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Abstract: Experiments were performed with a large laboratory-scale high solidity cross-flow turbine

to investigate Reynolds number effects on performance and wake characteristics and to establish

scale thresholds for physical and numerical modeling of individual devices and arrays. It was

demonstrated that the performance of the cross-flow turbine becomes essentially Re-independent

at a Reynolds number based on the rotor diameter ReD ≈ 106 or an approximate average Reynolds

number based on the blade chord length Rec ≈ 2 × 105. A simple model that calculates the peak

torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable

predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic

conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences

over the range of Re investigated. However, when transport terms for the streamwise momentum

and mean kinetic energy were calculated, a similar Re threshold was revealed. These results imply

that physical model studies of cross-flow turbines should achieve ReD ∼ 106 to properly approximate

both the performance and wake dynamics of full-scale devices and arrays.

Keywords: Reynolds number; cross-flow turbine; turbine performance; marine hydrokinetic energy;

wind energy; vertical-axis wind turbine (VAWT); scale model

1. Introduction

Scaled physical models are often used in science and engineering to approximate real-world

systems. The principle of dynamic similarity allows for geometrically-scaled systems to be dynamically

identical if certain nondimensional physical parameters are matched. In the case of fluid systems, the

most important nondimensional parameter is often the Reynolds number, Re, which quantifies the

importance of inertial forces over viscous forces on the flow physics [1]: Re = Ul/ν, where U and l are

characteristic velocity and length scales, respectively, and ν is the fluid kinematic viscosity. The other

common dynamical scale, for systems with a free surface, is the Froude number Fr = U/
√

gl, where

g is the gravitational acceleration. Matching both the Froude and Reynolds number is not possible

for a scaled model in a given fluid, which is illustrated by the relation Re = l3/2g1/2Fr/ν, since Re

scales linearly with l, or the geometric scale. In general, the geometric scale of a physical model is not

necessarily the same as its dynamical scale. As such, hereafter, we will use the word “scale” to refer

to this dynamical scale or the Reynolds number and assume the Froude number is small enough to

be negligible.

With regards to wind and marine hydrokinetic (MHK) turbines, scaled physical models are used

to validate predictive numerical models, predict full-scale performance of individual turbines and

design or investigate arrays of devices. Scaled models have the benefit of being significantly less
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expensive; however, a key question is whether or not an acceptable scale mismatch exists. Similarly, it

is questionable whether numerical models validated with physical model data obtained orders of

magnitude away from prototype scale should be considered validated at all. An example of the errors

that can result from the extrapolation of small-scale experiments can be found in [2].

The performance and wake characteristics of cross-flow (often vertical-axis) turbines (CFTs)

depend on turbine solidity, blade profile (lift/drag, dynamic stall at reduced frequency of turbine

rotation, symmetry, thickness, camber), blade pitch, number of blades, strut drag, operational

parameters, such as tip speed ratio, and on the Reynolds number [3]. Note that an average blade chord

Reynolds number, Rec,avg ≈ λU∞c/ν, can be expressed in terms of tip speed ratio λ = ωR/U∞, where

U∞ is the free stream velocity, c is the blade chord length, ν is the fluid kinematic viscosity, ω is the

rotor’s angular velocity, and R is the rotor radius. The value of λ at which a turbine reaches peak

performance in general decreases with turbine solidity Nc/(πD) [4], which allows for the use of a

simpler Reynolds number based on turbine diameter ReD = U∞D/ν.

Solidity often directly correlates with the chord-to-radius ratio c/R. Rotors with c/R ≥ 0.1 are

considered to have high solidity [5], for which so-called flow curvature or virtual camber effects

become significant [6]. These effects arise from the blade sections’ circular paths and can complicate

the comparison with the behavior of an airfoil in a linear flow.

Blackwell et al. [7] investigated the effects of Reynolds number on the performance of a 2 m

diameter Darrieus vertical-axis cross-flow wind turbine with NACA 0012 blades. By varying wind

tunnel speed, the turbine was made to operate at an approximately constant blade chord Reynolds

number Rec ranging from 1 × 105 to 3 × 105. In this regime, the turbine power coefficient CP was

shown to be sensitive to Rec, with sensitivity diminishing at the higher Reynolds numbers, especially

for turbines of lower solidity (Nc/R, where N is the number of blades and R is the turbine’s maximum

radius). More recently, Polagye and Cavagnaro [8] observed significant Reynolds number sensitivity

for a high solidity helical cross-flow turbine, and Bravo et al. [9] observed the power coefficient of

a straight-bladed vertical-axis wind turbine (VAWT) to become Reynolds number independent at

Rec ≈ 4 × 105. Bachant and Wosnik [10] observed Reynolds number independence of the power

coefficient at the optimal tip speed ratio for a high solidity cross-flow turbine at ReD ≈ 106 or

Rec,avg ≈ 2 × 105.

