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Abstract

Unlike the well defined structures of classical natively folded proteins, Intrinsically Disordered
Proteins (IDP) and Intrinsically Disordered Regions (IDR) dynamically span large conformational and
structural ensembles. This dynamic disorder impedes the study of the relationship between the amino
acid sequences of the IDPs and their spatial structures, dynamics, and function. Multiple experimental
and theoretical evidence points in many cases to the overall importance of the general properties of the
amino acid sequence of the IPDs rather than their precise atomistic details. However, while different
experimental techniques can probe aspects of the IDP conformations, often different techniques or
conditions offer seemingly contradictory results. Using coarse-grained polymer models informed by
experimental observations, we investigate the effects of several key variables on the dimensions and
the dynamics of IDPs. The coarse-grained simulations are in a good agreement with the results of
atomistic MD. We show that the sequence composition and patterning are well reflected in the global
conformational variables such as the radius of gyration and hydrodynamic radius, while the end-to-end
distance and dynamics are highly sequence specific. We identify the conditions that allow mapping
of highly heterogeneous sequences of IDPs onto averaged minimal polymer models. We discuss the
implications of these results for the interpretation of the recent experimental measurements, and for
further development of appropriate mesoscopic models of IDPs.

1 Introduction

Many proteins are intrinsically disordered and do not conform to the classical structure - function
paradigm. Yet, these proteins possess diverse biological functions, while maintaining high dynamic and
structural flexibility. Under native conditions, their structures comprise dynamic ensembles of different
conformations. Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) became
the common nomenclature used to distinguish this class of proteins and peptides from the traditional
ordered proteins [1, 2]. IDPs are involved in a wide range of health and disease processes and functions
of the cell. Furthermore, a broad array of human diseases are associated with the failure of an ordered
protein to adopt its native conformation, consequently gaining some of the properties of an IDP [2,
3]. Proteins associated with cancer, diabetes, neurodegenerative, and cardiovascular diseases often have
regions of structural disorder, making them the leading targets for drug development [1, 2, 4].

Understanding how an IDP’s amino acid sequence dictates the equilibrium and the dynamical proper-
ties of its conformational ensemble is an important step towards understanding the principles of function
of this class of proteins. A full characterization of an IDP, in principle, involves a description of all
possible conformational states and the rates of inter-conversion between them, which is hard to access
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experimentally [5]. Nevertheless, several experimental techniques reveal information about various char-
acteristics of the IDP ensembles: NMR, fluorescence correlation spectroscopy (FCS), or dynamic light
scattering (DLS) can measure the diffusion coefficient and the corresponding hydrodynamic radius of an
IDP, Förster resonance energy transfer (FRET) provides information about the inter-residue distances
(such as the end-to-end distance), and small angle X-ray scattering (SAXS) can measure the radius of
gyration [2, 6, 7].

Emerging evidence shows that due to their disordered nature and the importance of entropic effects,
IDP structural ensembles might be less sensitive to the fine details of a specific amino acid sequence
compared to the unique 3D structures of the classical folded proteins. Rather, many IDP properties
can often be understood in terms of the global characteristics such as the overall charge, hydropho-
bicity, flexibility of the polypeptide backbone, and the average solvent properties [8]. Typically, mean
hydrophobicity is lower and the mean net charge is higher in IDP sequences than in folded proteins, and
they are impoverished in large amino acids, preventing the folding of IDPs into stable unique structures
with a hydrophobic core. A predictor based only on the amino acid composition predicts disorder with
87% accuracy [9]. A predictor based on the reduction of the size of the sequence alphabet by assigning
each amino acid to just one of 4 types (neutral, hydropbobic, positive and negative), performs almost
as well as a predictor using the full 20 amino acid alphabet [9]. Even a minimal predictor based only
on two properties: the net charge per residue and and the mean hydrophobicity per residue, can often
differentiate well between IDPs and folded proteins, as well as between different classes of IDPs [1–3, 6,
10, 11].

Polymer physics offers a useful theoretical framework for understanding IDP behaviors, and enables
linking experimental observables to the underlying conformational ensembles [2, 12, 13]. Simple mean field
homopolymer models have been successful in categorizing the IDP ensembles into regimes of qualitatively
different behaviours based on the ensemble averages of polymer dimensions, such as the radius of gyration
and the end-to-end distance [12–14]. Commonly, the size of an IDP chain in space correlates with the net
balance between the repulsive and attractive intra-chain and chain-solvent interactions, which can often
be encapsulated in an effective internal cohesiveness parameter, related to the classical Flory parameter
χ [11, 15–18]. The ratio of the fraction of the charged amino acids to the fraction of hydrophobic ones is
often sufficient to distinguish between the swollen and compact regimes of behaviour [11, 19, 20].

At the low cohesiveness, disordered, extreme polypeptides are often successfully described by models
of polymers in a good solvent and adopt diffuse swollen random coil conformations. In the opposite,
high cohesiveness, regime the IDPs adopt dense globular conformations [12, 16, 21]. In particluar, IDP
location on the order-disorder continuum can often be encapsulated in the scaling dependence of their
size R on the chain length (number of amino acids) N , R ∼ Nν , which describe the universal features of
the behaviour of polymeric molecules that are largely independent of the details of the local microscopic
properties of the chain or the solvent [1, 12, 14, 22–25]. In the highly disordered regime (such as at
high denaturant concentrations and low intra-chain cohesiveness), the IDP dimensions follow the good
solvent scaling law ν ≃ 0.6, which gradually decreases to ν ≃ 1/3 in the compact globular regime at high
cohesiveness. These simple mean field theories have been successful not only in describing individual
molecules of IDPs but also multi-chain systems in various geometries - from surface grafted layers to 3D
phase separation [17, 18, 26–28].

However, despite their successes, simple mean field polymer theories suffer from several drawbacks.
First, they fail to differentiate between distinct polymer dimensions, such as the end-to-end distance,
radius of gyration, and the hydrodynamic radius, which can lead to difficulties in the interpretation of
the experimental data. Several recent works using FRET and SAXS measurements unveiled discrepancies
and divergent behaviors of the different measures of polymer dimensions [29–33]. In particular, the chain
radius of gyration Rg, inferred from FRET measurements of the end-to-end distance Re can show much
greater compaction with the decrease in the denaturant concentration compared to the direct SAXS
measurement of Rg [29]. Similar “decoupling” between the Rg and the end-to-end distance Re was
observed in [33]. On the other hand [31] observed consistent increase in all chain dimension with an

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.137752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.137752


increase in the denaturant concentration, using multiple methods: FRET for Re, SAXS for Rg, and FCS
and DLS for the hydrodynamic radius Rh. One proposed explanation for such decoupling is the effect
of FRET dyes located at the chain ends [30, 34, 35]. On the other hand, [32] and [33] did not report
an observable effect of the dyes on the chain dimensions. These results raise important and fundamental
questions about the methodology of inference of the chain dimensions and internal structures of IDPs
from the experimental data, which may depend on the specific assumptions in the polymer models used
[32, 33].

Second, simple polymer theories fail to capture the effects of sequence heterogeneity. Although some
atomistic details may be coarse-grained [6, 13, 36–38], the effects and the importance of the amino acid
patterning on the dimensions and the dynamics of IDPs are not fully known [11, 12, 14, 39, 40]. In
particular, permutations of the sequences of the amino acids without changing the overall composition
may affect the polymer dimensions as predicted computationally [14, 39, 40] and observed experimentally
[25]. Similarly, as mentioned above, specific amino acids located near the ends of the chain might have
strong effects on some of the chain properties. Furthermore, hitherto not fully explained inconsistencies
arise in the measurements of the dynamic reconfiguration times of the IDPs, explored via FRET and
Fluorescence Correlation Spectroscopy (FCS) [7, 41–43].

