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Abstract: Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) perform
diverse functions in cellular organization, transport and signaling. Unlike the well-defined structures
of the classical natively folded proteins, IDPs and IDRs dynamically span large conformational and
structural ensembles. This dynamic disorder impedes the study of the relationship between the amino
acid sequences of the IDPs and their spatial structures and dynamics, with different experimental
techniques often offering seemingly contradictory results. Although experimental and theoretical
evidence indicates that some IDP properties can be understood based on their average biophysical
properties and amino acid composition, other aspects of IDP function are dictated by the specifics of
the amino acid sequence. We investigate the effects of several key variables on the dimensions and
the dynamics of IDPs using coarse-grained polymer models. We focus on the sequence “patchiness”
informed by the sequence and biophysical properties of different classes of IDPs—and in particular
FG nucleoporins of the nuclear pore complex (NPC). We show that the sequence composition and
patterning are well reflected in the global conformational variables such as the radius of gyration and
hydrodynamic radius, while the end-to-end distance and dynamics are highly sequence-specific. We
find that in good solvent conditions highly heterogeneous sequences of IDPs can be well mapped onto
averaged minimal polymer models for the purpose of prediction of the IDPs dimensions and dynamic
relaxation times. The coarse-grained simulations are in a good agreement with the results of atomistic
MD. We discuss the implications of these results for the interpretation of the recent experimental
measurements, and for the further applications of mesoscopic models of FG nucleoporins and IDPs
more broadly.

Keywords: intrinsically disordered proteins; amino acid sequence; hydrodynamic interactions; radius
of gyration; end-to-end distance; sequence charge decoration; SAXS

1. Introduction

Multiple proteins in the cell are intrinsically disordered, or possess intrinsically disor-
dered regions that do not conform to the classical structure–function paradigm. Yet, these
proteins possess various biological functions while maintaining high dynamic and struc-
tural flexibility. Under native conditions, their structures comprise dynamic ensembles of
different conformations. Intrinsically disordered proteins (IDPs) or intrinsically disordered
regions (IDRs) became the common nomenclature used to distinguish this class of proteins
and peptides from traditional ordered proteins [1,2]. IDPs are involved in a wide range of
health and disease processes and functions of the cell. Furthermore, a wide array of human
diseases are associated with the failure of an ordered protein to adopt its native confor-
mation, consequently gaining some of the properties of an IDP often resulting in aberrant
aggregation [2,3]. Proteins associated with cancer, diabetes, and neurodegenerative and
cardiovascular diseases often have regions of structural disorder, making them the leading
targets for drug development [1,2,4].
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An important example of IDPs that informs this work is the Nuclear Pore Complex
(NPC), where an assembly of intrinsically disordered proteins occupies the passageway
of the NPC and controls its transport properties [5]. NPC is involved a broad array of
health and disease processes in the cell, and interfering with the spatial organization and
dynamics of its IDPs is linked to a large number of diseases—from cancer to neurodegener-
ative disease. Despite substantial progress, the essential variables that dictate biophysical
properties of these IDPs—known as FG nucleoporins due to the presence of characteristic
FG repeats in their sequence—are still incompletely understood [5].

In another important example of IDR function, IDRs serve as linkers between different
folded domains of multi-domain proteins, in signaling and other processes [6–8]. In some
cases, the properties of such linkers can be understood based on coarse grained polymer
physics models, but the effects of sequence details are still incompletely understood [8].
Precise sequences of IDRs in small linear motifs and transcription factors, among other
examples, can also be important for functional specificity [9,10].

Understanding how an IDP’s amino acid sequence dictates the equilibrium and the
dynamical properties of its conformational ensemble is an important step toward under-
standing the principles of function of this class of proteins. A full characterization of an IDP,
in principle, involves a description of all possible conformational states and the rates of
inter-conversion between them, which is hard to access experimentally [11]. Nevertheless,
several experimental techniques reveal information about various characteristics of the IDP
ensembles: NMR, fluorescence correlation spectroscopy (FCS) or dynamic light scattering
(DLS) can measure the diffusion coefficient and the corresponding hydrodynamic radius
of an IDP, fluorescence resonant energy transfer (FRET) provides information about the
inter-residue distances (such as the end-to-end distance), and small angle X-ray scattering
(SAXS) can measure the radius of gyration [2,12,13].

