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Motivated by our interest in micro and biological air vehicles, Navier-Stokes simulations

for fluid flow around a hovering elliptic airfoil have been conducted to investigate the effects

of Reynolds number, reduced frequency, and flapping kinematics on the flow structure and

aerodynamics. The Reynolds number investigated ranges from 75 to 1700, and the reduced

frequency from 0.36 to 2.0. Two flapping modes are studied, namely, the “water treading”

hovering mode, and the “normal” hovering mode. While the delayed-stall mechanism is

found to be responsible for generating the maximum lift peaks in both hovering modes, the

wake-capturing mechanism is identified only in the normal hovering mode. In addition to

the strong role played by the kinematics, the Reynolds number’s role has also been clearly

identified. In the low Reynolds number regime, O(100), the viscosity dissipates the vortex

structures quickly and leads to essentially symmetric flow structure and aerodynamics force

between the forward stroke and backward strokes. At higher Reynolds numbers (300 and

larger), the history effect is influential resulting in distinctly asymmetric phenomena

between the forward and backward strokes.

Nomenclature

c = chord length

Cl = lift coefficient 2/(0.5 )Lift cUρ
∞

=

Cd = drag coefficient 2/(0.5 )Drag cUρ
∞

=

Cf = friction coefficient 2/(0.5 )Drag cUρ
∞

=
f = flapping frequency

h = instantaneous position of a flapping airfoil

ha = flapping amplitude

k = reduced frequency

J = Jacobian

p = static pressure

Re = Reynolds number

T = period of one flapping cycle

t = non-dimensionalized time = tc/Uref

Uref = reference velocity

u,v,w = Cartisian velocity components

x,y,z = Cartesian coordinates

xm, xs = Cartesian coordinates of master/slave nodes

α = angle of attack

α0 = initial angle of attack

αa = pitching angle amplitude

φ = phase difference between flapping and pitching motion

ξ, η, ζ = curvilinear coordinates
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µ = molecular viscosity

ν = kinematic viscosity

ρ = density

τij = viscous stress

τw = wall shear stress

ω = oscillating angular speed =2πf

I. Introduction

ITH our desire to understand the capabilities of natural flyers such as birds, bats and insects, and, lately, with

increasing interests in developing the micro air vehicles (MAVs) technologies, substantial research efforts

have been made on flapping flight. For example, Shyy et al.
1

have reviewed the overall background of the micro and

natural air vehicles including the scaling laws and the associated research from the computational and modeling

viewpoints. Lehmann
2
, Norberg

3
, Platzer and Jones

4
, Viieru et al.

5
, and Wang

6
have offered reviews on flapping

wing aerodynamics from different angles. Mueller
7

has compiled a number of articles contributed by different

authors regarding the analysis and design of fixed and flapping wing flying vehicles. Ellington
8

pointed out, in a

comprehensive analysis, that the aerodynamic forces in flapping flight predicted by classical, steady state

aerodynamic theories have been found insufficient to explain the insect/birds flight characteristics. Therefore,

unsteady effects have an important role in aerodynamic force generation. Four unsteady physical mechanisms have

been identified so far in the literature to help explain how insects and birds generate enhanced lift, namely, Weis-

Fogh’s clap-and-fling mechanism
2,9

, delayed stall associated with large scale vortices
10

and fast pitch-up
11

, and

wake-capturing
12

. These lift generation mechanisms have been identified experimentally and numerically. For

example, Liu and Kawachi
13

conducted unsteady Navier-Stokes simulations of the flow around a hawkmoth’s wing.

Their results showed the leading-edge vortex and the spanwise flow observed experimentally by van den Berg and

Ellington
14

and Ellington et al.
10

. Sun and Tang
15

and Ramamurti and Sandberg
16

confirmed the force peaks

generated during fast pitch-up of the wing at the end of the stroke, and the wake-capturing mechanisms identified

experimentally by Dickinson et al.
12

. Wang et al.
17

compared computational, experimental and quasi-steady forces in

a generic hovering wing, undergoing sinusoidal motion along a horizontal stroke plane, to examine the unsteady

aerodynamics. The computed forces were compared with the three-dimensional experimental results of Dickinson et

al.
12

.

In this paper, Navier-Stokes simulations for fluid flow around a hovering elliptic airfoil have been conducted to

investigate the effects of Reynolds number, reduced frequency, and flapping kinematics on the flow structure and

aerodynamics. The Reynolds number investigated ranges from 75 to 1700, and the reduced frequency from 0.25 to

2.0. Our interest is to better understand the physical mechanisms associated with these parameters so that we can

gain more insight into the way they interact and impact the aerodynamics. To help facilitate the investigation, two

flapping modes are studied, namely, the “water treading” hovering mode, and the “normal” hovering mode. In the

following, we first briefly describe the numerical algorithm used to solve the flow equations, as well as the moving

grid strategy employed. The numerical framework is validated against established analytical and computational

results. Then, the fluid physics and the aerodynamic implications are probed based on the cases selected.