Interpretation of the experimental data often relies on the computational models of IDPs. As men-
tioned above, simple mean field polymer models are powerful but not sufficient to capture the complexity
of the whole gamut of behaviors of IDPs. Computational approaches based on computer simulations
offer a way to systematically study the vast sequence space and the effects of sequence heterogeneity
on the polymer dimensions and other properties. On the one hand, all atom molecular dynamics (MD)
simulations have been used as a tool in the modeling of natively folded proteins for several decades.
However, there are several obstacles when applying these methods to IDPs. Even with the dramatic
increases in the computing power, computationally expensive simulations required to fully explore the
vast conformational space of an IDP are not always feasible [5, 44]. Moreover, agreed upon atomistic
force fields for IDPs are still lacking, and their predictions remain sensitive to the fine tuned choices of
parameter values, and are potentially prone to over-fitting [45–48].

On the other hand, coarse-grained simulations avoid many of these pitfalls by subsuming many atom-
istic details into the coarse grained variables, such as the local amino acid charge, hydrophobicity and
monomer size [49–55]. Identification of the key properties and molecular features that capture the con-
nection between the IDP structure and the experimentally accessible variables [50, 51] while avoiding
over-fitting the sparse experimental data is challenging [51]. Several of these properties have been identi-
fied: the importance of electrostatic interactions, hydrophobicity and, more generally, the association of
certain amino acids with either expansion or compaction of the IDPs. Yet, although a number of different
force fields and solvent models have been successfully applied in different specific cases, currently there
are no universally accepted coarse-grained (or atomistic) force fields. In order to reproduce the experi-
mental data, simulation outcomes often require sub-ensemble sampling and re-weighting [31, 33, 56], or
additional ad hoc assumption about the ensemble properties [7, 29, 31, 33, 41, 56]. Furthermore, the
link between atomistic and coarse-grained models is still missing, as is the understanding of the regimes
of applicability of different approaches.

Identification of quantitative characteristics of the IDP sequence that enable the link between the
molecular properties and the macroscopic behavior is desirable for further progress. This is of particular
importance for translating the insights of studies of individual IDP molecules towards understanding
and prediction of their collective properties, such as phase separation and coacervation [57, 58]. In
this paper we systematically investigate the effects of sequence composition and heterogeneity on the
dimensions and the dynamics of IDP conformational ensembles. We use experiment-informed coarse-
grained minimal complexity models that include only the key features of an IDP sequence. We specifically
focus on the effects of the chain “patchiness” and the sequence near the chain ends. We investigate the
mapping between the atomistic and coarse-grained descriptions, and identify coarse grained parameters
and variables that enable mapping from heterogeneous onto averaged models. The results shed light on
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the interpretation of recent experimental results and serve as a basis for further development of mesoscopic
models of IDPs.

The paper is structured as follows. In Section 2, we describe the computational methods of the paper
based on the over-damped Langevin dynamics with explicit hydrodynamic interactions. In Section 3.1.1,
we present the results of the simulations of a minimal homopolymer model of intra-chain interactions
to differentiate between the various polymer dimensions: end-to-end distance, radius of gyration and
hydrodynamic radius. In Section 3.1.2, we investigate the effects of sequence heterogeneity on the IDP
dimensions expanding the homopolymer model to include four monomer types (cohesive, neutral, posi-
tively charged, or negatively charged). In Section 3.2, we study the effects of the amino acid sequence on
the end-to-end dynamics of IDPs and discuss the implication for interpretation of experimental results.
We conclude with Conclusions and Discussion in Section 4.

2 Methods

We represent an IDP as a polymer consisting ofN monomers. Sequence effects are introduced by assigning
each monomer into one of the four types: neutral, cohesive, positively charged, or negatively charged.
Similar models and computational implementations have been used to study polymer systems [49, 59–63].
The model can accommodate various levels of detail such as sequence heterogeneity and hydrodynamic
interactions.

The monomers are kept on a chain via the finitely extensible non-linear elastic potential (FENE)
bonds between nearest neighbor monomers [64]:

UFENE = −1

2
kl2max ln(1−

(

r

lmax

)2

) (1)

All monomer pairs interact via a repulsive 8-6 LJ potential modeling the steric repulsion between the
monomers:

UEV =

{

ǫLJ

[

(

b
r

)8 − 4
3

(

b
r

)6
]

+ 1
3(ǫLJ − ǫ) if r < b

0 if r > b
(2)

b =
bi + bj

2

where ǫLJ is the strength of the repulsion, and b (equal to the sum of the radii of the two interacting
monomers) is the distance between the monomer centers where the force is zero. An exception to this
rule occurs if the two interacting beads are bonded monomers of a polymer: in this case b = b0, which
reflects the bond length rather than the radius. The potential is shifted by 1

3(ǫLJ−ǫ) in order to maintain
continuity at r = b with the attractive potential described in the following paragraph.

In addition to the universal repulsive interaction, “cohesive” monomers interact through the attractive
potential

UC =

{

ǫ
[

(

b
r

)8 − 4
3

(

b
r

)6
]

if b < r < 4b

0 if r ≤ b or r ≥ 4b
(3)

b =
bi + bj

2

The parameter ǫ controls the strength of the attraction between the monomers. The sum of the radii
of the two beads (b) is the same as in the repulsive force described previously. The attractive potential
smoothly splines with the repulsive part at r = b. To reduce computational complexity, the potential is
cut off beyond r = 4b, where it is ∼ 0.1% of it’s maximal depth.
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Interaction between two charged monomers is modeled via the screened Coulomb potential:

UQ =
q1q2
4πǫ0r

e
− r

lD , (4)

where q1 and q2 are the charges of the beads, and ǫ0 is the dielectric permittivity of the solution. The
Debye length lD describes the screening of the electrostatic potential by the salt ions.

The dynamics of the chain are described by the over-damped Langevin dynamics implemented via
Ermak-McCammon [65] algorithm, as described below. Hydrodynamic interactions are included via the
Rotne-Prager-Yamakawa tensor [66, 67]. T

For convenience, we define the following dimensionless variables: the position of a monomer ~X =
~x
xc
, the simulation time step ∆T = ∆t

tc
, the sum of the deterministic forces on a monomer due to it’s

interactions with the other monomers ~Fint =
~fint

fc
. The units of force are fc =

2kBT
xc

, the units of length are

xc =
√

2kBT
k =

√

2
3b0 (k and b0 are defined above), and the units of time are tc =

ξ0
k , where ξ0 = 6πηa0,

is the Stokes drag coefficient for a bead with hydrodynamic radius a0. In these units, the displacement
of a monomer in one simulation time step is:

∆ ~X = M̄ ~Fint∆T + H̄ ~∆W. (5)

When hydrodynamic interactions are included, M̄ is the Rotne-Prager-Yamakawa tensor [67] multi-
plied by ξ0, and H̄H̄⊺ = M̄ . In simulations, H̄ is chosen to be a lower triangular matrix obtained using
the Cholesky decomposition of H̄. For the calculation of the equilibrium quantities, such as the radius
of gyration of the end-to-end distance, hydrodynamic interactions are immaterial, and all off-diagonal
entries of M̄ may be set to 0. The components ∆Wi of ~∆W are independent random variables with
Gaussian distributions such that 〈∆Wi〉 = 0 and 〈∆Wi(T )∆Wj(T

′)〉 = ∆Tδ(T ′ − T )δij [65, 68, 69]; see
Appendix for details.

Expressed in the simulation units, the range (diameters) of the repulsive volume interactions between

bonded monomers is B0 = b0
xc

=
√

3
2 The maximal extension of the FENE bonds between monomers is

Lmax = lmax

xc
= 2B0. The strength of excluded volume interactions is ǫLJ

kT = 1. The hydrodynamic radii

of the monomers were A = a
xc

= b
2xc

= B
2 .

3 Results and Discussion

3.1 Effects of sequence and interactions on the chain dimensions

3.1.1 Effects of internal cohesiveness on the chain dimensions: averaged homopolymer

models

Several recent experiments reported discrepancies between polymer dimensions of IDPs/chemically dena-
tured proteins measured using different experimental techniques, most prominently FRET and SAXS [29,
30]. Many of these discrepancies may result from different a choices of the polymer model, of the force
field and the re-sampling procedure [31, 33, 56].