Emerging evidence shows that, due to their disordered nature and the importance
of entropic effects, IDP structural ensembles might be less sensitive to the fine details
of a specific amino acid sequence compared to the unique 3D structures of the classical
folded proteins. Rather, many IDP properties can often be understood in terms of global
characteristics such as the overall charge, hydrophobicity, flexibility of the polypeptide
backbone and the average solvent properties [14–19]. Typically, the mean hydrophobicity is
lower and the mean net charge is higher in IDP sequences than in folded proteins, and they
are impoverished in large amino acids, preventing the folding of IDPs into unique stable
structures with a hydrophobic core [12,20]. In one study, a predictor based on the reduction
the size of the sequence alphabet by assigning each amino acid to just one of four types
(neutral, hydrophobic, positive and negative), performed almost as well as a predictor
using the full 20 amino acid alphabet which predicted disorder with 87% accuracy [21].
Even a minimal predictor based only on two properties: the net charge per residue and
and the mean hydrophobicity per residue, can often differentiate well between IDPs and
folded proteins, as well as between different classes of IDPs [1–3,12,20,22].

Polymer physics offers a useful theoretical framework for understanding IDP be-
haviors, and enables linking experimental observables to the underlying conformational
ensembles [2,23,24]. Simple mean field homopolymer models have been successful in
categorizing the IDP ensembles into regimes of qualitatively different behaviors based
on the ensemble averages of polymer dimensions, such as the radius of gyration and the
end-to-end distance [18,23–25]. Commonly, the size of an IDP chain in space correlates with
the net balance between repulsive and attractive intra-chain and chain-solvent interactions,
which can often be encapsulated in an effective internal cohesiveness parameter, related
to the classical Flory parameter χ [18,20,26–29]. The ratio of the fraction of charged amino
acids to the fraction of hydrophobic ones is often sufficient to distinguish between swollen
and compact regimes of behavior [20,30,31].

At the low cohesiveness extreme, disordered polypeptides are often successfully
described by models of polymers in a good solvent and adopt diffuse swollen random
coil conformations. In the opposite, high cohesiveness, regime, the IDPs adopt dense
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globular conformations [23,26,32]. In particular, the location of IDPs on the order–disorder
continuum can often be encapsulated in the scaling dependence of their size R on the chain
length (number of amino acids) N, R ∼ Nν, which describe the universal features of the
behavior of polymeric molecules that are largely independent of the details of the local
microscopic properties of the chain or the solvent [1,23,25,33–35]. In the highly disordered
regime (such as at high denaturant concentrations and low intra-chain cohesiveness),
the IDP dimensions may follow the good solvent scaling law ν ' 0.6, which gradually
decreases to ν ' 1/3 in the compact globular regime at high cohesiveness. In particular,
different classes of IDPs of the NPC seem to belong to different scaling classes based on
the fraction of hydrophobic residues in their sequence [18,20]. These simple mean field
theories have been successful not only in describing individual molecules of IDPs but
also multi-chain systems in various geometries—from surface grafted layers to 3D phase
separation [18,27,28,36–38].