The wake of a 2D cross-flow turbine in the dynamic stall regime has been studied via laser

Doppler velocimetry by Brochier et al. [11] and in 3D with particle image velocimetry (PIV) by

Fujisawa and Shibuya [12]. However, both of these studies were performed at very low Reynolds

numbers: ReD = 104 and 103, respectively. Tescione et al. [13] studied the wake of a vertical-axis wind

turbine at its optimal tip speed ratio in a wind tunnel using stereo PIV at an approximate blade chord

Reynolds number Rec = 1.7 × 105; very close to the Re-independence criteria reported in [10], though

it was not confirmed if this was indeed a Re-independent state. The two lower Re experiments tended

to focus on the effects of dynamic stall, whereas the higher Re experiment mostly concerned the mean

velocity and tip vortex effects. Whereas the value of these studies was in elucidating the complex wake

dynamics of cross-flow turbines, they also motivated the more systematic investigation of scale effects

undertaken here.

Scale effects on axial-flow or horizontal-axis wind turbines are better understood, and

investigators have methods for compensating. Krogstad and Adaramola [14] observed Reynolds

number independence of the performance of a 0.9 m diameter axial-flow turbine rotor at ReD ≈ 5× 105

in wind tunnel tests. Their turbine blades had an S826 profile along their entire span, a profile chosen

for its Re-independence. Walker et al. [15] similarly chose a NACA 63-618 foil for their axial-flow

turbine tests in a towing tank, which were performed at a mid-span Reynolds number Rec = 4 × 105.

McTavish et al. [16] showed how the near-wake expansion for an axial-flow rotor is increased at higher

Reynolds numbers, concluding that physical models should be designed with Re-independence in

mind if they are to be run at low Re. It is uncertain, however, if these methods work equally well for

cross-flow turbines.
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When designing or studying arrays, it is common to use very small (geometrically) scaled

devices [17,18]. It is therefore important to realize the limitations of evaluating both the power

output of turbines and the wake recovery when the Reynolds number is very far from full scale.

Sometimes, the models used are not turbines, but wake-generating objects, e.g., porous disks, that are

meant to replicate the wakes of real turbines [19]. In this case, it is of interest to determine at what

Reynolds number one might be able to realistically study wake flows in an array and also to evaluate

the effectiveness of a wake generator. In other words, a wake generator may do a fine job simulating

a scaled turbine, but how well can it simulate a full-scale device? Note that for a porous disk, the

Reynolds number of interest is based on diameter, since it is the scaling of the far-wake dynamics

that matters.

Vertical-axis wind turbine array field experiments have revealed that improved wake recovery

allows for closer spacing when compared to conventional axial-flow propeller-type turbines [20,21].

It was observed experimentally that a high solidity vertical-axis cross-flow turbine’s near-wake

produces a unique vertical mean velocity field, generated by blade tip vortex shedding, the advection

by which is the largest contributor to streamwise momentum and energy transport or recovery [22].

In this study, we seek to replicate those same momentum and energy balance considerations at multiple

Reynolds numbers, to examine the implications on how scaled, i.e., low Reynolds number experiments,

may be used to study flows in turbine arrays.

Modes of Reynolds Number Dependence

It is of interest to examine how Reynolds number scaling affects both the blade loading, i.e.,

turbine performance, and the near-wake. Typically, static airfoil data show that the static stall angle

increases with blade chord Reynolds number Rec [23]. A review of Reynolds number effects on airfoil

behavior is presented in [24]. In general, airfoil performance, often characterized by the profile’s

lift-to-drag ratio, is enhanced as the boundary layer on the foil transitions to turbulence closer to the

leading edge, which enables it to advance further downstream against the adverse pressure gradient

on the suction side, delaying separation to higher angles of attack. For smooth airfoils, this transition

can cause a dramatic increase in foil performance at a blade chord Reynolds number on the order of

105 [25]. Note that there is a distinct lack of highly reliable data for airfoils in this transitional regime

and below. An evaluation of the various databases relevant to cross-flow turbines is presented in [26].

Static foil performance does not tell the whole story for a cross-flow turbine. The azimuthal, and

therefore, temporal, variation of α in a cross-flow turbine implies dynamic loading, encountering

dynamic stall for tip speed ratios near and below those of maximum rotor torque [3]. Bousman [27]

states that dynamic stall is relatively insensitive to Reynolds number for Re = 1.0 × 105 to 2.5 × 105,

judging from measurements on a pitching VR-7 foil in a wind and water tunnel, since the loading is

dominated by vortex shedding. However, Singleton and Yeager Jr. [28] state that the effect of Reynolds

number on dynamic stall remains an unsolved question.