In this section, we explore the effects of the intra-chain interactions on the polymer conformational
ensemble, and the corresponding experimentally relevant dimensions, such as the end-to-end distance Re,
radius of gyration Rg and the hydrodynamic radius Rh.

These dimensions are defined as:
〈R2

e〉 ≡ 〈(~R1 − ~RN )2〉 (6)

〈R2
g〉 ≡

1

N

N
∑

i=1

〈(~Ri − ~Rc)
2〉 (7)
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De =
kBT

6πηRh
(8)

~Ri is the position of monomer i and ~Rc is the polymer centre of mass. De is the diffusion coefficient of the
polymer centre of mass. The Kirkwood approximation for the hydrodynamic radius is (see Appendix A.1):

〈R−1
k 〉 ≈ 1

N2

N
∑

i=1

N
∑

j=1,j 6=i

〈|~Ri − ~Rj |−1〉 (9)

In this section we use a minimal homopolymer model which serves as a “null hypothesis” for the
interpretation and the analysis of the experimental data, against which more complex models can be
benchmarked. In the model, all monomers of the chain interact attractively with each other with the
same average interaction strength ǫ (see Equation 3). This coarse-grained interaction parameter subsumes
all the direct and solvent-mediated interactions between the monomers properties of the solvent, as well
as the average composition and the sequence details of an IDP. Experimentally, low ǫ ≃ 0 represents
a protein in a high denaturant conditions or an IDP with many disorder promoting amino acids in its
sequence. Increasing ǫ represents lower denaturant concentration or higher fraction of order promoting
amino acids in an IDP sequence.

The cohesiveness parameter ǫ is closely related to the classical mean field Flory interaction parameter
χ [15], which encapsulates all the information about an IDP’s sequence and molecular properties; mathe-
matically the two are related through the second virial coefficient of the interaction χ ≃

∫

d3r(1− e−U(r),
where U(r) is defined in equations 3 and 2. Unlike mean-field models, the simulations are able to differen-
tiate between the various polymer dimensions: end-to-end distance, radius of gyration and hydrodynamic
radius.

Simulations were performed for chains of N = 100 monomers and cohesive interactions strengths
ranging from ǫ

kT = 0 to ǫ
kT = 1.9 inclusive, in intervals of 0.1. For each ǫ, 40 independent runs were

performed, each lasting 108 steps, with a time step of ∆T = 0.001. Each run began from a self-avoiding
random walk initial condition. The first 106 steps were excluded from the analysis in order to avoid
biasing the results by the initial conditions, and averages were taken over the time steps and the different
runs.

The results are summarized in Figure 1a, which shows the average end-to-end distance, the radius of
gyration, and the hydrodynamic radius. The end-to-end distance has been scaled down by a factor of

√
6

to be comparable to the other dimensions. Overall, all the polymer dimensions monotonically decrease
with increasing ǫ, as the chain compacts from a coil to a globule. The θ-point, where the inter-monomer
repulsion is balanced by the inter-monomer attraction resulting in roughly ideal chain behavior, is located
around ǫ

kT ≈ 0.7 − 0.75 (see Appendix A.2); however the exact location of the θ-point may depend on
the specific choice of the form of the interaction potential [70]. The end-to-end distance undergoes the
greatest relative compaction, while the hydrodynamic radius experiences the least change.

One can more readily identify a polymer position on the order-disorder continuum by studying the
ratios between the various polymer dimensions rather than the individual dimensions themselves in iso-
lation. As will be seen in the next section, these ratios can be more robust and versatile measures of the
polymer conformations.

Figures 1c and 1d show the ratios of the square of the end-to-end distance to the square of the radius
of gyration, as well as the ratio of the radius of gyration to the hydrodynamic radius for varying values of
polymer cohesiveness ǫ. The ratios obtained from simulations approach the theoretical limits for good, θ,
and poor solvents (calculated for N → ∞). For the self-avoiding walk (ǫ = 0), 〈R2

e〉/〈R2
g〉 ≈ 6.2− 6.4 [71,

72](depending on the approximation). For an ideal chain (θ point), 〈R2
e〉/〈R2

g〉 = 6. In the compact
regime of high cohesiveness, the polymer can be approximated as a uniformly dense sphere. In this
regime, assuming that the locations of the two ends are independent from each other and are uniformly
distributed inside the sphere, R2

e/R
2
g = 2 [56, 73]. The ratio of the radius of gyration to the hydrodynamic

radius is known to be Rg/Rk ∼ 1.5 for the θ solvent [23, 74] and decreases to Rg/Rh ∼ 0.774 and
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Figure 1: (a) Polymer dimensions of a homopolymer for varying monomer cohesiveness.
(b) Asphericity of a homopolymer for varying monomer cohesiveness. (c) Ratio of the square of the
end-to-end distance to the square of the radius of gyration of a homopolymer for varying monomer
cohesiveness. Solid horizontal line corresponds to a uniform sphere. Dashed horizontal line marks the
θ-point where the polymer behaves as a Gaussian chain with R2

e/R
2
g = 6 (ǫ ≈ 0.7 − 0.75 kT ). (d) Blue:

ratio of the radius of gyration to the hydrodynamic radius. Purple: ratio of the radius of gyration to
the Kirkwood approximation to the hydrodynamic radius. The good solvent corresponds to ǫ = 0, the
θ-solvent corresponds to ǫ ≈ 0.7− 0.75 kT , and poor solvents correspond to ǫ > 1.5 kT . The number of
monomers is N = 100.
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Rg/Rk ∼ 0.93 in the globular high cohesiveness regime [56, 73]. Importantly, in the homopolymer model
the Rg and Re remain coupled in a sense that both consistently decrease with the increase in ǫ.

Chain asphericity. As mentioned above, some of the discrepancies between FRET and SAXS mea-
surements of the radii of gyration can be attributed to the assumptions of the hompolymer models used
in the inference of polymer dimensions from the data. In particular, asphericity (sometimes referred to as
the shape anisotropy) δ of IDP ensembles has been proposed to play an important role in the inference of
IDP properties form FRET and SAXS data [33, 56]. Although the ensemble average monomer density is
isotropic for any polymer, the individual conformations may not be, giving a non-zero average asphericity.
For a rigid rod δ = 1, and for a sphere δ = 0. The ensemble averaged asphericity is:

〈δ〉 = 1−
〈

3(λxλy + λyλz + λzλx)

(λx + λy + λz)2

〉

(10)

where λx, λy, and λz are the eigenvalues of the 3 × 3 gyration tensor for a single conformation, whose
entries are:

Sxy =
1

N

N
∑

i=1

(Ri,x −Rc,x)(Ri,y −Rc,y) =
1

2N2

N
∑

i=1

N
∑

j=1

(Ri,x −Rj,x)(Ri,y −Rj,y) (11)

Ri,x and Rc,x are the x-components of the position of monomer i and the center of mass respectively.
The radius of gyration for that conformation is: R2

g = λx + λy + λz.
Figure 1b shows the asphericity of a homopolymer chain for different values of monomer cohesiveness

and decreases from ∼ 0.45 for the swollen coil to close to 0 for the compact globular conformations. For
the homopolymer model, the asphericity is well correlated with the ratio of the end-to-end distance to
the radius of gyration Re/Rg.

Conditional Sub-Ensemble Distributions. Due to the absence of universally accepted force fields to
describe the conformational ensembles of the IDPs, sub-ensembles with appropriate conditional distri-
butions of the end-to-end distance conditioned on a sub-ensembles with set values of RG are commonly
used for comparison with the experimental data [29, 56, 75, 76].