II. Numerical Algorithm

The three-dimensional Navier-Stokes equations for incompressible flow in Cartesian coordinates can be written,

using indicial notation, as follows:

( ) 0j

j

u
t x

ρ
ρ

∂ ∂+ =
∂ ∂

 (1)

( ) ( ) ij

i j i

j i j

p
u u u

t x x x

τ
ρ ρ

∂∂ ∂ ∂+ = − +
∂ ∂ ∂ ∂

(2)

where xi is the position vector, t is time, ρ is density, ui is the velocity vector, p is pressure, and τij is the viscous

stress tensor. The constitutive relation between stress and strain rate for a Newtonian fluid is used to link the

components of the stress tensor to velocity gradients:

W
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2

3

ji l
ij ij

j i l

uu u

x x x
τ µ µ δ

 ∂∂ ∂
= + − ⋅  ∂ ∂ ∂ 

 (3)

where µ is the molecular viscosity.

For arbitrary shaped geometries, the Navier-Stokes equations are transformed into generalized curvilinear

coordinates (ξ, η, ζ), where ( , , ), ( , , )x y z x y zξ ξ η η= = , and ( , , )x y zζ ζ= . The transformation of the physical

domain (x, y, z) to the computational domain (ξ, η, ζ) is achieved by the following relations:
18

11 12 13

21 22 23

31 32 33

1
x y z

x y z

x y z

f f f

f f f
J

f f f

ξ ξ ξ

η η η

ζ ζ ζ

   
   =   
      

 (4)

where fij are the metrics terms and J is the determinant of the Jacobian transformation matrix given by:

( ), ,
det det

( , , )

x x x
x y z

J y y y

z z z

ξ η ζ

ξ η ζ

ξ η ζ
ξ η ζ

 
 ∂  = =    ∂   

 

(5)

To solve for the Navier-Stokes equations in curvilinear coordinates, the finite-volume formulation is adopted. In

this approach, both Cartesian velocity, as primary variables, and contravariant velocity components are employed.

The contravariant velocities are used to evaluate the flux at the cell faces, and to enforce the mass continuity in the

pressure-correction equation. The expressions for the metrics, the determinant of the Jacobian transformation matrix,

and the fluxes at the cell faces as well as for the three-dimensional Navier-Stokes equations in the generalized body-

fitted curvilinear coordinate system (ξ, η, ζ) are given in Ref. 19 and 20. When the governing equations are

considered under a moving grid framework, the grid velocities should be included in the flux computations as

described in Ref. 21.

The pressure-correction equation developed by Patankar
22

 and enhanced by Van Doormaal et al.
23

 was extended

to the curvilinear coordinates, with a hybrid employment of the Cartesian and contravariant velocity components

(see Shyy et al.
20

). The implementation of the current method employs a control volume approach and uses a non-

staggered arrangement for the velocity components and the scalar variables (i.e. pressure). The Cartesian velocity

components are computed from the respective momentum equations. The cell fluxes and pressure fields are

corrected using a pressure correction equation, which is derived by manipulating the continuity and momentum

equations. The iterative correction procedure leads to a divergence-free velocity field within a desired convergence

tolerance, therefore enforcing the pressure-velocity coupling.

To solve the governing equations in a body-fitted curvilinear coordinates a transformation matrix is used to

facilitate the mapping of a physical flow region (x, y, z) onto a computational domain (ξ, η, ζ). The Jacobian

transformation matrix is defined as in Eq. (5). The determinant of the Jacobian transformation matrix represents the

volume element in the transformed coordinate. In moving grid problems, the computational grid is changing with

time and consequently the determinant of the Jacobian matrix, J, needs to be updated. Special procedures are

required to compute the effective value of J at each time step; otherwise, errors arise due to an inconsistent

numerical implementation that would lead to the generation of artificial mass sources. As suggested by Thomas and

Lombard
24

, in the process of updating the Jacobian J the following conservation law (GCL) needs to be satisfied:

( )s

V V

d
J d d d W d d d

dt
ξ η ζ ξ η ζ= ∇⋅∫ ∫  (6)

where V is the volume bounded by the closed surface S, and Ws is the local velocity of the moving boundary surface

S. Thomas and Lombard
24

proposed an expression to evaluate J from the continuity equation for a constant density,

uniform velocity field under a time dependent coordinate transformation while maintaining the geometric

conservation law:
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J
J J J

t t t t

ξ η ζ
ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂     = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     
(7)

Integrating Eq. (7) using a first-order, implicit time integration scheme over the same control volume used for

mass conservation leads to a finite volume discrete form of the above equation that is used to update the Jacobian in

a manner that respects the basic requirement of the geometric conservation in the discrete form of the conservation

law when the grid is time dependent. Implications of the geometric conservation law on the moving boundary

problems were discussed by Shyy et al.
21

.

For moving boundary problems where a solid boundary (i.e. airfoil) moves inside a computational domain based

on known kinematics (i.e. rigid flapping airfoil) or as a response of the structure to the flow around it (i.e. membrane

wing), the grid needs to be adjusted dynamically during computation. To facilitate this, a moving grid technique

needs to be employed. The actual process of generating a grid is a complicated task by itself so an automatic and fast

algorithm to upgrade the grid frequently is essential. It is desirable to have an automatic re-meshing algorithm to

ensure that the dynamically moving grid retains the quality of the initial grid, and avoids problems such as crossover

of the grid lines, crossed cell faces or negative volumes at block interfaces in the case of multi-block grids.