However, despite their successes, simple mean field polymer theories suffer from
several drawbacks. First, they fail to differentiate between distinct polymer dimensions
such as the end-to-end distance, the radius of gyration, and the hydrodynamic radius, which
can lead to difficulties in the interpretation of the experimental data. Several recent works
using FRET and SAXS measurements unveiled discrepancies and divergent behaviors of
the different measures of polymer dimensions [39–43]. In particular, the chain radius of
gyration Rg, inferred from FRET measurements of the end-to-end distance Re can show
much greater compaction with the decrease in the denaturant concentration compared to
the direct SAXS measurement of Rg [39]. Similar “decoupling” between the Rg and the
end-to-end distance Re was observed in [43]. On the other hand Borgia et al. [41] observed
consistent increase in all chain dimension with an increase in the denaturant concentration,
using multiple methods: FRET for Re, SAXS for Rg, and FCS and DLS for the hydrodynamic
radius Rh. One proposed explanation for such decoupling is the effect of FRET dyes located
at the chain ends [40,44,45]. On the other hand, Zheng et al. [42] and Fuertes et al. [43]
did not report an observable effect of the dyes on the chain dimensions. These results
raise important fundamental questions about the methodologies of inference of the chain
dimensions and internal structures of IDPs from the experimental data, which may depend
on the specific assumptions in the polymer models used [42,43]. The dependence of the
end-to-end distance on the biophysical properties of an IDR may also play an important
role in the folding and misfolding of multi-domain proteins and in the efficiency of kinase
phosphorylation efficiency [6,7].

Second, simple polymer theories fail to capture the effects of sequence heterogeneity.
Although some atomistic details may be successfully coarse-grained [12,24,46–48], the
effects and the importance of the amino acid patterning on the dimensions and the dy-
namics of IDPs are still an area of active research [9,10,15,20,23,25,38,49–55]. In particular,
permutations of the amino acid sequences without changing the overall composition can
affect the dimensions of the polymer, as predicted computationally [25,49,50] and observed
experimentally [35]. Similarly, as mentioned above, specific amino acids located near the
ends of the chain might have strong effects on some of the chain properties. Furthermore,
hitherto not fully explained inconsistencies arise in the measurements of the dynamic recon-
figuration times of the IDPs, explored via FRET and Fluorescence Correlation Spectroscopy
(FCS) [13,56–58].

Interpretation of the experimental data often relies on the computational models of
IDPs. As mentioned above, simple mean field polymer models are powerful but often not
sufficient to capture the complexity of the whole gamut of behaviors of IDPs. Computa-
tional approaches based on computer simulations offer a way to systematically study the
vast sequence space and the effects of sequence heterogeneity on the polymer dimensions
and other properties. All-atom molecular dynamics (MD) simulations have been used as a
tool in the modeling of natively folded proteins for several decades. However, there are
several obstacles when applying these methods to IDPs. Even with dramatic increases in
computing power, computationally expensive simulations required to fully explore the
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vast conformational space of an IDP are not always feasible [11,59]. Moreover, agreed upon
atomistic force fields for IDPs are still lacking, and their predictions remain sensitive to the
fine-tuned choices of parameter values, and are potentially prone to overfitting [60–63].

On the other hand, coarse-grained simulations avoid many of these pitfalls by sub-
suming many atomistic details into the coarse-grained variables, such as local amino acid
charge, hydrophobicity and monomer size [15–17,51,53,64–66]. Identification of the key
properties and molecular features that capture the connection between the IDP structure
and the experimentally accessible variables [65,66] while avoiding over-fitting the sparse
experimental data is challenging [66]. Several of these properties have been identified: the
importance of electrostatic interactions, hydrophobicity and, more generally, the association
of certain amino acids with either expansion or compaction of IDPs. Yet, although a number
of different force fields and solvent models have been successfully applied in different
specific cases, there are currently no universally accepted coarse-grained (or atomistic)
force fields. To reproduce the experimental data, simulation outcomes often require sub-
ensemble sampling and re-weighting [41,43,67], or an additional ad hoc assumption about
the ensemble properties [13,39,41,43,56,67].

In this paper, we systematically investigate the effects of sequence composition and
heterogeneity on the dimensions and the dynamics of IDP conformational ensembles. We
use experiment-informed coarse-grained minimal complexity models that include only
the key features of the IDP sequence, amino acid composition and intra-chain interactions.
Similar type “mesoscopic” models have been employed by us and others in applications
to a number of different systems [15,38,51,53,68–70]. We specifically focus on the effects
of the effects of chain “patchiness” and the effects of the sequence near the chain ends
as compared between the homopolymer and heteropolymer models. The effects of the
IDR length will be studied in the future work. The choice of the sequence properties is
specifically informed by the features of FG nucleoporins known to be important for their
functional properties [5]. A central feature of our analysis is the incorporation of explicit
hydrodynamic effects, which are known to substantially modify polymer properties, but
have so far been largely missing from the investigations of FG nucleoporins and IDPs more
broadly [5].