Despite lower lift on the blades at lower Re, we expect stronger tip vortex shedding [29].

As mentioned previously, the dynamic stall vortex shedding is not expected to be highly sensitive

to Reynolds number, though a larger separation bubble at lower Re may induce higher levels of

turbulence as shed vortices become unstable and break down.

Chamorro et al. [30] showed that turbulence statistics in an horizontal-axis or axial-flow wind

turbine wake became Re-independent at ReD ≈ 1 × 105 and that mean velocity profiles became

Re-independent slightly earlier at ReD ≈ 5 × 104. Note that in this study, the tip chord Reynolds

number was not reported, but is estimated to be Rec ≈ 4 × 104 at ReD = 1 × 105. It is therefore our

objective to observe similar scaling relationships for a cross-flow turbine near-wake.

2. Experimental Setup

Experiments were performed in a turbine test bed specifically designed for cross-flow turbines.

The test bed was integrated as part of the University of New Hampshire (UNH) tow tank, which is a
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36 m-long facility with a 3.66 m-wide and 2.44 m-deep cross-section. The turbine model used in this

study was the UNH Reference Vertical Axis Turbine (RVAT), which was designed to be a generic case

for numerical model testing, similar to the Sandia National Labs/U.S. Department of Energy Reference

Model 2 (RM2) River Turbine [31], but with a higher solidity or blade chord-to-radius ratio.

The UNH-RVAT turbine has three blades made from NACA 0020 profiles with a 0.14 m chord.

The blades are mounted at mid-chord w.r.t. the turbine axis, and the turbine has a height (blade span)

of 1 m and a diameter of 1 m; cf. Figure 1. The blockage ratio produced by the rotor’s frontal area is

11%, which we decided not to correct for, as reliable methods are not yet agreed upon for CFTs [32].

As such, blockage should be taken into account when using these data for model validation, i.e., the

experimental domain should be mimicked. The rotor has a relatively high solidity Nc/(πD) = 0.13

and a large chord-to-radius ratio c/R = 0.28. A CAD model of the turbine is available from [33].

 1 m 

 1 m 

Figure 1. University of New Hampshire Reference Vertical Axis Turbine (UNH-RVAT) turbine model.

Turbine blades and struts made from NACA 0020 profiles with 0.14 m chord. Note that the upper and

lower mounting flanges have been excluded, as these were included in the tare drag measurements.

The turbine was mounted in a frame constructed from NACA 0020 sections, shown in Figure 2.

The turbine shaft ran up through the water surface, coupled to a Kollmorgen AKM permanent magnet

servo motor (Kollmorgen, Radford, VA, USA) with a 20:1 gearbox, providing precise control over

shaft angular velocity. This servo was controlled by the tow tank’s main motion controller for high

synchronization with the carriage motion, thereby giving precise measurement and control of the tip

speed ratio. An Interface T8 200 Nm capacity rotary torque transducer (Interface, Scottsdale, AZ, USA)

was installed inline between the servo and the turbine, and the servo was also mounted on a slewing

ring bearing, which allowed a redundant measurement of torque via an arm and load cell used to

counteract the turbine moment. The frame was mounted to the carriage via linear guides, such that the

total streamwise drag force was transferred to a pair of Sentran ZB3 500 pound-force capacity S-beam

load cells (Sentran, Santa Ana, CA, USA), providing the rotor drag measurements, after a separately

measured tare drag was subtracted in post-processing. Similarly, a tare torque was measured by

rotating the turbine shaft in air. Turbine angular and tow carriage linear position were measured

using quadrature encoder signals, with 105 counts-per-rev for the turbine and 10 µm resolution for the

carriage position. These signals, along with the torque and drag signals, were sampled at 2 kHz.

Wake velocity was measured using a Nortek Vectrino+ acoustic Doppler velocimeter (ADV)

(Nortek AS, Rud, Norway), which has an approximately 6 mm diameter sampling volume and

sampled at 200 Hz. The probe was mounted on an automated positioning system, also controlled by
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the tow tank’s main motion controller. The ADV and data acquisition systems’ sampling times were

synchronized by triggering the start of data acquisition via a pulse sent from the motion controller.

Additional details of the turbine and experimental setup are described in [22].

(a)

3.66GmG

1.24GmG

2.44GmG

VectrinoGprobe

Turbine

TorqueGtransducer

2XGloadGcells

ServoGmotor

HydrofoilGframe

GuyGwires

(b)

Figure 2. Experimental setup photo (a) and drawing (b): turbine test bed installed in the UNH tow tank.