Several approaches have been suggested to treat grid redistributions for moving grid computations. Schuster et

al.
25

used an algebraic shearing method in their study. The displacement of the moving surface is redistributed along

the grid line which connects the moving surface to the outer boundary. This simple method gives good results for

modest displacement and single block grid. For multiblock grid arrangements extensive user intervention is

required. A robust method that can handle large deformations is the spring analogy method that was first introduced

by Batina
26

for unstructured grids and later extended to structured grids by Robinson et al.
27

. In this method all edges

of a cell as well as the diagonals are replaced by linear springs, each with the stiffness inversely proportional to a

power p of the length of the connecting edges. Using the power p, one can control the stiffness of the spring and

consequently control the amount of movement and avoid excessive mesh distortions. The iterative process necessary

to find the displacement of all the internal points increases the computational time for this method, especially for

large grids. The direct transfinite interpolation method was introduced by Eriksson
28

and can generate grids for

complex geometry. The method defines an interpolation function given known values on constant planes and

function derivatives in out of surface direction on the boundaries. The method is fast and efficient for structured

grids but the quality of the initial grid may not always be preserved especially far from the boundaries. Hartwich and

Agrawal
29

propose the master-slave concept to expedite the grid regeneration process and preserve the grid

continuity at the multiblock grid interfaces.

In this study a moving grid technique proposed by Lian et al.
30

is used to re-mesh the multiblock structured grid

for fluid-structure interaction problems. For multiblock structured grids, for simplicity, CFD solvers often require

point-matched grid block interfaces. This method is based on the master-slave concept and maintains a point-

matched grid block interface while maintaining grid quality and preventing potential grid cross-over.

When an object changes its shape, the master points, which are located at the moving body surface, move first,

and then affect the distribution of the off-body points. One difficulty for a multiblock grid resides in the way in

which the vertices of each block are moved if a point-to-point match between two abutting blocks without overlap is

required. For identical interfaces between two abutting blocks, the edge and interior points can be obtained by a 3-

stage interpolation once the corner vertices are determined. However, when the abutting blocks do not have an

identical interface the interpolation can cause discontinuity at the interface. To avoid creating undesirable grid

discontinuities, the off-body vertices of a grid block are linked to a surface point and thus they move in a similar

way. Therefore, for each off-body vertex (slave point), the nearest body surface point is defined as its master point.

The distance between the slave point and its master is given by:

( ) ( ) ( )2 2 2

s m s m s mr x x y y z z= − + − + −
r

(8)

where the subscript s represents a slave point, and m a master point. Once a slave point has its master point

identified, the slave point moves according to the influence from its master.

The master-slave algorithm is highly automated, maintaining overall grid quality near and away from the body

and more importantly allows instantaneous large displacements. The propagation distance of the moving wall

perturbation is controlled by the spring stiffness coefficient. However, in the current formulation large rotational

deformations cannot be handled properly since no information is provided about cell skewness as the perturbation is
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Figure 1. Numerical and analytical velocity distribution in the boundary layer along different

locations on a flat plate and different Reynolds numbers. a) Re=10
2
, b) Re=10

3
, c) Re=10

4
. Here

( )/refy U xη ν= ⋅ is the dimensionless vertical coordinate.

propagated along grid lines. To solve this problem, a modification is made to add the rotational angle to the position

information in the original algorithm.

III. Results and Analysis

A. Code Validation

To validate the present formulation, three cases are studied. First, the steady flow over a flat plate at zero angle

of attack at different Reynolds numbers representative to insect flapping flight is computed. The evaluated friction

coefficient is compared with the analytical results. Second, the flow over an oscillating flat plate in a quiescent

medium is simulated in order to assess the viscous force computation for moving walls. Third, the two-dimensional

simulated flow around a flapping wing is contrasted with existing experimental and other computational results.

To simulate the steady flow over a thin plate of chord c = 1.0, the Navier-Stokes equations are solved on a grid

with 100 points along the plate and 60 points in the vertical direction. The distance from the wall to the first cell

center is 5.0x10
-4

c, which guarantees a sufficient number of points in the boundary layer for high Reynolds

numbers. The numerical simulations are performed for Reynolds numbers from 10 to 10
4
, based on chord length and

free-stream velocity. A second order upwind scheme was employed for the convection terms, while a second order

central difference scheme are adopted for the pressure and viscous terms. A no-slip boundary condition is imposed

on the plate surface.

In Fig. 1 the numerical and analytical velocity distribution in the boundary layer for a flat plate at different

Reynolds numbers is plotted. As discussed by Schlichting
31

, the velocity profile can be defined based on the

following similarity form:

( )refu U f η′= , (9)
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Table 1. Numerical and analytical friction coefficient values for flat plate.