In Figure 2, we compare the conditional distributions of the end-to-end distance, p(Re|Rg), obtained
from the homompolymer simulations, with the predictions of the common sub-ensemble model, Sanchez-
Haran theory [76, 77], which postulates that the end-to-end distance distribution of the conformations
conditioned on a particular radius of gyration is the probability distribution of distances between two
random points in a sphere of the radius

√
5Rg.

Notably, the simulated conditional distributions are not noticeably affected by the strength of the
cohesive interaction ǫ. The Sanchez-Haran distribution matches the simulations well for compact confor-
mations, which typically have large ǫ, but underestimates the end-to-end distance for large conformations,
which typically have small ǫ. Thus, Sanchez-Haran model would tend to overestimate the radius of gy-
ration for polymers with low cohesiveness or in good solvents, based on the raw FRET data.

Another notable artefact of the Sanchez-Haran model is that implicitly assumes that Rg/Re = 6 (that

of a Gaussian chain) for all values or cohesiveness. Following [76]: p(Re) =
∫ Rg,max

Rg,min
dRgp(Re|Rg)p(Rg).

Thus, 〈R2
e〉 =

∫ Re,max

0 dReR
2
e

∫ Rg,max

Rg,min
dRgp(Re|Rg)p(Rg) =

∫ Rg,max

Rg,min
dRgp(Rg)

∫ Re,max

0 dReR
2
ep(Re|Rg). For

the distribution of distances between two random points in a sphere of radius
√
5Rg,

∫ Re,max=2
√
5Rg

0 dReR
2
ep(Re|Rg) = 6R2

g and so this model, like the Gaussian chain model, predicts the
relationship 〈R2

e〉 = 6〈R2
g〉.

These results have potentially important implications with respect to the interpretation of FRET and
SAXS data.
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Figure 2: Probability distributions of the end-to-end distance of a homopolymer, conditioned on the
sub-ensembles with different radii of gyration. The circle symbols show the simulation results. The
color of a symbol (blue to yellow) corresponds to low to high values of ǫ. The black dashed line shows
the distribution of the end-to-end distance of the Sanchez-Haran model. The number of monomers is

N = 100. Polymer dimensions are in the units of
√

2
3b0 where b0 is the monomer diameter. Histogram

bin size for calculation of the distribution is 0.5; see Section 2.

3.1.2 Effects of Sequence Composition and Patterning

To capture the effects of sequence composition and patterning on IDP structures, we extended the model
into the heterogeneous sequence domain. In this section, rather than focusing on specific intrinsically
disordered proteins with specific coarse-grained model parameters, we focus on the general relationships
between the sequence properties and the polymer dimensions.

As described Section 2, we use a “four letter” model (“HP+-”), where monomers can be either neu-
tral/repulsive (“P”), cohesive/attractive (“H”), positively charged (“+”), or negatively charged (“-”).
The first two types of monomers are inspired by the Hydrophobic-Polar model of proteins [78]. The
charged monomers represent charged amino acids, while the cohesive monomers can represent order pro-
moting (mostly hydrophobic) amino acids, and the neutral monomers represent polar/disorder promoting
amino acids. Overall, this model takes into account the basic features of IDP sequences that typically
control their conformations as the polymer dimensions are typically correlated with the compositional
balance of the order-promoting and disorder-promoting amino acids [25, 49]. In particular, net charge
and hydrophobicity can distinguish IDPs from natively folded proteins [1], and the sequences of charged
residues can affect the IDP dimensions dimensions [39].

In the model, neutral monomers experience only repulsive (non-electrostatic) interactions (ǫi = 0 and
qi = 0 in Equations 3 and 4). Cohesive monomers interact only with other cohesive monomers via the
cohesive interaction (with the strength ǫ). Charged monomers interact with other charged monomers via
the electrostatic interactions, and via repulsive potentials with non-charged monomers. The bond length
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between adjacent monomers was 1.35 in simulation units, corresponding to roughly 0.38 nm distance
between two adjacent Cα atoms in real polypeptides. For the sequences comprising mixtures of cohesive
(“H”) and neutral monomers (“P”), the steric repulsion diameters of Equation 2 of all monomers were
set to B = B0 =

√
1.5 in simulation units, corresponding roughly to ∼ 0.35 nm. For the polyampholyte

sequences, the steric repulsion diameters were set to B− = 2.29 and B+ = 2.44 in simulation units,
reflecting the relative volumes of the corresponding amino acids (Lysine “E” and Glutamic acid “K”) [79,
80] (see Section 2). The strength of the electrostatic interactions was Q = 2 and the Debye length
was LD = 4 in simulation units corresponding to the screening length of ∼ 1.1 nm (typical for ∼ 75
mM of NaCl). However, the results apply more generally, and we expect the small variations in the
parameterization to not have a major effect on the main results of the paper.

Chains composed of neutral and cohesive monomers. We first investigated how the sequence patterning
of neutral (“P”) and cohesive (“H”) monomers affects the chain dimensions. We simulated 5 different
sequences of 30 cohesive (“H”) and 30 neutral (“P”) monomers using the coarse-grained model. The
sequences, shown in Table 1, vary in the sizes of the cohesive and the neutral clusters, increasing from 1
to 5, while maintaining the same 1 : 1 ratio of neutral to cohesive monomers. For each sequence and for
each set of interaction parameters ǫ, Q, and LD, 8 runs were performed, each lasting 108 steps, with the
time step of ∆T = 0.001 in simulation units. Each run began with a self-avoiding random walk initial
condition. The first 106 steps were excluded from the analysis, and averages were taken over steps over
the time and different runs.

Specifically, we focus on the size of cohesive “patches”, which differs among the sequences while
the overall composition stays the same. The “patchiness” of the sequence can be quantified using the
Sequence Charge Decoration (SCD) parameter (originally introduced in [81] to describe the patterning
of charged monomers). The SCD for the cohesive/neutral sequence is defined in Equation 12,

SCD ≡ 1

N





N
∑

i=2

i−1
∑

j=1

qiqj
√

i− j



 (12)

where N is the number of the monomers in the sequence, and qi = +1 for a neutral monomer and qi = −1
for a cohesive monomers at a position i.

Sequence SCD
(HP)30 -0.410
(PHHP)15 -0.537
(PHHHPP)10 -0.778
PP(HHHHPPPP)7HH -1.002
(PPHHHHHPPP)6 -1.319

Table 1: Sequences composed of 30 cohesive (“H”) and 30 neutral (“P”) monomers with different sizes
(1, 2, 3, 4, or 5) of cohesive (and neutral) clusters. The subscripts indicate how many times the sequence
in parentheses is repeated.

The results are summarized in Fig. 3, which explores the effects of the cohesiveness ǫ of the “H”
monomers and the size of the cohesive “patches” on the polymer dimensions. Results for a correspond-
ing homopolymer of 60 cohesive monomers are shown for comparison. On the x-axis, the monomer
cohesiveness parameter ǫ is rescaled by the square fraction of cohesive monomers.

At low cohesiveness, the radii of gyration of all sequences collapse onto an effective homopolymer
model with the corresponding value of ǫ rescaled by the by the fraction of cohesive monomers squared
(fH = 1/2), reflecting the lower average probability of contacts between cohesive monomers in the
heterogeneous sequences. Simple correspondence with the homopolymer begins to break down around
the ǫ ≈ 0.4 kT. For intermediate cohesiveness, the sequences with larger “patch” sizes exhibit an earlier
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and steeper coil-to-globule transition. Nevertheless, as shown in Fig. 3a, even moderately cohesive patchy
chains can be mapped to an effective homopolymer model with an effective cohesiveness that depends on
the size of the cohesive patch (see also Fig. 4).

Interestingly, at the high values of cohesiveness in the globular regime the relationship between the
the polymer dimensions and the “patch” size is inverted: chains with larger “H” and “P” clusters have
larger dimensions. This likely arises from the fact that in this regime “H” “patches” cluster to form a
compact cohesive core, decorated by disordered loops of “P” containing spacers.