The results shed light on the interpretation of recent experimental results and serve
as a basis for further development of mesoscopic models of IDPs including those of the
NPC. Furthermore, this work points out the important sequence properties that can be
encapsulated in the order parameters controlling the collective multi-chain behavior such as
phase separation, which has been proposed to play an important role in spatial organization
of FG nucleoporins [71–75].

The paper is structured as follows. In Section 4, we describe the computational meth-
ods of the paper based on overdamped Langevin dynamics with explicit hydrodynamic
interactions. In Section 2.1.1, we present the results of the simulations of a minimal ho-
mopolymer model of intra-chain interactions to differentiate between the various polymer
dimensions: end-to-end distance, radius of gyration and hydrodynamic radius, for com-
pleteness incorporating novel and known results under the same umbrella. In Section 2.1.4,
we investigate the effects of sequence heterogeneity on the IDP dimensions expanding the
homopolymer model to include four monomer types (cohesive, neutral, positively charged
or negatively charged).

In Section 2.2, we study the effects of the amino acid sequence on the end-to-end dynamics
of IDPs and discuss the implications for the interpretation of experimental results.

We conclude with a discussion of the results and their implications for further the-
oretical and experimental investigations of IDPs and FG nucleoporins in particular in
Section 3.
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2. Results
2.1. Effects of Sequence and Interactions on the Chain Dimensions
2.1.1. Effects of Internal Cohesiveness on the Chain Dimensions: Averaged
Homopolymer Models

In this paper, we are specifically informed by the properties of the intrinsically dis-
ordered proteins of the nuclear pore complex, known as FG nuicleoporins (or FG nups)
that owe their name to the disordered repeats of FG, FxFG and GLFG “patches” in their
sequence. Hydropobic and aromatic stacking interactions between these amino acid do-
mains result in internal cohesiveness of FG nucleoporin chains that has been suggested to
play important roles in their spatial architecture and function (see, e.g., [5] for review). This
internal cohesiveness is usually assessed through its effect on the chain dimensions such as
the radius of gyration, end-to-end distance, hydrodynamic radius or the height extension
of surface grafted chains [5]. The dependence of the IDP dimensions on their sequence is
important in many other biological systems, such as inter-domain linkers in multi-domain
macromolecules, small linear motifs and transcription factors [6,7,9,10].

However, several recent experiments reported discrepancies between the polymer
dimensions of IDPs/chemically denatured proteins measured using different experimental
techniques, most prominently FRET and SAXS [39,40]. Many of these discrepancies may
result from different choices of the polymer model, the force field or the resampling
procedure [41,43,67,76].

In this section, we explore the effects of the intra-chain interactions on the polymer
conformational ensemble, and the corresponding experimentally relevant dimensions, such
as the end-to-end distance Re, the radius of gyration Rg and the hydrodynamic radius Rh.

These dimensions are defined as:

〈R2
e 〉 ≡ 〈(~R1 − ~RN)

2〉 (1)

〈R2
g〉 ≡

1
N

N

∑
i=1
〈(~Ri − ~Rc)

2〉 (2)

De =
kBT

6πηRh
(3)

~Ri is the position of the monomer i and ~Rc is the location of the center of mass of the
polymer. De is the diffusion coefficient of the polymer center of mass. The Kirkwood
approximation for the hydrodynamic radius is (see Supplementary Information S1):

〈R−1
k 〉 ≈

1
N2

N

∑
i=1

N

∑
j=1,j 6=i

〈|~Ri − ~Rj|−1〉 (4)

In this section, we use a minimal homopolymer model which serves as a “null hy-
pothesis” for the interpretation and analysis of the experimental data, against which more
complex models can be benchmarked. In the model, all monomers of the chain interact
attractively with each other with the same average interaction strength ε (see Equation (12)).
This coarse-grained interaction parameter subsumes all the direct and solvent-mediated
interactions between the monomers, solvent properties and the average composition and
the sequence details of an IDP. Experimentally, low ε ' 0 represents a protein under high
denaturant conditions or an IDP with many disorder-promoting amino acids in its sequence
(e.g., less cohesive FG nucleoporins such as Nsp1 [5]). Increasing ε represents a lower
denaturant concentration or a higher fraction of order-promoting or attractive amino acids
in an IDP sequence (e.g., Nup98).