Case Reynolds

number

Cf – Blasius

( 1.328 / Ref lC = )

Cf – Messiter
33

( ( )7 /8
1.328 / Re 2.668 / Ref l lC = + )

Cf – present

numerical results

1 10
4

0.0133 0.0141 0.0142

2 10
3

0.0420 0.0483 0.0486

3 10
2

0.133 0.180 0.182

4 10 0.420 0.776 0.785

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

Re

C
f

Blasius

Messiter

Numerical solution

Figure 2. Numerical and analytical friction coefficient Cf

for a flat plate versus Reynolds number.

where Uref is the freestream velocity, f(η) is the Blasius solution, and ( )/refy U xη ν= ⋅ is the dimensionless

coordinate.

Figure 1 shows progressively favorable agreement between the numerical results and the analytical formulation,

as the Reynolds number increases. This is expected since the boundary layer solution is based on the high Reynolds

number assumption. The analysis of the flow

over a flat plate using Blasius’s equation is

restricted to semi-infinite plate since the

parabolic nature of Prandtl’s boundary layer

equations can not account for upstream

changes in shear stress initiated by the trailing-

edge of a finite-length plate. The discrepancy

between the analytical and numerical velocity

distribution is more visible at locations near the

trailing-edge of the plate as one can observe in

Fig. 1 for all Reynolds numbers.

Figure 2 shows also that as the Reynolds

number decreases, the friction coefficient given

by Blasius departs from the numerical solution.

To take into account for second order effects,

generalizations of Prandtl’s boundary layer

equations were developed. For the case of the

flat plate Stewartson
32

and Messiter
33

found an

expression that improves the prediction of the

skin-friction coefficient for low Reynolds

number. The analytical expressions for skin-

friction coefficient, defined for two-dimensional flow as ( )2/ 0.5fC Drag cUρ ∞= , are presented in Table 1.

Figure 2 shows a very good agreement between the improved analytical solution of Messiter
33

and the numerical

results for a wide range of Reynolds numbers, validating the viscous force computation method employed in the

solver.

Next, the viscous force computation needs to be validated for the case of moving walls (wall velocity is non-

zero). The wall velocity for an infinite plate oscillating along the x-axis is defined as:

( 0, ) cos( )refu y t tω= =U (10)

where Uref is the maximum velocity and 2 fω π= ; f being the oscillation frequency. The displacement of the plate

is given by:

( ) sin( ); with /a a refh t h t h Uω ω= =  (11)

The analytical velocity field for this motion is given by Stokes
34

:
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/ exp( ) cos( )refu U tη ω η= − − (12)

where / 2yη ω ν= is the non-dimensional vertical coordinate.

Following the definition (Eq. (12)), the analytical wall shear stress for the oscillating plate is given by (Ref. 35):

sin( / 4)wall refU tτ ρωµ ω π= ⋅ −  (13)

The unsteady flow over an oscillating

plate of length 1 is solved on a grid with 50

points along the chord and 80 points in the

vertical direction using the Navier-Stokes

solver. The distance from the wall to the first

cell center is 10
-3

c. For the case studied ω = 2,

resulting in a frequency f of 1/π and a period T

= π. To ensure a sufficient number of points

for one oscillation cycle, a time step size of

0.01 is chosen. Based on the maximum

velocity Uref and chord length, the Reynolds

number is 10
3
.

In Fig. 3 the numerically predicted wall

shear stress on the finite plate is compared

with the analytical values for an infinite plate

given by Eq. (13). The figure shows a good

agreement between numerical and analytical

values. The small phase shift between

numerical and analytical results can be

explained by the effects of the leading and

trailing edges of a finite plate. In Fig. 4 the

scaled wall velocity is also plotted to contrast

the lag between maximum shear and

maximum velocity.

The theoretical velocity distribution above

the plate, given by Eq. (3) and (4), is plotted

along with the computed velocity field in Fig. 4 for different time instants during one half-period. The skin friction

0 0.5 1 1.5 2
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time/T, T= π

τ w
a
ll,

u
w

a
ll/1

0

τ
wall

 numerical

u
wall

 numerical

τ
wall

 analitical

u
wall

 analitical

Figure 3. Skin-friction and wall velocity for an oscillating

plate. Oscillating frequency / 2 1/f ω π π= = , amplitude

ha/c = 0.5 and Re =10
3
. The wall velocity is scaled to an

order of magnitude comparable to the wall shear stress.

Continuous lines = present computation, Symbols =

analytical solution for infinite plate.

η

u/Uref

Figure 4. Velocity distribution above an oscillating plate. Oscillating frequency / 2 1/f ω π π= = , amplitude

ha=0.5 Continuous lines: present computational results. Symbols: analytical solution for infinite plate.
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Table 2. Parameters considered in the present study.

Reynolds number 75 100 300 500 1700

“Normal” flapping
ha/c=0.25, 1.4

(k=2, 1/2.8)

ha/c=1.4

(k=1/2.8)

ha/c=0.25

(k=2)

ha/c=0.25

(k=2)
-

“Water treading” -
ha/c=1.4

(k=1/2.8)
- -

ha/c=1.4

(k=1/2.8)

and velocity profiles presented Fig. 3 and Fig. 4 show a good agreement between theoretical and computed results.

B. Flapping Airfoil Solutions

The main focus of this study is the investigation of aerodynamics of hovering flight. All cases are based on an

elliptic airfoil of 15% thickness. Two hovering modes, namely, the “water treading” and “normal” hovering mode

and the dimensionless parameters are described below.