2.1. Test Plan

Approximately 1500 tows were conducted for the study reported here; each tow was used for

a single data point on either a performance curve or wake map. Each performance curve consisted

of 31 tows, where during each tow, the mean turbine tip speed ratio was held constant, ranging

from 0.1 to 3.1 in 0.1 increments. Full performance curve data were acquired for tow speeds from

0.4 to 1.2 m/s in 0.2 m/s increments, for which the turbine diameter and approximate blade chord

Reynolds number are presented in Table 1. Performance was also measured for λ = 1.9 at tow speeds

[0.3, 0.5, 0.7, 0.9, 1.1, 1.3] m/s for two tows each.

Each wake map was generated by positioning the ADV, which measured three components of

velocity at a 200 Hz sampling frequency, at 270 different locations, varied in the cross-stream and

vertical directions at one turbine diameter downstream (x/D = 1). These locations had vertical
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coordinates from the turbine centerline up to z/H = 0.625, ranging in the cross-stream direction

y/R = ±3. These locations are shown in Figure 3.

Table 1. Turbine diameter and approximate blade chord Reynolds numbers for the tow speeds used in

the experiment.

Tow Speed (m/s) ReD Rec,ave (λ = 1.9)

0.3 0.3 × 106 0.8 × 105

0.4 0.4 × 106 1.1 × 105

0.5 0.5 × 106 1.3 × 105

0.6 0.6 × 106 1.6 × 105

0.7 0.7 × 106 1.9 × 105

0.8 0.8 × 106 2.1 × 105

0.9 0.9 × 106 2.4 × 105

1.0 1.0 × 106 2.7 × 105

1.1 1.1 × 106 2.9 × 105

1.2 1.2 × 106 3.2 × 105

1.3 1.3 × 106 3.4 × 105
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Figure 3. Wake measurement coordinate system and locations. Dimensions are in meters.

2.2. Data Processing

From each set of tows, a standard time interval was set, which allowed the turbine performance

and wake to reach a quasi-periodic state. Each run was analyzed to compute statistics over this interval,

truncating the end slightly to achieve an integer number of blade passages. Turbine shaft angular

velocity and tow carriage speed were calculated using a second order central differencing scheme on

the respective position measurements. Power and drag coefficients were calculated as instantaneous

quantities using the carriage speed as the free stream velocity.

Wake velocity data were filtered for spurious “spikes” by removing data points 8 standard

deviations, or 0.9 m/s, from the mean. The experimental data and code for processing and visualization

are available from [34].
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2.3. Uncertainty Analysis

Uncertainty was considered from a combination of systematic and random errors. The random

error was inferred from the sample standard deviation (on a per-revolution basis) and the systematic

error from the sensor calibrations or datasheets. Combining both sources of error, along with their

propagation into quantities derived from multiple measurements, followed the procedures outlined in

Coleman and Steele [35], described below.

An expanded uncertainty interval with 95% confidence was computed for CP, CD, and mean

wake velocities:

U95 = t95uc, (1)

where t95 is the value from the Student t-distribution for a 95% confidence interval and uc is the

combined standard uncertainty. Combined standard uncertainty for a given quantity X is calculated by:

u2
X = s2

X̄ + b2
X , (2)

where sX̄ is the sample standard deviation of the mean per turbine revolution, and bX is the systematic

uncertainty, computed by:

b2
X =

J

∑
i=1

(
∂X

∂xi

)2

b2
xi

, (3)

where xi is a primitive quantity used to calculate X (e.g., T, ω, and U∞ for calculating CP), and bxi

is the primitive quantity’s systematic uncertainty, estimated as half the value listed on the sensor

manufacturer’s documentation.

Selecting t95 requires an estimate for degrees of freedom νX, which was obtained using the

Welch–Satterthwaite formula:

νX =

(

s2
X + ∑

M
k=1 b2

k

)2

s4
X/νsX

+ ∑
M
k=1 b4

k /νbk

, (4)

where νsX
is the number of degrees of freedom associated with sX and νbk

is the number of degrees

of freedom associated with bk. νsX
is assumed to be (N − 1), where N is the number of independent

samples (or turbine revolutions). νbk
was estimated as:

νbk
=

1

2

(
∆bk

bk

)−2

, (5)

where the quantity in parentheses is the relative uncertainty of bk, assumed to be 0.25.

For the Reynolds number dependence of turbine performance, error bars are included on the

plots. Expanded uncertainty estimates for mean wake velocities (averaged over all runs) are listed in

Table 2.