The cohesiveness parameter ε is closely related to the classical mean field Flory interac-
tion parameter χ [29], which encapsulates all the information about an IDP’s sequence and
molecular properties; mathematically the two are related through the second virial coefficient
of the interaction χ '

∫
d3r(1− e−U(r)), where U(r) is defined in Equations (12) and (11). Un-
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like mean-field models, the simulations are able to differentiate between the various polymer
dimensions: end-to-end distance, radius of gyration and hydrodynamic radius.

Simulations were performed for chains of N = 100 monomers and cohesive interaction
strengths ranging from ε

kT = 0 to ε
kT = 1.9 inclusive, in intervals of 0.1. For each ε,

40 independent runs were performed, each lasting 108 steps, with a time step of ∆T = 0.001.
Each run began from a self-avoiding random walk initial condition. The first 106 steps were
excluded from the analysis to avoid biasing the results by the initial conditions, and the
averages were taken over the time steps and the different runs.

The results are summarized in Figure 1a, which shows the average end-to-end distance,
the radius of gyration and the hydrodynamic radius. For presentation purposes, the end-
to-end distance has been scaled down by a factor of

√
6 to be comparable to the other

dimensions. Overall, all polymer dimensions monotonically decrease with increasing ε, as
the chain compacts from a coil to a globule. The θ-point, where the inter-monomer repulsion
is balanced by the inter-monomer attraction resulting in roughly ideal chain behavior, is
located around ε

kT ≈ 0.7− 0.75 (see Supplementary Information S2); however, the exact
location of the θ-point may depend on the specific choice of the form of the interaction
potential [77]. The end-to-end distance undergoes the greatest relative compaction, whereas
the hydrodynamic radius experiences the least change.

One can more readily identify a polymer position on the order–disorder continuum
by studying the ratios between the various polymer dimensions rather than the indi-
vidual dimensions themselves in isolation. As will be seen in the next section, these
ratios can be more robust and versatile measures of the polymer conformations than the
individual dimensions.

Figure 1c,d show the ratios of the square of the end-to-end distance to the square of the
radius of gyration, as well as the ratio of the radius of gyration to the hydrodynamic radius
for varying values of the polymer cohesiveness ε. The ratios obtained from simulations
approach the theoretical limits for good, θ, and poor solvents (calculated for N → ∞).
For the self-avoiding walk (ε = 0), 〈R2

e 〉/〈R2
g〉 ≈ 6.2 − 6.4 [78,79] (depending on the

approximation). For an ideal chain (θ point), 〈R2
e 〉/〈R2

g〉 = 6. In the compact regime of
high cohesiveness, the polymer can be approximated as a uniformly dense sphere. In this
regime, assuming that the locations of the two ends are independent of each other and
are uniformly distributed inside the sphere, R2

e /R2
g = 2 [67,80]. The ratio of the radius of

gyration to the hydrodynamic radius is known to be Rg/Rk ∼ 1.5 for the θ solvent [29,81]
and decreases to Rg/Rh ∼ 0.774 and Rg/Rk ∼ 0.93 in the high-cohesiveness globular
regime [67,80]. Importantly, in the homopolymer model the Rg and Re remain coupled in a
sense that both consistently decrease with the increase in ε.