1. Kinematics of the 2-D Hovering Mode

Regarding the flapping kinematics, the airfoil’s instantaneous location and incidence are uniquely defined by its

translational and rotational coordinates, namely,

( ) sin(2 )ah t h ftπ= (14)

0( ) sin(2 )at ftα α α π ϕ= + + (15)

where, h(t) is the instantaneous plunging amplitude, ah is plunging amplitude, normalized by the chord, ( )tα is the

instantaneous angle of attack, measured with respect to the horizontal line, α0 is the initial angle of attack, αa is the

pitching amplitude, and ϕ is the phase difference between the plunging and pitching motion. For flow around a

rigid, hovering airfoil with no free stream, there are two dimensionless parameters, namely, the reduced frequency

and the Reynolds number. The reduced frequency k is defined as:

2 / 2 / 2ref ak fc U c hπ= =  (16)

where c is the airfoil chord length, f is the oscillation frequency, and 2ref aU fhπ= is the reference velocity (equal to

the maximum plunging velocity). The Reynolds number is defined as:

Re = /
ref

U c ν (17)

It should be noted in Eq. (16) that the reduced frequency, by definition, varies with the inverse of the stroke

amplitude. If we choose c, Uref and 1/f as the length, velocity, and time scales, respectively, for non-

dimensionalization, then the corresponding momentum equation with constant density yields:

2 2

2 2

1
( ) ( )

Re

i j
i j i

i j ij

k p u u
u u u

t x x x xπ

 ∂ ∂ ∂ ∂ ∂
 + = − + +
 ∂ ∂ ∂ ∂ ∂ 

(18)

Two flapping modes have been investigated. The “water treading” hovering mode is one of the cases that Liu

and Kawachi
13

used to validate their finite volume algorithm. The hovering mode studied is based on the so-called

“water treading” mode as defined by Freymuth in his experiments
36

. Figure 5 depicts the overall characteristics of

the water trading motion. Furthermore, a “normal” hovering mode (Wang et al.
17

), depicted in Fig. 5, has also been

studied.

Various cases involving the two flapping modes, different Reynolds numbers, and reduced frequencies have

been computed. Table 2 summarizes these cases, which will be discussed in the following.
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a) b)

c) 

 
Figure 5. Basic characteristics of the hovering kinematics considered in this study. a) schematic of

water trading mode; b) schematic of the “normal mode”; c) time histories of airfoil stroke (solid

line: h(t)) and pitching angle (dash line: α(t)) employed for both modes in the present study.

2. “Normal” hovering mode at Re = 100

As reviewed by Wang
6
, the “normal” mode, in which the wing moves in a level plane, is a mode popularly

employed by insects and small birds in hovering. The unsteady, laminar, incompressible, Navier-Stokes equations

are solved in an O-type domain around a 15% thickness elliptic airfoil. The spatial accuracy of the present algorithm

is examined by employing three grid sizes. The coarse size grid has 81x81 points (grid 1), while the intermediate

size grid has 161×161 points (grid 2) and the fine grid size is 241x241(grid 3). The distance from the solid wall to

the first grid point is 0.001c. Consistent with the work of Wang et al.
17

, a sinusoidal motion for both plunging and

pitching motions is employed, and the airfoil rotation is symmetric, i.e. the center of rotation is the center of the

elliptic airfoil. The flapping motion and the rotational motion are described by Eq. (14) and (15), and a schematic of

the normal hovering mode is presented in Fig. 5.

In this case, the initial angle of attack,
0

90oα = , the pitching amplitude, 45o

a
α = , the non-dimensional stroke

amplitude, / 1.4
a

h c = , and the phase lag, 90oϕ = . According to Eq. (16), the reduced frequency is 1/2.8 and the

Reynolds number is 75.

The flapping and rotation of the up- and down-strokes in each cycle have the same absolute value and opposite

signs, exhibiting a symmetric pattern. In Fig. 6, the lift coefficient history for two periods is plotted. At a Reynolds

number of 75, a periodic pattern is noticed after 4 periods. Since there is little difference between the solutions on

fine and intermediate grids, it is concluded that a grid independent solution was obtained.

Figure 7 compares our computational results with the results of Wang
17

, and with the experimental results of

Birch and Dickinson
17

. The current results show good agreement with the experimentally measurements. Figure 7

shows that the lift patterns in forward and backward stroke of each flapping cycle are essentially unchanged,

indicating that the effects of nonlinearity (convection) and history are modest.

3. Lift Generation Mechanisms in Two Hovering Modes

The aerodynamic force generation by the same 15% thickness elliptic airfoil undergoing two different hovering

modes is studied. First, the “water treading” mode (Freymuth
36

) is considered, followed by the “normal” hovering
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Table 3. Kinematic parameters for “water treading” and “normal” hovering modes. The Reynolds

number for both cases is 100.

