.859 84.144 82.490 86.800 41.760
Call/St 1.006% 1.214% 1.224% 1.094% 3.055% 3.400% 3.464% 2.605% 6.473% 6.345% 6.677% 3.212%
∆call 0.2381 0.2686 0.2714 0.2332 0.3330 0.3575 0.3684 0.2306 0.3329 0.3197 0.3557 0.0648

Note: 1. All Parameters used in this table are estimated with quarterly data.
2. BS and M-BS stand for Black-Scholes and modified-Black-Scholes, respectively.
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Table 5: Put Option Prices under Different Predictability
with Stochastic Volatility and Stochastic Interest Rate

CRCVCI CRSVSI SRSVSI SRSVSI CRCVCI CRSVSI SRSVSI SRSVSI CRCVCI CRSVSI SRSVSI SRSVSI
 - PP  - PP  - NP  - P  - PP  - PP  - NP  - P  - PP  - PP  - NP  - P

St = 1300 ( = BS) ( = BS) ( = BS)

T - t  =  0.25  year T - t  =  1.00  year T - t  =  5.00  years

 Et(ST) 1375.82 1376.28 1376.62 1371.46 1522.98 1525.00 1527.17 1500.00 2618.57 2635.96 2689.18 2373.27
VTM 0.1453 0.1562 0.1562 0.1556 0.1453 0.1577 0.1579 0.1553 0.1453 0.1650 0.1665 0.1548
R(t,T) 0.1394 0.1377 0.1385 0.1262 0.1394 0.1380 0.1386 0.1295 0.1394 0.1391 0.1392 0.1357

Adjusted Moneyness:  K  =  0.95 Et ( ST )

K 1307.03 1307.46 1307.79 1302.89 1446.83 1448.75 1450.81 1425.00 2487.64 2504.16 2554.72 2254.61
K/St 1.005 1.006 1.006 1.002 1.113 1.114 1.116 1.096 1.914 1.926 1.965 1.734
M-BS Put 14.982 17.590 17.605 17.227 56.340 64.072 64.625 58.303 190.633 217.566 234.834 144.854
Put 14.982 16.201 16.335 14.247 56.340 59.017 60.647 40.788 190.633 189.528 216.801 55.289
Put/St 1.152% 1.246% 1.257% 1.096% 4.334% 4.540% 4.665% 3.138% 14.664% 14.579% 16.677% 4.253%
∆put -0.2499 -0.2394 -0.2420 -0.2022 -0.3800 -0.3278 -0.3416 -0.1807 -0.4429 -0.2485 -0.3161 -0.1196

Adjusted Moneyness:  K  =  1.00 Et ( ST )

K 1375.82 1376.28 1376.62 1371.46 1522.98 1525.00 1527.17 1500.00 2618.57 2635.96 2689.18 2373.27
K/St 1.058 1.059 1.059 1.055 1.172 1.173 1.175 1.154 2.014 2.028 2.069 1.826
M-BS Put 41.996 45.423 45.445 44.813 90.595 99.099 99.810 91.651 233.592 261.216 280.567 179.112
Put 41.996 45.077 45.247 42.449 90.595 96.458 98.295 75.598 233.592 238.030 267.354 90.429
Put/St 3.230% 3.467% 3.481% 3.265% 6.969% 7.420% 7.561% 5.815% 17.969% 18.310% 20.566% 6.956%
∆put -0.5112 -0.4853 -0.4891 -0.4314 -0.5159 -0.4485 -0.4650 -0.2680 -0.4982 -0.2801 -0.3541 -0.2150

Adjusted Moneyness:  K  =  1.05 Et ( ST )

K 1444.61 1445.09 1445.45 1440.03 1599.13 1601.25 1603.53 1575.00 2749.50 2767.76 2823.64 2491.94
K/St 1.111 1.112 1.112 1.108 1.230 1.232 1.233 1.212 2.115 2.129 2.172 1.917
M-BS Put 86.485 89.598 89.623 88.804 133.657 142.254 143.113 133.267 280.107 308.015 329.400 216.733
Put 86.485 90.290 90.436 87.860 133.657 141.935 143.852 120.355 280.107 289.462 320.569 132.518
Put/St 6.653% 6.945% 6.957% 6.758% 10.281% 10.918% 11.066% 9.258% 21.547% 22.266% 24.659% 10.194%
∆put -0.7557 -0.7094 -0.7145 -0.6391 -0.6423 -0.5571 -0.5761 -0.3433 -0.5496 -0.3073 -0.3877 -0.2648