These trends are reproduced in the behavior of the Rg/Rh ratio, as shown Fig. 3d, and are even more
pronounced in the ratio of the end-to-end distance to the radius of gyration (Fig. 3c). These results
emphasize that care must be exercised when inferring polymer properties from measurement of polymer
dimensions in swollen vs. compact regimes (see more below in Section 7).

We also investigated sequences containing mixtures of cohesive monomers with charges of one type
(either positive or negative). Interestingly, the overall results are the very similar to those of the mixtures
of cohesive and neutral monomers. Essentially, in this case, charged monomers serve as neutral/repulsive
monomers of a renormalized size that is dictated by the Debye length rather than the steric repulsion
radius. Full examination of this regime is outside the scope of the present paper, and will be presented
elsewhere; see [82].

Charged sequences. IDPs commonly contain higher fractions of both positively and negatively charged
amino acids in their sequences, compared to the natively folded proteins [12, 14]. In particular, Das and
Pappu [39] computationally investigated the effect of charge patterning on the IDP properties using a
family of polyampholyte sequences with different degrees of segregation of positive and negative charges
in their sequences, shown in Figure 4a. Using Monte Carlo simulations of the IDPs using atomistic
ABSINTH force field with implicit solvent [83], they found that the radius of gyration was higher for
sequences with well mixed positive and negative charges, and lower for sequences with more segregated
charge “patches”. Similar findings were obtained both in the theoretical and the experimental analysis
of segregation of order promoting (Proline) and charged residues [25, 40].

In [39], the degree of charge segregation or “patchiness” was quantified using parameter κ (defined in
the Appendix) whose value is low for well mixed sequences and high for completely segregated sequences.
An alternative parameter that quantifies the charge segregation and ”patchiness” is known as the Sequence
Charge Decoration (SCD) parameter [81], which can be defined for a polyampholyte sequence as in
Equation 12 with qi = 1 for a positively charged monomer and qi = −1 for a negatively charged one. It
has been shown [58] that the radius of gyration simulated by Das and Pappu had a smoother dependence
on SCD than on κ. Comparison between κ and SCD is shown in the Appendix. Other conceptually similar
parameters describing the segregation of different types of monomers have been proposed in the literature
as well [40]

Figure 4, shows the dependence of the various polymer dimensions on the “patchiness” of the polyam-
pholite sequences (quantified through SCD) calculated using the coarse-grained force field of this paper;
see Appendix A.3 for a comparison with κ in Figure 9. As shown in Figure 4b, the coarse grained model
captures well the overall compaction of the radius of gyration of the chains with the increase the charge
“patch” size, as well as the sequence-specific variations in the Rg, compared to the ABSINTH model
of [39]. For comparison between our results and those of Das and Pappu [39], our radii of gyration
are rescaled by a factor of ∼ 1.4 - the ratio of the average radii of gyration over all sequences between
our results and those of Das and Pappu. This difference likely arises due to several assumptions of the
coarse grained model that differ from the atomistic one: the bond angle restrictions between subsequent
amino acids are neglected in the coarse grained model, amino acids are treated as spherically symmetric
monomers ignoring the side-chain geometry, and the amino acid size in the LJ steric repulsion potential
is based on the volumes of amino acids estimates in folded proteins, which could differ from the excluded
volume of amino acids in IDPs [79, 80]. Nevertheless, most of the differences between the two models are
below 10 per cent, as shown in the inset of Figure 4b. The sequence with the highest disagreement (of
about 20 per cent) is with SCD = 2.070, which comprises repeating periodic motifs of 5 negative amino
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Figure 3: Polymer dimensions as a function of the cohesiveness. (a) Radius of gyration for different

sequences. (b) Dotted line: Equivalent Homopolymer ǫ, determined using linear interpolation for
√

〈R2
g〉.

Solid line: empirical fit to (eaǫ − 1)/b where a and b are fitting parameters; see text. (c) Ratio of the
square of the end-to-end distance squared to the square of the radius of gyration. (d) Ratio of the
radius of gyration to hydrodynamic radius (in Kirkwood approximation). All sequences are composed of
30 cohesive and 30 neutral monomers for varying monomer cohesiveness. The size of the hydrophobic
patches varies from 1 to 5; exact sequences are shown in the legend. For comparison, a homopolymer
sequence of 60 cohesive monomers is shown in black. The dashed lines correspond to the Gaussian chain
predictions, the solid lines correspond to a uniform sphere. fH is the fraction of cohesive monomers in

the sequence. Radius of gyration is in units of
√

2
3b0 where b0 is the monomoer diameter, as described in

Section 2.
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acids followed by 5 positive ones. This particular (and biologically unlikely) sequence enables the chain
to fold into an almost crystalline structure in a coarse-grained model, which is prevented by bond angle
restrictions in the atomistic model.

Figures 4c and 4d show the ratios of the different polymer dimensions for the different sequences.
Unlike the“patchy” cohesive sequences of Figure 3, for the polyampholytic sequences the ratio of the end-
to-end distance to the radius of gyration is very sensitive to the specific sequence. On the other hand,
the ratio of the radius of gyration to the hydrodynamic radius is correlated with SCD and the overall
compaction reflected in Rg, and determines well the position of the sequence on the disorder-to-order
continuum. This indicates that FRET measurements might be more indicative of local structure near
the polymer ends, and cannot always used to infer the other polymer dimensions.

Notably, the smooth way in which the radius of gyration and the Rg/Rk ratio depend on the se-
quence “patchiness” (SCD) resembles the dependence of the hompolymer dimensions on the cohesiveness
parameter ǫ. Moreover, it has been shown [58] that SCD and Rg are both correlated with the critical
temperature of the IDP phase separation, establishing a connection between the SCD and the mean field
Flory parameter χ that describes the average attraction between chain monomers [15, 84]. Thus, the effect
of changing the “patchiness” of a polyampholite sequence (quantified via SCD) on the radius of gyration
and the phase separation behaviour of IDPs is analogous to adjusting the global average cohesiveness of
the polymer. Thus, each polyampholite sequence can be mapped onto an effective homopolymer model,
by finding the homopolymer ǫ that produces the same Rg/Rk ratio as the heterogeneous sequence, as
shown in Figure 4d and Figure 5b.