Hovering mode Initial angle

of attack α0

Pitching

amplitude αa

Stroke

amplitude ha/c

Reduced

frequency k

Phase

difference φ

“water treading” 0
o

45
o

1.4 1/2.8 -π/2

“normal” hovering 90
o

45
o

1.4 1/2.8 π/2

mode. The “water treading” mode is defined by Eqs. (14) and (15) and a schematic of this hovering mode is shown

in Fig. 5 a). Same equations (Eq. (14) and (15)) govern the “normal” hovering mode and a schematic is depicted in

Fig. 5 b). To compare the two hovering modes, consistent kinematics parameters are selected, as presented in Table

3. 

Figure 8 shows the lift and drag coefficients during one complete cycle for “water treading” and “normal”

hovering modes. To illustrate the unsteady effects, the quasi-steady value of “normal” hovering mode, as defined by

Eq. (16) in Ref. 17, is also plotted together.

In the case of “water treading” hovering mode, for the first half of the forward stroke, the airfoil accelerates and

pitches-up. During this interval, the lift increases constantly (Fig. 8(A), b to c), and the unsteady dynamics results in

Figure 6. Lift coefficient of the “normal” hovering mode for two periods and different grid sizes and

δt=0.01, ha/c =1.4, αa=45
o
, k=1/2.8, Re=75.

Figure 7. Numerical and experimental results of flapping motion of fruit fly. Red: experimental

results of Dickinson and Birch (adopted from Ref. 17), Blue: numerical results of Wang (adopted from

Ref. 17), Green: present numeric simulation., ha/c=1.4, αa =45o, k=1/2.8, Re=75. Here the lift force is

normalized by the maximum quasi-steady force as defined in Wang et al.17.
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delayed flow separation even at instantaneously high angles of attack, as indicated by the vorticity contours plotted

in Fig. 9 a) to c). 

The maximum lift is reached when the

airfoil is close to the middle of the half-

stroke, which is around the instant when

the pitch angle reaches the highest value

(Fig. c). However, as indicated in Fig. 8,

the maximum lift doesn’t appear at the

same moment of the maximum pitch angle.

This confirms the well established

observation that the flapping aerodynamics

can not be correctly accounted for by the

steady-state aerodynamics theory. Beyond

mid-stroke, the airfoil starts to decelerate

and pitches-down. The flow separates and a

large re-circulation bubble forms on the

upper side of the airfoil (Fig. 9 d and e)

leading to a decrease in lift to the minimum

value (Fig. 8(A), at time e). The same

pattern is repeated for the backward stroke.

In the “normal” hovering mode, as in

the water trading mode, at the beginning of

the forward stroke, the airfoil accelerates

and pitches-down. The rotation of the

airfoil speeds-up the flow around the

leading and trailing edges, creating a

suction zone on the upper side of the

airfoil, while the high-pressure stagnation

area on the lower side is increased due to

the fluid driven from the surroundings by

the previously formed vortex (Fig. 9 a).

This combination of low and high-

pressure areas leads to an increase in lift at

the beginning of the stroke (Fig. 8(A), at

time a). As the airfoil further rotates

downward and accelerates, the fluid is

accelerated towards the trailing edge and the high-pressure stagnation area decreases (Fig. 9 b) and so does the lift,

reaching a local minimum at time/T ~0.17 for the forward stroke and 0.57 for the backward stroke as shown in Fig.

8(A). Around the middle of each half-stroke, the airfoil travels at almost constant pitching angle. A re-circulation

bubble attached to the airfoil forms on the upper surface (Fig. 9 c, d, g, around time/T ~ 0.3 and 0.8) and helps

increase the lift and drag to their maximum values during one complete stroke (Fig. 8(A) and (B), at time d and g).

After the maximum pitching angle and translation velocity are reached (time/T= 0.25 and 0.75) during one half-

stroke, the airfoil decelerates and pitches-up leading to flow separation on the upper side of the airfoil (Fig. 9 e and

h). The detachment of the large vortical structure from the upper airfoil surface combined with rapid deceleration

decreases the circulation and therefore the lift coefficient drops to its minimum value (Fig. 8(A) at times e and h).

The force coefficient history for “water treading” and “normal” hovering modes indicates differences in the lift

generation mechanism. For both hovering modes, the lift force reaches its maximum value when the airfoil moves

near the maximum velocity and maximum pitching angle. Similar maximum lift peak values (Fig. 8(A) at times d

and g) and flow structures (Fig. 9 d and g) are observed in this particular time interval (mid-stroke), suggesting the

idea of a similar lift generation mechanism. The vorticity contours (Fig. 9) indicate that the flow is either attached,

or with a small re-circulation bubble on the upper side of the airfoil and therefore, the delayed-stall mechanism is

mainly responsible for generating most of the lift force.

While the delayed-stall is the main lift generation mechanism in the case of the “water treading” hovering mode,

for the “normal” hovering mode, the local lift peaks at the beginning of the half-strokes points out that a wake-

capturing mechanism is also a contributing factor, as evidenced by the secondary peak in time history. The presence

of the twin-peak characteristics of the lift and drag time histories in the normal hovering mode again confirms that

Figure 8. One cycle force history for two hovering modes and

quasi-steady value of normal hovering mode . ha/c=1.4, αa=45
o
,

k=1/2.8 and Re=100. A) Lift coefficient, B) Drag coefficient.