2.1.2. Chain Ensemble Asphericity

As mentioned above, some of the discrepancies between the FRET and SAXS measure-
ments of the radii of gyration can be attributed to the assumptions of the homopolymer
models used in the inference of polymer dimensions from the data. In particular, asphericity
(sometimes referred to as the shape anisotropy) δ of IDP ensembles has been proposed to
play an important role in the inference of IDP properties from FRET and SAXS data [43,67].
Although the ensemble average monomer density is isotropic for any polymer, the individ-
ual conformations may not be, giving a non-zero average asphericity. For a rigid rod, δ = 1,
and for a sphere δ = 0. The ensemble averaged asphericity is:

〈δ〉 = 1−
〈

3(λxλy + λyλz + λzλx)

(λx + λy + λz)2

〉
(5)
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where λx, λy, and λz are the eigenvalues of the 3× 3 gyration tensor for a single conforma-
tion, whose entries are:

Sxy =
1
N

N

∑
i=1

(Ri,x − Rc,x)(Ri,y − Rc,y) =
1

2N2

N

∑
i=1

N

∑
j=1

(Ri,x − Rj,x)(Ri,y − Rj,y) (6)

Ri,x and Rc,x are the x-components of the position of the monomer i and the center of mass,
respectively. The radius of gyration for that conformation is: R2

g = λx + λy + λz.
Figure 1b shows the asphericity of a homopolymer chain for different values of

monomer cohesiveness and decreases from ∼0.45 for the swollen coil to close to 0 for
compact globular conformations. For the homopolymer model, the asphericity is well
correlated with the ratio of the end-to-end distance to the radius of gyration Re/Rg.
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Figure 1. (a) Polymer dimensions of a homopolymer for varying monomer cohesiveness. (b) As-
phericity of a homopolymer for varying monomer cohesiveness. (c) Ratio of the square of the
end-to-end distance to the square of the radius of gyration of a homopolymer for varying monomer
cohesiveness. The dashed lines correspond to the Gaussian chain predictions; the solid lines corre-
spond to a uniform sphere. The ratio of square of the end-to-end distance to the square of the radius
of gyration agrees with the Gaussian chain prediction (R2

e /R2
g = 6) at the θ point (ε ≈ 0.7− 0.75 kT).

(d) Blue: ratio of the radius of gyration to the hydrodynamic radius. Purple: ratio of the radius of
gyration to the Kirkwood approximation to the hydrodynamic radius. The good solvent corresponds
to ε = 0, the θ solvent corresponds to ε ≈ 0.7− 0.75 kT and poor solvents correspond to ε > 1.5 kT.
The number of monomers is N = 100.
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2.1.3. Conditional Sub-Ensemble Distributions

Due to the absence of universally accepted force fields to describe the conformational
ensembles of the IDPs, sub-ensembles with appropriate conditional distributions of the
end-to-end distance conditioned on a sub-ensembles with set values of RG are commonly
used for comparison with the experimental data [39,67,76,82].

In Figure 2, we compare the conditional distributions of the end-to-end distance,
p(Re|Rg), obtained from the homopolymer simulations, with the predictions of the common
sub-ensemble model, Sanchez–Haran theory [82,83], which postulates that the end-to-end
distance distribution of conformations conditioned on a particular radius of gyration is
the probability distribution of distances between two random points inside a sphere of the
radius

√
5Rg.

0 5 10 15 20

Re

0.00
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0.04

0.06

0.08

0.10

0.12

0.14

p
(R

e
|R
g
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p(Re|Rg = 4)
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Monomer Cohesiveness ε/kT

Figure 2. Probability distributions of the end-to-end distance of a homopolymer, conditioned on
the sub-ensembles with different radii of gyration. The circle symbols show the simulation results.
The color of the symbol (blue to yellow) corresponds to low to high values of ε. The black dashed
line shows the distribution of the end-to-end distance of the Sanchez–Haran model. The number
of monomers is N = 100. Polymer dimensions are in the units of

√
2
3 b0 where b0 is the monomer

diameter. Histogram bin size for calculation of the distribution is 0.5; see Section 4.