Note: 1. All Parameters used in this table are estimated with quarterly data.
2. BS and M-BS stand for Black-Scholes and modified-Black-Scholes, respectively.
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Table 6: The effects of Volatility and Interest Rate on Call Options
with Moderate Return Predictability

CRCVCI SRSVSI SRSVCI SRCVSI CRCVCI SRSVSI SRSVCI SRCVSI CRCVCI SRSVSI SRSVCI SRCVSI
 - PP  - P  - P  - P  - PP  - P  - P  - P  - PP  - P  - P  - P

St = 1300 ( = BS) ( = BS) ( = BS)

T - t  =  0.25  year T - t  =  1.00  year T - t  =  5.00  years

 Et(ST) 1375.82 1371.46 1370.46 1373.73 1522.98 1500.00 1495.43 1508.23 2618.57 2373.27 2359.72 2404.55
VTM 0.1453 0.1556 0.1413 0.1460 0.1453 0.1553 0.1454 0.1244 0.1453 0.1548 0.1533 0.0708
R(t,T) 0.1394 0.1262 0.1270 0.1331 0.1394 0.1295 0.1270 0.1353 0.1394 0.1357 0.1270 0.1384

Adjusted Moneyness:  K  =  0.95 Et ( ST )

K 1307.03 1302.89 1301.94 1305.05 1446.83 1425.00 1420.66 1432.81 2487.64 2254.61 2241.74 2284.33
K/St 1.005 1.002 1.001 1.004 1.113 1.096 1.093 1.102 1.914 1.734 1.724 1.757
M-BS Call 74.440 76.474 74.324 74.546 94.878 103.584 99.109 88.625 125.116 174.523 153.745 89.254
Call 74.440 73.494 77.344 74.546 94.878 86.069 79.245 88.625 125.116 84.957 72.204 89.254
Call/St 5.726% 5.653% 5.950% 5.734% 7.298% 6.621% 6.096% 6.817% 9.624% 6.535% 5.554% 6.866%
∆call 0.7438 0.6817 0.4079 0.6661 0.5953 0.4314 0.1518 0.4119 0.4396 0.1143 0.0600 0.1101

Adjusted Moneyness:  K  =  1.00 Et ( ST )

K 1375.82 1371.46 1370.46 1373.73 1522.98 1500.00 1495.43 1508.23 2618.57 2373.27 2359.72 2404.55
K/St 1.058 1.055 1.054 1.057 1.172 1.154 1.150 1.160 2.014 1.826 1.815 1.850
M-BS Call 35.020 37.614 34.444 35.173 62.890 71.044 66.241 55.221 102.852 148.568 129.410 61.000
Call 35.020 35.250 20.624 35.173 62.890 54.991 20.214 55.221 102.852 59.884 18.342 61.000
Call/St 2.694% 2.712% 1.586% 2.706% 4.838% 4.230% 1.555% 4.248% 7.912% 4.606% 1.411% 4.692%
∆call 0.4826 0.4467 0.1312 0.4316 0.4594 0.3250 0.0404 0.3043 0.3843 0.0868 0.0153 0.0802

Adjusted Moneyness:  K  =  1.05 Et ( ST )

K 1444.61 1440.03 1438.98 1442.42 1599.13 1575.00 1570.21 1583.64 2749.50 2491.94 2477.71 2524.78
K/St 1.111 1.108 1.107 1.110 1.230 1.212 1.208 1.218 2.115 1.917 1.906 1.942
M-BS Call 13.075 15.159 12.494 13.200 39.709 46.771 42.194 32.079 84.144 125.975 108.490 40.073
Call 13.075 14.216 N/A 13.200 39.709 33.859 N/A 32.079 84.144 41.760 N/A 40.073
Call/St 1.006% 1.094% 1.015% 3.055% 2.605% 2.468% 6.473% 3.212% 3.083%
∆call 0.2381 0.2332 0.2135 0.3330 0.2306 0.2063 0.3329 0.0648 0.0561

Note: 1. All Parameters used in this table are estimated with quarterly data.
2. BS and M-BS stand for Black-Scholes and modified-Black-Scholes, respectively.
3. N/A stands for not applicable. when the strike price is too high, SRSVCI-P can’t

be computed since the gamma function in the option formula is not well defined.
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Table 7: The effects of Volatility and Interest Rate on Put Options
with Moderate Return Predictability