The selected normalized time instants are: a) 0.08, b) 0.17, c)

0.25, d) 0.31, e) 0.45, f) 0.60, g) 0.80, h) 0.94. The present data

is from the 6
th

cycle.
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a

b

c

d

e

f

g

h

water treading normal hovering normal hoveringwater treading

Figure 9. Vorticity contours for two hovering modes. ha /c =1.4, αa=45
o
, k=1/2.8 and Re=100. Red

= counter-clockwise vortices, Blue = clockwise vortices. The flow snapshots (a to h) correspond to

the time instants defined in Fig. 8.

the fluid physics is distinctly time dependent, and can’t be adequately explained by the steady-state theory.

Furthermore, for the normal hovering mode, the drag pattern does not mimic that of the lift, as evidenced by the

relative magnitudes of the two peaks in lift and drag histories. In contrast, the lift and drag patterns in the water

trading mode show much stronger correspondence, further suggesting the role played by the wake-capturing

mechanism in the normal hovering mode. Hence, depending on the detailed kinematics, the lift generation

mechanisms at Re=100 exhibit different physical mechanisms.

The averaged lift coefficient for both cases is computed as the summation of the lift coefficient over the last

three periods divided by the total time. For the “water treading” hovering mode an average lift coefficient of 0.77 is

obtained, while for the “normal” hovering mode the average lift coefficient is 0.56, suggesting that “water treading”

mode performs better at Re=100 under the given kinematics parameters.

The more significant role of viscosity at low Reynolds numbers reduces the interaction between vortex structures

generated during previous strokes, as reflected by the almost symmetric maximum peaks for lift and drag as one can

notice in Fig. 8 (A) and (B).

4. Effect of Re on Aerodynamic Performance in Water Trading Mode

“Water Treading” Mode

To investigate the Reynolds number effect on the aerodynamic forces and the flow structure, we have computed

the hovering aerodynamics of the “water treading” mode at Re=100 and Re=1,700.
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Table 4. Parameters for “water treading” hovering mode employed for Reynolds number effect study.

Hovering mode Initial angle

of attack

α0

Pitching

amplitude

αa

Stroke

amplitude

ha/c

Reduced

frequency

k

Phase

difference

φ

Reynolds

number

Re

1. Water treading 0
o

45
o

1.4 1/2.8 -π/2 100

2. Water treading 0
o

45
o

1.4 1/2.8 -π/2 1,700

Based on the same kinematics of Re=100 case, the aerodynamics of the “water treading” mode is assessed. The

kinematics and flow parameters for these cases are summarized in Table 4, and the airfoil motion schematic is

presented in Fig. 5 a).

The pressure distributions on the airfoil surface, plotted in Fig. 11, show that near the maximum lift peaks, the

high pressure stagnation area on the lower side of

the airfoil is similar in both shape and magnitude

for the two Reynolds number studied. However,

on the upper side of the airfoil, the mild variation

of the pressure gradient for the low Reynolds

number case (Fig. 11(A), time a and c) suggests

that the flow is attached, while for the high

Reynolds number (Fig. 11(B), time a and c) the

low-pressure area near the leading edge indicates

a re-circulation zone corresponding to the leading

edge vortex.

This low-pressure area is responsible for most

of the high lift peak values seen in the case of a

Reynolds number of 1,700 (Fig. 12 a and c). The

smaller viscous effect in the higher Reynolds

number case results in less smearing of the

vortical structures, which, in turn, results in more

asymmetric aerodynamic values between forward

and backward strokes. Of course, as shown in

Fig. 10, even in low Reynolds number cases, the

time histories between forward and backward

strokes are almost but not entirely symmetric.

Such an asymmetry between strokes becomes

more pronounced as the Reynolds number

increases.

In summary, because of the asymmetric start

condition, the aerodynamic force in one stroke is

a little smaller than the other one in the same cycle. The difference between forward and backward strokes becomes

more pronounced as the Reynolds number increases from 100 to 1700. Nevertheless, there is no distinctive,

qualitative difference in the flow structure between the two strokes of each cycle.

“Normal Hovering” Mode

For the “normal” hovering mode, three different Reynolds numbers (75, 300, 500) are studied to further

investigate the effect of Reynolds number. In the following cases, the motion parameters are the same as for the

“normal” hovering case (Table 3), except that the flapping amplitude ha/c and frequency k are changed to match the

designated Reynolds number.