Similar mapping can be achieved for the “HP” sequence consisting of a mixture of neutral and cohesive
monomers that has been discussed above, as shown in Figure 5a and Figure 3b. For moderate values
of inter-monomers cohesiveness ǫ, the effective cohesiveness of a corresponding homopolymer, ǫh, is well
approximated by ǫh = (ea(ǫ) − 1)/b(ǫ), where a and b are fitting parameters.
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Sequence κ SCD
EKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEK 0. 0009 - 0. 413
EEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEK 0. 0026 - 1. 010
KEKKKEKKEEKKEEKEKEKEKEEKKKEEKEKEKEKKKEEKEKEEKKEEEE 0. 0138 - 1. 495
KEKEKKEEKEKKEEEKKEKEKEKKKEEKKKEEKEEKKEEKKKEEKEEEKE 0. 0140 - 0. 981
KEKEEKEKKKEEEEKEKKKKEEKEKEKEKEEKKEEKKKKEEKEEKEKEKE 0. 0245 - 0. 738
EEEKKEKKEEKEEKKEKKEKEEEKKKEKEEKKEEEKKKEKEEEEKKKKEK 0. 0273 - 0. 981
EEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEK 0. 0450 - 1. 462
KKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKE 0. 0450 - 1. 462
EEKKEEEKEKEKEEEEEKKEKKEKKEKKKEEKEKEKKKEKKKKEKEEEKE 0. 0624 - 2. 080
EKKKKKKEEKKKEEEEEKKKEEEKKKEKKEEKEKEEKEKKEKKEEKEEEE 0. 0834 - 2. 098
EKEKKKKKEEEKKEKEEEEKEEEEKKKKKEKEEEKEEKKEEKEKKKEEKK 0. 0840 - 1. 372
EKKEEEEEEKEKKEEEEKEKEKKEKEEKEKKEKKKEKKEEEKEKKKKEKK 0. 0864 - 3. 154
KEKKKEKEKKEKKKEEEKKKEEEKEKKKEEKKEKKEKKEEEEEEEKEEKE 0. 0951 - 2. 991
EKKEKEEKEEEEKKKKKEEKEKKEKKKKEKKKKKEEEEEEKEEKEKEKEE 0. 1311 - 2. 284
KKEKKEKKKEKKEKKEEEKEKEKKEKKKKEKEKKEEEEEEEEKEEKKEEE 0. 1354 - 4. 349
EKEKEEKKKEEKKKKEKKEKEEKKEKEKEKKEEEEEEEEEKEKKEKKKKE 0. 1459 - 1. 938
EKEKKKKKKEKEKKKKEKEKKEKKEKEEEKEEKEKEKKEEKKEEEEEEEE 0. 1643 - 5. 657
KEEKKEEEEEEEKEEKKKKKEKKKEKKEEEKKKEEKKKEEEEEEKKKKEK 0. 1677 - 2. 043
EEEEEKKKKKEEEEEKKKKKEEEEEKKKKKEEEEEKKKKKEEEEEKKKKK 0. 1941 - 2. 070
EEKEEEEEEKEEEKEEKKEEEKEKKEKKEKEEKKEKKKKKKKKKKKKEEE 0. 2721 - 7. 374
EEEEEEEEEKEKKKKKEKEEKKKKKKEKKEKKKKEKKEEEEEEKEEEKKK 0. 2737 - 4. 082
KEEEEKEEKEEKKKKEKEEKEKKKKKKKKKKKKEKKEEEEEEEEKEKEEE 0. 3219 - 4. 521
EEEEEKEEEEEEEEEEEKEEKEKKKKKKEKKKKKKKEKEKKKKEKKEEKK 0. 3546 - 11. 457
EEEEKEEEEEKEEEEEEEEEEEEKKKEEKKKKKEKKKKKKKEKKKKKKKK 0. 4456 - 16. 998
EEEEEEEEEEEKEEEEKEEKEEKEKKKKKKKKKKKKKKKKKKEEKKEEKE 0. 5283 - 12. 771
KEEEEEEEKEEKEEEEEEEEEKEEEEKEEKKKKKKKKKKKKKKKKKKKKE 0. 6102 - 16. 210
KKEKKKEKKEEEEEEEEEEEEEEEEEEEEKEEKKKKKKKKKKKKKKKEKK 0. 6729 - 11. 407
EKKKKKKKKKKKKKKKKKKKKKEEEEEEEEEEEEEEEEEEKKEEEEEKEK 0. 7667 - 15. 986
KEEEEKEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKK 0. 8764 - 22. 571
EEEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKK 1. 0000 - 27. 842
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Figure 4: Dimensions of charged polymers. (a) Sequences composed of 25 positively and 25 negatively
charged amino acids with their corresponding Sequence Charge Decoration (SCD) and κ pattern param-
eters; see text. “K” represents positively charged lysine and “E” represents negatively charged glutamic
acid. (b) Radii of gyration of the chains with corresponding sequences. Black symbols: coarse-grained
model; red symbols: ABSINTH model. (c) Squared ratio of the end-to-end distance to the radius of
gyration. (d) Ratio of the radius of gyration to the hydrodynamic radius (in Kirkwood approximation).
Solid black line is the effective homopolymer mapping (see Figure 5). The dashed horizontal lines mark
the Gaussian chain predictions, the solid horizonal lines mark the values corresponding to a uniform
sphere.
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Figure 5: Equivalent Homopolymer model. (a) Cohesiveness ǫh of the effective homopolymer model that
reproduces the radii of gyrations of sequences with cohesiveness ǫ shown in Figure 3 and Table 1, as
a function of their SCD. (b) Cohesiveness ǫh of the effective homopolymer model that reproduces the
Rg/Rk ratio of the sequences composed of 25 positively and 25 negatively charged monomers shown in
Figure 4, as a function of their SCD value. The red dots show the individual correspondence for each
sequence based on Figure 3. The black line is the smoothed isotonic regression Rg/Rk vs. SCD; see text.

3.2 Dynamics of IDP conformational reconfiguration

Fluctuations in the distance between the donor and the acceptor fluorophores, usually placed at the
ends of the chain, result in fluctuations of the fluorescence intensity. Correlations in the fluorescence
intensity fluctuations, measured through the combination of FRET and fluorescence correlation spec-
troscopy (FCS) provide information about the internal dynamics of the chain [7, 41]. The outcomes
of such experiments have generated several puzzling results, and are still incompletely understood. In
particular, increase in the denaturant concentration that causes swelling of the end-to-end distance, has
been observed to correspond to the decrease in the end-to-end distance reconfiguration time, contrary
to the naive expectation that the reconfiguration time would increase with the longer end-to-end dis-
tances [41, 85]. These observations can potentially be attributed to the “internal friction” resulting from
several intra-chain interactions at lower denaturant concentrations, but the physical and molecular origin
of internal friction in IDPs is still under debate [7, 42, 43]. Theoretical approaches based on Rouse (and
Zimm) like models can capture some of the experimentally observed effects but often rely on ad hoc
assumptions about the end-to-end probability distribution [86–88].

In this section, motivated by the experimental studies of the dynamics of the IDP configurational
changes [41, 85, 89, 90], we investigate the dynamics of the end-to-end distance of IDPs using several
coarse-grained examples. We focus on the dynamics of the two experimentally motivated quantities: the
auto-correlation times of the end-to-end-vector and the end-to-end distance.

The normalized auto-correlation function of the end-to-end vector is defined as:

c~Re
(t) =

〈〈~Re(t) · ~Re(0)〉〉
〈R2

e〉
(13)

The double angle brackets represent averaging over both the initial conditions and realizations of the
random simulation trajectories. The decay time of this function is referred to as the “relaxation time” of
the end-to-end vector or the “rotation time” [23, 86].

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.137752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.137752


The normalized auto-correlation function of the end-to-end distance is defined as:

cRe(t) =
〈〈|~Re(t)||~Re(0)|〉〉 − 〈|~Re|〉2

〈~R2
e〉 − 〈|~Re|〉2

(14)

The decay time of this function is referred to as the the “reconfiguration” time. It excludes contributions
from the rotation modes of the entire polymer, and is closer to the reconfiguration times captured by
FRET and FCS experiments [7, 86, 87].

We calculate the correlation times τ of the end-to-end vector and the end-to-end distance as the
integral of their normalized auto-correlation functions: τ =

∫∞
0 c(t)dt where c(t) is c~Re

(t) or cRe(t) [82].
For computational convenience, the upper limit of the integral was cut off at t = 3τe where τe satisfies
c(τe) = e−1. Other methods, such as approximating the auto-correlation by an exponentially decaying
function, produce substantially the same results, although further investigation is required to understand
the shapes of the auto-correlation functions [82, 91].

To understand the effects of sequence composition and patterning, we focus on four sequences com-
posed of cohesive (“H”) and neutral (“P”) monomers comprising N = 100 monomers each. The first
sequence is the homopolymer introduced in Section 3.1.1, “(H)100”. The second sequence consists of a
repeated “HP” motif, “(HP)50”. The two remaining sequences consist of a repeated “HPP” motif: one
with cohesive monomers at the ends, “(HPP)33H” and the other with neutral monomers at the ends,
“P(HPP)33”.

For the homopolymer, the cohesive interactions strengths ranged from E = ǫ
kT = 0 to E = ǫ

kT = 1.9
inclusive, in intervals of 0.1. Because different heteropolymer sequences have different fractions of cohesive
monomers, in order to compare end-to-end dynamics for comparable chain dimensions for the “(HP)50”
sequence the cohesive interaction strengths were: 0.5, 1, 1.5, 2.0, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4,
4.2, 4.4, 4.6, and 4.8; for the “(HPP)33H” and “P(HPP)33” sequences, the cohesive interaction strengths
were: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.