Table 2. Average expanded uncertainty estimates (with 95% confidence) for mean velocity measurements

at each tow speed.

U∞ (m/s) U (m/s) V (m/s) W (m/s)

0.4 1 × 10−2 7 × 10−3 6 × 10−3

0.6 1 × 10−2 8 × 10−3 8 × 10−3

0.8 2 × 10−2 1 × 10−2 1 × 10−2

1.0 2 × 10−2 1 × 10−2 1 × 10−2

1.2 2 × 10−2 1 × 10−2 1 × 10−2
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3. Results and Discussion

3.1. Performance

Complete power and rotor drag (also known as thrust) coefficient curves for various Reynolds

numbers are plotted in Figures 4 and 5, respectively. In general, maximum CP increases with Reynolds

number. The power coefficient curves also show a slight downward shift in the optimal tip speed ratio

(peak performance) with increasing Reynolds number, from about λ ≈ 2.0 to 1.9. This is caused by the

stall delay from a more turbulent boundary layer on the blade suction side. There is essentially no

change in the shape of the drag coefficient curves, merely a slight upward shift in CD with increasing Re.

0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5
λ

0. 1

0. 0

0. 1

0. 2

0. 3

C
P

ReD =0. 4× 106

ReD =0. 6× 106

ReD =0. 8× 106

ReD =1. 0× 106

ReD =1. 2× 106

Figure 4. Mean power coefficient curves plotted for multiple Reynolds numbers.

0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5
λ

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

C
D

ReD =0. 4× 106

ReD =0. 6× 106

ReD =0. 8× 106

ReD =1. 0× 106

ReD =1. 2× 106

Figure 5. Mean rotor drag coefficient curves plotted for multiple Reynolds numbers.

Mean power and drag coefficients at λ = 1.9 are plotted versus the Reynolds number in Figure 6.

Note that the large error bars for CP at low Re are dominated by systematic error estimates for the

torque transducer, since torque values are at the lower end of its measurement range. However, the

uncertainty due to random error or repeatability remains relatively low. There is a drastic improvement

in CP with increasing Reynolds number at the lower end of the Re range. The power coefficient then
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becomes essentially Re-independent at ReD = 0.8× 106, which corresponds to an approximate average

blade chord Reynolds number Rec,ave = 2.1 × 105. This threshold is consistent with the behavior

of the blade boundary layer transitioning from laminar to turbulent, thereby promoting either the

suppression or reattachment of the laminar separation bubble [24].

0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4
ReD ×106

0. 14

0. 16

0. 18

0. 20

0. 22

0. 24

0. 26

0. 28

C
P

×105

(a)

0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4
ReD ×106

0. 82

0. 84

0. 86

0. 88

0. 90

0. 92

0. 94

0. 96

C
D

×105

0.5 1.1 1.6 2.1 2.7 3.2 3.7
Rec, ave

0.5 1.1 1.6 2.1 2.7 3.2 3.7
Rec, ave

(b)

Figure 6. UNH-RVAT measured mean power (a) and drag (b) coefficients at λ = 1.9 plotted versus the

Reynolds number. Error bars indicate expanded uncertainty estimates for 95% confidence, which for

CP is dominated by systematic error estimates from the torque transducer operating at the lower end

of its measurement range.

The behavior of the mean rotor drag coefficient CD is similar, though the changes are less dramatic.

This is likely due to cross-flow turbine geometry, where increases in blade drag at lower Re somewhat

offset the reduction in lift, causing the total streamwise force to vary less than the rotor torque.

The tendency for CD to continue increasing with Re may also include the effects of an increasing

Froude number (from faster tow speeds), which increases free surface deformation and wave drag

during towing without increasing flow through the turbine.

Relation to Static Foil Characteristics

To help understand, and possibly predict, the Re-sensitivity on turbine performance, a series

of static foil coefficient datasets were computed with the viscous panel method code XFOIL [36],

a commonly-used tool for airfoil analysis, e.g., [15,37], implemented as part of the open source

turbine design software QBlade [38]. Simulations were run for an angle of attack range of 0◦ to 40◦,

in increments of 0.5◦. Solver parameters used were 100 panels, a fixed speed, zero Mach number,

NCrit = 9 (default en transition criteria parameter for an average wind tunnel) and no forced boundary

layer transition. Characteristics were computed for the approximate average blade chord Reynolds

numbers encountered in the tow tank experiments.

To investigate the effects of the blades’ “virtual camber” due to their circular path [6], the XFOIL

calculations were performed for 20% thick foils with 0% (NACA 0020), 2% (NACA 2520), and 4%

(NACA 4520) camber about their half-chord location. A 4% camber approximates the maximum

distance between the blade chord line and path for the UNH-RVAT, and the 2% camber takes into

account the reduction in virtual flow curvature from the non-curved inflow velocity by dividing by

the tip speed ratio λ = 1.9.