In Fig. 13, lift coefficients at three Reynolds numbers are shown. It is clear that force trends of forward and

backward strokes are the same at the Re=75; at Re=300 and 500, the lift coefficient variation is distinctly different

between the forward and backward strokes of each cycle. The aerodynamic characteristics regarding the Reynolds

number effect in the normal hovering mode are quite different from those in the “water reading” mode. In the “water

treading” mode, while the quantitative differences increase as the Reynolds number increases from 100 to 1700, no

qualitative change was observed. In the normal hovering mode, the qualitatively similar patterns exist at the much

Figure 10. Lift coefficient for the “water treading”

mode. ha/c = 1.4, αa=45
o
, k=1/2.8 and a Reynolds number

of 100 and 1,700. The selected normalized time instants

are: a) 6.25, b) 6.48, c) 6.77, d) 6.97.
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A) B)

chord chord

chord chord

a a

c c

Figure 11. Pressure distribution on the airfoil surface for the “water treading” mode. ha/c =

1.4, αa=45
o
, k=1/2.8. A) Re=100. B) Re=1,700. The flow snapshots (a, c) correspond to the time

instants defined in Fig. 10.

a

b

c

d

A) B) C) D)

Figure 12. Vorticity contours for the “water treading” mode. ha/c =1.4, αa=45
o
, k=1/2.8. Red =

counter-clockwise vortices, Blue = clockwise vortices. (A, C) Re=100, (B, D) Re=1,700. The flow

snapshots (a to d) correspond to the time instants defined in Fig. 10.

lower Reynolds number range, for example, Re=75 (see Fig. 7) and 100. The aerodynamic patterns between Re=75

and 300, are qualitatively different, suggesting that different physical mechanisms exist.
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Figure 13. Lift coefficients at Reynolds number A) Re=75, B) Re=300, C) Re=500 with ha/c

=0.25, αa=45
o
, k=2.0.

Figure 14. Vorticity field at corresponding positions of the

two sequential strokes. a) time/T=0.25 and b) time/T=0.75; c)

time/T=0.5 and d) time/T=1.0. ha/c =0.25, αa=45
o
, k=2.0, Re=300.

In Fig. 14, the flow fields of the corresponding positions between the forward and backward strokes in “normal”

flapping mode are plotted. The vortex below the airfoil in Fig. 14a is not found in Fig. 14b (corresponding to the

backward stroke at the same position and angle of attack). Fig. 15 confirms that there is a substantially stronger

history effect in the higher Reynolds number regime of the normal hovering mode.

The effect of the Reynolds number on

flow structures is complex. For example,

Fig. 15 shows that there are two pairs of

vortices shed the airfoil at Re=300 while

there is only one pair of vortex core at

Re=75. To quantify this asymmetric

phenomenon caused by the history effect,

the difference of average lift and drag

coefficients of the two forward and

backward strokes in each cycle, for both

normal and water trading modes, are

listed in Table 5.

The aerodynamic parameters

presented in Table 5 suggest that for the

normal mode, at Re=75, the difference of

lift coefficients between forward and

backward strokes is very small, while at

Re=300 and 500, difference of lift

coefficient is much larger, which indicate

a qualitative change appears. This is also

proven by the vorticity contours shown in

Fig. 15. At Re=75, the shedding vortex
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Table 5. Difference of average lift and drag coefficients between forward and backward strokes in the two

flapping modes, with flapping amplitude ha/c=0.25 at different Reynolds numbers.

Difference of force coefficient in

two strokes of each cycle

Re=75 Re=300 Re=500

∆Cl 0.002 0.325 0.33

∆Cd 0.045 0.105 0.125

near the trailing edge is under the airfoil (Fig. 15a) while this vortex is moved to left side in higher Reynolds number

cases (Fig. 15 b and c).

IV. Summary and Conclusion

The flow over an elliptic airfoil in hovering motion under different flow parameters was numerically

investigated. The unsteady, laminar, incompressible Navier-Stokes equations were solved using a pressure-based

Navier-Stokes solver along with a moving grid technique. Two different flapping modes have been investigated at

various Reynolds numbers, (from 75 to 1,700), and reduced frequencies (from 0.25 to 2.0).

Within the Reynolds number and reduced frequency ranges investigated, the delayed-stall mechanism is found to

be responsible for generating the maximum lift peaks for both hovering modes. On the other hand, the wake-

capturing mechanism is identified only in the normal hovering mode, resulting in a twin-peak pattern in both lift and

drag. Hence, the kinematics strongly influences the specific physical mechanisms present in lift enhancement.

In addition to the strong role played by the kinematics, the Reynolds number’s role has also been clearly

identified. At the lower end of the Reynolds number, O(100), the force patterns and the flow structures in both

hovering modes are essentially symmetric during the forward stroke and backward strokes. For a non-dimensional

flapping amplitude of 1.4 and Reynolds numbers from 100 to 1700, the lift and drag time histories between the

forward and backward strokes of the water trading mode change quantitatively while maintaining similar patterns.

On the other hand, in case of normal hovering mode, qualitatively different aerodynamic patterns between forward

and backward strokes emerge as the Reynolds number increases from 75 to 300 and beyond with a small non-

dimensional flapping amplitude of 0.25.

The present study offers insight into the significant roles played by the flapping kinematics, the Reynolds

number, and the reduced frequency. Although the current scope is restricted to two-dimensional flows and there are

additional, important three-dimensional aspects that are not addressed, the results have highlighted the interplay

between these control parameters as well as the complexity in aerodynamics. It will also be interesting to identify

favorable combinations of these flapping parameters from aerodynamics viewpoints to develop suitable strategies

for more efficient design of micro air vehicles.
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Figure 15. Vorticity field at the same position at time instant time/T=0.5 under three different

Reynolds number with ha/c =0.25, αa=45
o
, k=2.0. a) Re=100, b) Re=300, c) Re=500.
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