For each E = ǫ
kT , 240 runs were performed, each lasting ∼ 1.8 × 107 steps, with a time step of

∆T = 0.001 in simulation units. Each run began with a self avoiding walk initial condition. The
first 2 × 106 steps were excluded from the analysis, and averages were taken both over the time and
the ensemble. For each run, the auto-correlation functions were calculated using the Fast Correlation
Algorithm [91]. The auto-correlation functions were subsequently averaged over different runs for each ǫ.
These auto-correlation functions are shown in Figure 6.

For all four sequences, the end-to-end vector relaxation time decreases monotonically with ǫ, 7a.
As expected, in the swollen regime, above the θ-point the end-to-end relaxation rotation time is well

described by the classical Zimm time in good and θ- solvent regimes τZ ∼ ηR3
g

kBT ∼ R3
g, shown by the

black line [23]. More globular chains below the θ-point start deviating from the Zimm time, although the
agreement is still good for all sequences except “(HPP)33H”. We return to the special behavior of this
sequence below.

The behavior of the end-to-end distance reconfiguration time is shown in Figure 7b. Similar to
the relaxation time of the end-to-end vector, the reconfiguration time decreases monotonically with the
chain compactness for the homopolymer, the “(HP)50”, and the “P(HPP)33” sequences, although the
dependence does not obey the Zimm law anymore. By contrast, for the “(HPP)33H” sequence that
has cohesive monomers at the ends, the reconfiguration time is a non-monotonic function of the chain
dimensions in the compact regime below the θ-point.

This behavior can be understood by examinining the distributions of the end-to-end distances for
the chains of different sequences (Fig. 7c). For the homompolymer, the “(HP)50”, and the“P(HPP)33”
sequences, the end-to-end distance distributions have a single peak around a typical value of the end-
to-end-distance. However, for the “(HPP)33H” sequence, additional peaks emerge immediately after the
polymer compacts beyond the θ solvent condition. This feature is further illustrated in Figure 7d which
shows the variances of the end-to-end distance distributions for the four sequences as a function of the
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Figure 6: Illustrative normalized autocorrelation functions (ACF) of the (a) end-to-end vector and (b)
and end-to-end distance. Results are for the homopolymer model with N = 100.

compactness. Above the θ-point, the variances are identical for all sequences. By contrast, below the
θ-point For the “(HPP)33H” chain with cohesive monomers the variance is significantly higher than fr
the other sequences, reflecting the emergence of the secondary compact conformation shown in Fig. 7c).

The transition between these two conformations - with ends bound to each other and far apart,
respectively - is responsible for the non-monotonic dependence of the reconfiguration time on the chain
compaction exhibited in Fig. 7b). Namely, for the “(HPP)33H” sequence the free energy landscape in con-
formation space is more rugged, and the polymer is sampling a few highly probable conformations rather
than smoothly transitioning between conformations of a Gaussian chain. In conclusion, the anomalous
behavior of the reconfiguration time arises from the particular properties of the sequence.

These results have important implications for the interpretation of FRET and FCS experimental
results that commonly assume a Gaussian end-to-end distribution, and where the interaction between
the FRET dyes can be or importance [90]. This effect might explain the behaviour observed for chemically
denatured proteins and IPDs in FRET and FCS experiments [41, 85, 89, 90].

4 Summary and Discussion

The absence of agreed upon computational models of IDPs makes the iterpretation of the experimental
results difficult, and often leads to apparent discrepancies. Although specific models have been successful
in explaining experimental results in a number of systems, the full picture of the effects of amino acid
composition and sequence specifity on the behavior of IDPs and IDRs still remains incomplete. In this
paper, we have systematically investigated the effects of internal interactions and sequence heterogeneity
on the dimensions of IDPs, with applications to several experimental techniques. Although we use
a minimal coarse-grained model, our results are likely to be general, as illustrated by their excellent
agreement with the results obtained using atomistic simulations.

For the homopolymer model with internal cohesiveness, which serves as a ”null model” against which
the more complex models can be benchmarked, increase in the cohesiveness results in a consistent com-
paction of all the polymer dimensions (end-to-end distance Re, radius of gyration Rg, and the hydrody-
namic radius Rh). The degree of compaction differs for each of the polymer dimensions and their ratios
(Re/Rg and Rg/Rk). We also found that the conformations of the homopolymer are aspherical for low
values of cohesiveness, and the ratio of end-to-end distance to the radius of gyration is correlated with
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Figure 7: Relaxation times of the end-to-end vector and distance. (a) Relaxation time of the end-to-
end vector (“rotation time”) and (b) the end-to-end distance (“reconfiguration time”) for the different
sequences indicated in the legend of (a). The x-axis shows the mean square radius of gyration controlled
by monomer cohesiveness in the simulations. (c) End-to-end distance probability distribution for chains
with different sequences. Red line: H100 sequence; ǫ/kT = 0.9. Blue line: (HP)50 sequence; ǫ/kT = 3.2.
Green line: (HPP)33H sequence; ǫ/kT = 5.4. Purple line: P(HPP)33; ǫ/kT = 5.6. The radius of gyration
Rg ≈ 6± 0.1 for all sequences (see (d)). (d) Variance of the end-to-end distance as a function the radius
of gyration of the chains. Stars indicate the radii of gyration of the sequences for the parameter values in
(c). Deviation of the green line from the others below the θ-point reflect the emergence of the secondary
peak in the end-to-end distribution in (c). See text.
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asphericity. In terms of dynamical quantities, both the rotation and the reconfiguration times of the
end-to-end distance decreases monotonically with the polymer compactness caused by the increase in the
cohesiveness.

Sequence heterogeneity can significantly modulate the polymer dimensions independently of the com-
position or the attraction strength between cohesive monomers. For polymers composed of mixtures of
cohesive and neutral monomers, an increase in the size of cohesive “patches” resulted in the more signif-
icant compaction of the polymer, reflected in all dimensions and their ratios. Nevertheless, the overall
behavior of these polymers can be semi-quantitatively mapped onto that of a simple homopolymer with
an appropriately chosen value of the average cohesiveness. For low values of cohesiveness below the
theta-point, this effective cohesiveness is simply proportional to the square of the fraction of the cohe-
sive monomers in the chain, reflecting the mean field reduction in the average number of inter-monomer
contacts. For more cohesive sequences in a compact regime, the mean field description starts to break
down, and the effective homopolymer cohesiveness depends on the “patch” size. In this regime, the
effective cohesiveness correlates with the SCD of the sequence, which also was shown to correlate with
the macroscopic Flory parameter describing the mean field cohesive behavior of single chains, and their
collective properties such as the phase separation.

Presence of monomers of both positive and negative charges in the sequence can have dramatic effect
on polymer dimensions, as described in Section 3.1.1. Notably, in this case the mean field description
completely breaks down due to the cancellation of interactions between oppositely charged monomers. To
study the effects of charge patterning, and to validate our model, we studied a polyampholyte sequence
composed of positively and negatively monomers. The dimensions of the polyampholytes predicted by
our coarse-grained model were similar to those predicted by an all-atom model with explicit ions, and
exhibited the same trends. Overall, the radius of gyration, Rg and ratio of the radius of gyration to the
hydrodynamic radius, Rg/Rk, monotonically decayed with the sequence patterning parameters SCD and
κ, enabling mapping from SCD onto an average cohesiveness of an effective homopolymer model. These
results are consistent with the findings that the SCD correlates with the phase transition temperature
and thus with the Flory parameter χ.

However, unlike for the cohesive/neutral chains, for the polyampholytes the end-to-end distance Re

and the ratio Re/Rg were highly sequence specific. This partial decoupling between the Re and Rg,
arising from the high sensitivity of Re to the details of the sequence at the chain ends, is in agreement
with previous observations and modeling. Thus, while Rg/Rk ratio appears to be a robust parameter
that locates the IDP on the order-disorder continuum and is useful in the interpretation of experiments,
the end-to-end distance Re and its ratio Re/Rg are not, and care should be exercised while interpreting
FRET experiments.