Results from the XFOIL calculations for the airfoil profiles are shown in Figure 7, where values of

the maximum lift coefficient Clmax
, minimum drag coefficient Cdmin

, and maximum lift-to-drag ratio

are normalized (to visualize relative differences in scaling between the foils) and plotted versus Rec.
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In general, larger camber is associated with decreased foil performance at lower Reynolds number.

The data and processing code for these calculations is available from [39].
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Figure 7. Normalized maximum lift coefficient (a), drag coefficient (b), and lift-to-drag ratio (c)

computed by XFOIL at various Rec for each profile.

In conjunction with the cross-flow turbine blade kinematics, the foil coefficients were used to

approximate turbine performance by calculating the peak torque coefficient on the upstream half of

the blade path. The turbine torque coefficient CT can be related to the blade section chordwise force

coefficient Cc by:

CT =
Ccc

2R

|Urel|
2

U2
∞

, (6)

where the blade section chordwise force coefficient (for zero preset pitch) is given by:

Cc = Cl sin α − Cd cos α. (7)

The relative blade velocity Urel was calculated by vector addition of the free stream velocity and

the opposite of the blade tangential velocity. Note that this neglects any induction, i.e., slowing of

the free stream by the turbine forces, which would be present in a momentum/streamtube model.

Since the goal of this approach was not to predict absolute performance, but rather to gain insight

into relative changes with Re, this method was deemed acceptable, as it is extremely simple and fast

to compute.

Values for the blade angle of attack, relative velocity, and torque coefficient are plotted in Figure 8

for the upstream half of rotation of the turbine. The effects of static stall are clearly present in the

torque coefficient plot, and by the time the angle of attack has decreased below the static stall angle,

the relative velocity is so low that there is not much contribution to the torque coefficient.
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Figure 8. Geometric angle of attack (a), relative velocity (b), and torque coefficient (c) calculated with a

NACA 0020 foil operating at λ = 1.9.
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Results for the normalized peak torque coefficient for each foil are plotted versus Rec in Figure 9.

It is interesting that the convergence of CTmax with increasing Reynolds number is more dramatic than

any of the common foil performance characteristics plotted in Figure 7, meaning that the cross-flow

turbine’s unique kinematics must be taken into account when attempting to predict the effect of

transitional Reynolds numbers on turbine performance.

From the peak torque coefficient metric plotted in Figure 9, the Reynolds number independence

is achieved at lower values and more dramatically. We see that the trend of the (non-cambered) NACA

0020 curve matches almost perfectly up to Rec ≈ 2.1 × 105, but then continues to increase slowly

and linearly with Re. This is not matched by the experimental data, which at higher Re looks more

like the cambered foil results. Though this method does not provide absolute predictions of turbine

performance, it predicts the transitional Reynolds number regime for cross-flow turbine performance

using only 2D static airfoil characteristics, i.e., the Reynolds number scaling of the peak CT computed

this way behaves much like that of the measured turbine performance.
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Figure 9. Reynolds number dependence of the normalized peak torque coefficient calculated from

static foil coefficients and blade kinematics, compared to experimental data from a cross-flow turbine.

Note that the experimental data represents the mean torque coefficient, not the maximum.

3.2. Wake Characteristics

The near-wake of this turbine at x/D = 1, λ = 1.9, along with momentum and kinetic energy

balances at a ReD = 1.0 × 106 were discussed in [22]. Similar data were taken for the experiment

here, and the results for the mean velocity field and turbulence kinetic energy calculated from wake

maps of 270 individual measurements (tows) are shown in Figures 10 and 11, respectively, looking

upstream towards the turbine. With respect to the mean velocity field, we see asymmetry and a mean

vortex structure created by blade tip vortex shedding. The effects of the tip vortices are also seen in the

turbulence kinetic energy measurements, along with turbulence generated by the blades undergoing

dynamic stall on the −y side of the turbine.

These same wake maps were measured for ReD = 0.4 × 106, 0.6 × 106, 0.8 × 106, and 1.2 × 106.

Qualitatively, these look very similar, so they have not been plotted here, though profiles at z/H = 0.0

are compared in Figure 12 to illustrate the subtlety of the differences at different Re. We will instead

compare and contrast the wake behavior by examining spectra and wake transport terms in the

equations that govern the downstream evolution of mean momentum and kinetic energy.
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Figure 10. Mean velocity field at x/D = 1, λ = 1.9, and ReD = 1.0 × 106.
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Figure 11. Turbulence kinetic energy at x/D = 1, λ = 1.9, and ReD = 1.0 × 106.
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Figure 12. Mean streamwise velocity (a) and turbulence kinetic energy (b) profiles at z/H = 0.0.