CRCVCI SRSVSI SRSVCI SRCVSI CRCVCI SRSVSI SRSVCI SRCVSI CRCVCI SRSVSI SRSVCI SRCVSI
 - PP  - P  - P  - P  - PP  - P  - P  - P  - PP  - P  - P  - P

St = 1300 ( = BS) ( = BS) ( = BS)

T - t  =  0.25  year T - t  =  1.00  year T - t  =  5.00  years

 Et(ST) 1375.82 1371.46 1370.46 1373.73 1522.98 1500.00 1495.43 1508.23 2618.57 2373.27 2359.72 2404.55
VTM 0.1453 0.1556 0.1413 0.1460 0.1453 0.1553 0.1454 0.1244 0.1453 0.1548 0.1533 0.0708
R(t,T) 0.1394 0.1262 0.1270 0.1331 0.1394 0.1295 0.1270 0.1353 0.1394 0.1357 0.1270 0.1384

Adjusted Moneyness:  K  =  0.95 Et ( ST )

K 1307.03 1302.89 1301.94 1305.05 1446.83 1425.00 1420.66 1432.81 2487.64 2254.61 2241.74 2284.33
K/St 1.005 1.002 1.001 1.004 1.113 1.096 1.093 1.102 1.914 1.734 1.724 1.757
M-BS Put 14.982 17.227 13.885 15.137 56.340 58.303 53.096 42.957 190.633 144.854 167.767 58.862
Put 14.982 14.247 16.905 15.137 56.340 40.788 33.232 42.957 190.633 55.289 86.226 58.862
Put/St 1.152% 1.096% 1.300% 1.164% 4.334% 3.138% 2.556% 3.304% 14.664% 4.253% 6.633% 4.528%
∆put -0.2499 -0.2022 -0.2461 -0.2217 -0.3800 -0.1807 -0.1928 -0.2083 -0.4429 -0.1196 -0.1690 -0.1812

Adjusted Moneyness:  K  =  1.00 Et ( ST )

K 1375.82 1371.46 1370.46 1373.73 1522.98 1500.00 1495.43 1508.23 2618.57 2373.27 2359.72 2404.55
K/St 1.058 1.055 1.054 1.057 1.172 1.154 1.150 1.160 2.014 1.826 1.815 1.850
M-BS Put 41.996 44.813 40.388 42.201 90.595 91.651 86.079 75.421 233.592 179.112 205.946 90.784
Put 41.996 42.449 26.569 42.201 90.595 75.598 40.052 75.421 233.592 90.429 94.877 90.784
Put/St 3.230% 3.265% 2.044% 3.246% 6.969% 5.815% 3.081% 5.802% 17.969% 6.956% 7.298% 6.983%
∆put -0.5112 -0.4314 -0.3425 -0.4506 -0.5159 -0.2680 -0.2149 -0.2972 -0.4982 -0.2150 -0.1711 -0.1930

Adjusted Moneyness:  K  =  1.05 Et ( ST )

K 1444.61 1440.03 1438.98 1442.42 1599.13 1575.00 1570.21 1583.64 2749.50 2491.94 2477.71 2524.78
K/St 1.111 1.108 1.107 1.110 1.230 1.212 1.208 1.218 2.115 1.917 1.906 1.942
M-BS Put 86.485 88.804 101.529 101.223 133.657 133.267 127.881 118.147 280.107 216.733 247.538 130.032
Put 86.485 87.860 N/A 101.223 133.657 120.355 N/A 118.147 280.107 132.518 N/A 130.032
Put/St 6.653% 6.758% 7.786% 10.281% 9.258% 9.088% 21.547% 10.194% 10.002%
∆put -0.7557 -0.6391 -0.5359 -0.6423 -0.3433 -0.3765 -0.5496 -0.2648 -0.2349

Note: 1. All Parameters used in this table are estimated with quarterly data.
2. BS and M-BS stand for Black-Scholes and modified-Black-Scholes, respectively.
3. N/A stands for not applicable. when the strike price is too high, SRSVCI-P can’t

be computed since the gamma function in the option formula is not well defined.
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Exhibit 1: Effects of Maturity on Option Prices
under Different Levels of Return Predictability
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Exhibit 2: Effects of Maturity on Delta Hedging
under Different Levels of Return Predictability
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