Nevertheless, rather than being the source of a discrepancy, the combined measurements of several
polymer dimensions can guide the interpretation of experimental results and the inference of the internal
interactions of an IDP. For example, the ratio between radius of gyration and hydrodynamic radius can
reveal the location of a particular IDP on the disorder-to-order continuum, while the ratio of end-to-end
distance to radius of gyration may reveal the relative importance of the direct end-to-end interactions.

The sensitivity of the end-to-end distance to the properties of the monomers at the chain ends shows
itself also in the end-to-end dynamics. Puzzlingly, both IDPs and chemically denatured proteins can
exhibit a non-monotonic dependence of the end-to-end distance reconfiguration times on denaturant
concentrations and the associated chain compaction. Molecular dynamics studies have proposed “inter-
nal friction” as the source of this behaviour, but its microscopic origin still remains unclear, and the
reconfiguration dynamics is still not fully understood.

The coarse grained model of this paper shows that the end-to-end distance distribution and thus
the end-to-end distance reconfiguration time is sensitive to the properties of the monomers near the
chain ends. Sequence with cohesive monomers at the ends exhibited a regime where the reconfiguration
time increases with the compaction of the polymer dimensions, qualitatively following the experimental
observations. This increase was contingent on the emergence of multiple peaks in the end-to-end dis-
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tance distribution due to the presence of cohesive monomers at the ends, indicating bi-stability between
a compact and a swollen conformations. Chains with more homogeneous sequences explore Gaussian
conformational landscapes and have faster end-to-end distance reconfiguration times, while those with
more heterogeneous sequences explore more distant conformational states and therefore have slower re-
configuration times. This difference between the conformational ensembles would not appear in a static
measurement of polymer dimensions. This emphasizes again the importance of sequence for the end-
to-end dynamics and statics, and might contribute to the understanding of the origin of the “internal
friction” of IDPs.

Our coarse grained model offers a powerfull tool for the interpretation of the equilibrium and dynamics
experiments without resorting to all atom simulations. The coarse-grained model encapulates a wide
range of general IDP behaviors, semi-quantitatively agrees with atomistic simulations, and serves as the
baseline for mode complex models. Future investigation will apply the coarse-grained model to specific
cases of IDPs to understand their behavior in multi-chain assemblies and their interaction and binding
with other proteins.

A Appendix

A.1 Hydrodynamic Radius and the Kirkwood Approximation

The hydrodynamic radius Rh is the radius of a solid sphere that has the same diffusion coefficient as
the polymer chain. It depends not only on the equilibrium properties of the conformational ensemble
but also on the dynamical intra-chain correlations mediated via fluid flow around and within the chain.
The diffusion coefficient of a polymer chain is inversely proportional to the hydrodynamic radius via the
Stokes-Einstein relation [22, 23]:

De =
kBT

6πηRh
(15)

where kB is Boltzmann’s constant, T is the absolute temperature, η is the solvent viscosity. De can be
calculated from displacement of the polymer’s centre of mass as [59, 61]::

De = lim
t→∞

〈(~Rc(t)− ~Rc(0))
2〉

6t
(16)

The average is over trajectories and the initial conditions.
Kirkwood and Riseman [92] introduced a pre-averaging approximation for the hydrodynamic inter-

actions between the monomers, allowing to calculate the approximate hydrodynamic radius from just
the equilibrum ensemble of conformations. The Kirkwood approximation for the diffusion coefficient of
a polymer, using the Oseen tensor for hydrodynamic interactions, is [59]:

Dk =
kBT

6πηN2





N
∑

i=1





1

ai
+

N
∑

j=1,j 6=i

〈|~Ri − ~Rj |−1〉







 (17)

Here, ai is the hydrodynamic radius of a monomer i, and the average is over the equilibrium ensemble of
conformations. The inverse of the approximation to the hydrodynamic radius is defined as:

〈R−1
k 〉 = 1

N2





N
∑

i=1





1

ai
+

N
∑

j=1,j 6=i

〈|~Ri − ~Rj |−1〉







 (18)

Using Brownian dynamics simulations with implicit hydrodynamic interactions, Liu et al. [59] and
Schmidt et al. [93] have previously found that the Kirkwood approximation overestimates the hydrody-
namic radius by < 4% for a SAW and a worm-like chain model. In this paper, we extended the comparison
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between the Kirkwood approximation and the hydrodynamic radius to all values of cohesiveness. The
Kirkwood approximation overestimates the true diffusion coefficient by 3-5% in agreement with other
studies [59, 93]. In the poor solvent regime the relative difference increases to beyond 10% and is larger
for longer polymers (Fig. 1d).

A.2 Scaling Exponent of Radius of Gyration

We investigated the effects of monomer cohesiveness ǫ on the scaling exponent ν of the radius of gyration
of a homopolymer with the number of bonds N : 〈R2

g〉 ∝ N2ν .
We performed simulations of homopolymers with N + 1 = 50, 100, 150, 200, 300, 400 monomers at

ǫ = 0, 0.64, 0.7, 0.75 kT. All other simulation parameters were the same as the homopolymer model of
Section 2. The total runtime (number of steps) and number of independent runs (from different initial
conditions) varied. Simulations where initialized from a self-avoiding walk (N+1 = 50, 100, 150, 200) or a
random walk initial condition (N +1 = 200, 300, 400). Correlation functions of R2

g(t) were calculated for
N + 1 = 50, 100, 150 and fit with exponential decays in order to estimate the correlation times τN . The
initial 2τN or more of each simulation were excluded from the analysis. The error bars were estimated as

Var(〈R2
g〉) =

Var(R2
g)

nsnt
where ns is the number of independent runs and nt =

tr
2τN

, where tr is the minimum
simulation time included in the analysis for that N [94].

Figure 8 shows the dependence of the radius of gyration on the number of bonds N for different
monomer cohesiveness ǫ; For ǫ = 0, as expected, the chain behaves as a self-avoiding random walk in a
god solvent with ν = 0.588 ± 0.001 [23]. The location of the θ-point, where ν = 0.5, is located between
ǫ = 0.74 kT and 0.75 kT. This is consistent with the second virial coefficient for the inter-monomer
interaction being 0 at ǫ ≈ 0.64 kT. The exact location of the θ-point depends on the details of the
repulsive and attractive potentials used in the model [70].

10050 60 70 80 90 200 300 400

N

102〈R
2 g
〉

ǫ =0 kT

ǫ =0.64 kT

ǫ =0.7 kT

ǫ =0.75 kT

(a)

0.0 0.2 0.4 0.6 0.8

ǫ/kT

1.00

1.05

1.10

1.15

1.20

2
ν

(b)

Figure 8: (a) Dependence of radius of gyration on the number of bonds in the chain for different monomer
cohesiveness ǫ. (b) The variation of the scaling exponent of 〈R2

g〉 ∝ N2ν with monomer cohesiveness ǫ.

A.3 Comparison between sequence patterning parameter SCD and κ.

Figure 9 shows the polymer dimensions and the ratios of dimensions of polyampholyte sequences plotted
against the charge sequence parameter κ introduced by Das and Pappu [39].
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Figure 9: Dimensions of polymers composed of 25 positively and 25 negatively charged monomers. Same
as Figure 4 but plotted with the κ parameter introduced by Das and Pappu [39] on the x-axis. (a)
Radius of gyration compared with ABSINTH model. (b) Square end-to-end distance to square radius of
gyration. (c) Radius of gyration to hydrodynamic radius (Kirkwood approximation). The dashed lines
correspond to the Gaussian chain predictions, the solid lines correspond to a uniform sphere. The full
sequences and their corresponding κ and SCD parameters are shown in Fig. 4a.
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