Turbine diameter Reynolds number ReD is indicated by the legend.

3.2.1. Dominant Timescales and Turbulence Spectra

Spectra of the cross-stream velocity normalized by the free stream were computed using a fast

Fourier transform-based method, applying a Hanning window and averaging over four adjacent

frequency bands to decrease confidence intervals. These spectra are plotted in Figure 13 for regions on

either side of the turbine. On the −y side of the turbine, there is broadband turbulence produced by

blade stall, and on the +y side, there is a clear peak in the spectra caused by the blade passage. We see

that on both sides, there is higher spectral energy at lower Reynolds numbers. On the +y side of the

turbine, we notice higher spectral energy at the blade passage frequency’s first harmonic, or 6 fturbine.

This is likely due to the blade’s shed vorticity being less stable at higher Re.



Energies 2016, 9, 73 13 of 18

100 101

f/fturbine

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Sp
ec

tra
l d

en
si

ty

(a)

ReD =0. 4× 106

ReD =0. 6× 106

ReD =0. 8× 106

ReD =1. 0× 106

ReD =1. 2× 106

100 101

f/fturbine

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Sp
ec

tra
l d

en
si

ty

(b)

Figure 13. Cross-stream velocity (normalized by U∞) spectra at z/H = 0.25, y/R = −1.0 (−0.5 m

in Figure 3) (a) and y/R = 1.5 (+0.75 m in Figure 3) (b). Dashed vertical lines indicate [1, 3, 6, 9]

times the turbine rotational frequency. Shaded regions indicate 95% confidence intervals assuming a

χ2 distribution.

3.2.2. Transport of Mean Momentum and Kinetic Energy

The relative importance of various physical processes on mean streamwise momentum and

kinetic energy transport/recovery in the streamwise direction were assessed by examining the

governing equations rearranged to isolate the streamwise partial derivative (∂/∂x) for the quantities

of interest [22], i.e., momentum:

∂U

∂x
=

1

U

[

− V
∂U

∂y
− W

∂U

∂z

−
1

ρ

∂P

∂x

−
∂

∂x
u′u′ −

∂

∂y
u′v′ −

∂

∂z
u′w′

+ ν

(
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

) ]

,

(8)

and mean kinetic energy:

∂K

∂x
=

1

U

[

− V
∂K

∂y
︸ ︷︷ ︸

y-adv.

−W
∂K

∂z
︸ ︷︷ ︸

z-adv.

−
1

ρ

∂

∂xj
PUiδij +

∂

∂xj
2νUiSij −

1

2

∂

∂xj
u′

iu
′
jUi

︸ ︷︷ ︸

Turb.trans.

+ u′
iu

′
j

∂Ui

∂xj
︸ ︷︷ ︸

k-prod.

− 2νSijSij
︸ ︷︷ ︸

Mean diss.

]

,

(9)

where advection is abbreviated by “adv.,” turbulent transport by “turb. trans.,” production by “prod.,”

and dissipation by “diss.”

Note that Equations (8) and (9) only differ from the typical forms of the mean momentum and

mean kinetic energy equations by a factor of 1/U, but importantly, the other convective terms (∂U/∂y,

∂U/∂z, and ∂K/∂y, ∂K/∂z) are moved to the right-hand sides of the equations to illustrate with what

sign they add to the streamwise recovery of streamwise momentum or mean kinetic energy.
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Results from the terms that can be computed from the experimental data (i.e., excluding ∂/∂x)

from the right-hand sides of Equations (8) and (9) are plotted in Figures 14 and 15, respectively.

Derivatives were computed using a second order finite difference scheme, with central differencing for

interior points and inward facing schemes for the boundaries. A weighted average for each term was

then calculated based on the grid spacing. We note that similar to [22], the vertical advection at this

point in the wake is the dominant contributor to positive wake recovery, caused by the unique vortex

pattern created by the blade tips and blade wakes.
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Figure 14. Normalized streamwise momentum transport quantities computed as weighted averages

from Equation (8).
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Figure 15. Normalized mean kinetic energy transport quantities computed as weighted averages

based on Equation (9), omitting the non-measured streamwise derivatives. Note that directions of the

turbulent transport terms refer to the directions of their partial derivatives.

We see that in general, levels of turbulent transport are slightly lower at larger Reynolds numbers.

The viscous diffusion and dissipation, though still three orders of magnitude smaller than the other

terms, do increase at low Reynolds numbers, which is consistent with the physical meaning of the

Reynolds number itself. From these results, one might expect that the viscous effects will become

significant to the wake dynamics as the Reynolds number is decreased below ReD ∼ 104.

Transport due to cross-stream advection appears to become more negative at higher Re. This could

be a consequence of increasing free surface deformation (higher Fr), which then decreases the effective

flow cross-sectional area downstream of the turbine, forcing more flow to accelerate around the sides



Energies 2016, 9, 73 15 of 18

of the turbine. Note that we also observe slightly higher drag coefficients at higher Re (potentially for

the same reason), which also helps explain larger negative values of cross-stream advection.

The totals for all of the wake transport terms calculated in Figures 14 and 15 are plotted in

Figure 16. We see that in general, the wake transport of both mean streamwise momentum and kinetic

energy is enhanced at lower Reynolds numbers and levels off consistent with the behavior of the

turbine power coefficient. This is an important consideration if studying sub-scale models of turbine

arrays, where increased levels of wake recovery could motivate different ideal array configurations

when compared to full-scale turbines if the scale model Reynolds number is too low.
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Figure 16. Normalized transport totals from Figures 14 (streamwise momentum, U) and 15 (mean

kinetic energy, K) plotted versus the Reynolds number.

4. Conclusions

In this study, it was demonstrated that the performance of a high solidity (c/R = 0.28) cross-flow

turbine becomes essentially Re-independent at a Reynolds number based on the turbine diameter

ReD ≈ 106 or an approximate Reynolds number based on the blade chord Rec ≈ 2 × 105. The power

coefficient values on the left-hand side of the CP-λ curve are reduced more than those on the right-hand

side at low Re due to deeper stalling. The Re-independent threshold corresponds to that at which the

foil suction surface boundary layer becomes turbulent before having to recover static pressure against

the adverse pressure gradient, highlighted in [24,25,40].

We propose a method for predicting the Reynolds number dependence of a cross-flow turbine

using static airfoil characteristics and turbine blade kinematics:

1. Acquire static lift and drag coefficient data for the desired blade profile.

2. For azimuthal angles of 0 to 180 degrees and a given tip speed ratio, calculate the geometric angle

of attack and relative velocity magnitude from the blade and undisturbed free stream velocity

(taken as unity) vectors.

3. With arrays of geometric angle of attack and relative velocity magnitude, calculate the blade

chordwise force and then the rotor torque coefficient from Equations (6) and (7), respectively.

4. Extract the maximum value of CT , and repeat this process for static foil data at multiple Re.

It was shown that the peak torque coefficient computed this way shows similar Reynolds

number sensitivity as the experimental results for an actual turbine, making it a better predictor

than conventional quantifications of airfoil performance, e.g., the lift-to-drag ratio. Note that this

method is not restricted to standard symmetrical NACA foils, though those evaluated here with higher

camber were more sensitive at lower Re, but had smaller slopes in the linear regime.
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In the near-wake of the turbine, we observed lower levels of turbulence with increasing Reynolds

number, along with lower levels of turbulent transport with respect to mean streamwise momentum

and mean kinetic energy recovery in the streamwise direction. Vertical advection, the largest transport

mechanism measured, showed little Re-dependence, whereas the negative effects of cross-stream

advection were enhanced at high Re, which may be due to larger free surface deformation effectively

reducing the near-wake’s cross-sectional area. Despite being orders of magnitude smaller than other

transport processes, viscous diffusion increased rapidly with decreasing Re and is expected to become

significant to the wake dynamics around ReD ∼ 104. Overall, the total wake transport measured

leveled off at essentially the same Reynolds number that the performance did: ReD ≈ 0.8 × 106.

From these results, we recommend that physical model tests of cross-flow turbines be performed

at ReD ∼ 106 or greater to provide reasonable predictions of full-scale performance. This threshold

also applies to the validation of predictive engineering models, especially for high-fidelity CFD models

where the boundary layer is to be resolved, since transition to turbulence plays an important role in

overall blade loading. Note that in our case, blockage, though reasonably low, may be increasing flow

through the turbine compared to a free case, which could mean Re thresholds for free flows could

be slightly higher, though a reliable blockage correction algorithm has not yet been agreed upon for

CFTs [32].

If using scaled physical models to predict array performance, where turbine power output is

measured, it may also be important to keep all turbines in the regime where the power coefficient

varies linearly to avoid exaggerated power deficiencies for downstream turbines, despite similarities

in wake characteristics. Results here also suggest that low Reynolds number physical model studies of

turbine arrays may see exaggerated levels of wake recovery, leading to inadequate or inappropriate

spacing or layouts.
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