Notably, the simulated conditional distributions are not noticeably affected by the
strength of the cohesive interaction ε. The Sanchez–Haran distribution matches the simula-
tions well for compact conformations, which typically have a large ε, but underestimates
the end-to-end distance for large conformations, which typically have a small ε. Thus, the
Sanchez–Haran model would tend to overestimate the radius of gyration for polymers
with low cohesiveness or in good solvents, based on the raw FRET data.

Another notable artifact of the Sanchez–Haran model is that it implicitly assumes
that Rg/Re = 6 (that of a Gaussian chain) for all values or cohesiveness. Following [82]:

p(Re) =
∫ Rg,max

Rg,min
dRg p(Re|Rg)p(Rg). Thus, 〈R2

e 〉 =
∫ Re,max

0 dReR2
e
∫ Rg,max

Rg,min
dRg p(Re|Rg)p(Rg)

=
∫ Rg,max

Rg,min
dRg p(Rg)

∫ Re,max
0 dReR2

e p(Re|Rg). For the distribution of distances between two

random points in a sphere of radius
√

5Rg,
∫ Re,max=2

√
5Rg

0 dReR2
e p(Re|Rg) = 6R2

g and so this
model, like the Gaussian chain model, predicts the relationship 〈R2

e 〉 = 6〈R2
g〉.

These results have potentially important implications for the interpretation of the
FRET and SAXS data.
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2.1.4. Effects of Sequence Composition and Patterning

To capture the effects of sequence composition and patterning on IDP structures, we
extended the model into the heterogeneous sequence domain. In this section, rather than
focusing on specific intrinsically disordered proteins with specific coarse-grained model
parameters, we focus on the general relationships between the sequence properties and the
polymer dimensions.

As described in Section 4, we use a “four letter” model (“HP+−”), where monomers
can be either neutral/repulsive (“P”), cohesive/attractive (“H”), positively charged (“+”) or
negatively charged (“−”). The first two types of monomers are inspired by the Hydrophobic–
Polar model of proteins [84]. Conceptually similar mesoscopic coarse-graining has been
recently used by us and others [5,38,51–53]. The charged monomers represent charged
amino acids, while the cohesive monomers can represent order-promoting (mostly hy-
drophobic) amino acids, and the neutral monomers represent polar/disorder promoting
amino acids. Overall, this model takes into account the basic features of IDP sequences that
typically control their conformations, as the polymer dimensions are typically correlated
with the compositional balance of the order-promoting and disorder-promoting amino
acids [1,35,49,64]. In particular, these investigations are motivated by FG nucleoporins,
where cohesive “H” type patches of different lengths are interspersed with neutral or
slightly charged spacers [5].

In the model, neutral monomers experience only repulsive (non-electrostatic) inter-
actions (εi = 0 and qi = 0 in Equations (12) and (13)). Cohesive monomers interact only
with other cohesive monomers via the cohesive interaction (with strength ε). Charged
monomers interact with other charged monomers via the electrostatic interactions, and
via repulsive potentials with non-charged monomers. The bond length between adjacent
monomers was 1.35 in simulation units, corresponding roughly to 0.38 nm distance between
two adjacent Cα atoms in real polypeptides. For the sequences comprising mixtures of
cohesive (“H”) and neutral monomers (“P”), the steric repulsion diameters of Equation (11)
of all monomers were set to B = B0 =

√
1.5 in simulation units, corresponding roughly

to ∼0.35 nm. For the polyampholyte sequences, the steric repulsion diameters were set
to B− = 2.29 and B+ = 2.44 in simulation units, reflecting the relative volumes of the
corresponding amino acids (Lysine “E” and Glutamic acid “K”) [85,86] (see Section 4). The
strength of the electrostatic interactions was Q = 2 and the Debye length was LD = 4 in
simulation units corresponding to the screening length of ∼1.1 nm (typical for ∼75 mM of
NaCl). However, the results apply more generally, and we expect the small variations in
the parameterization to not have a major effect on the main results of the paper.

We first investigated how the sequence patterning of neutral (“P”) and cohesive
(“H”) monomers affects the chain dimensions. We simulated five different sequences of
30 cohesive (“H”) and 30 neutral (“P”) monomers using the coarse-grained model. The
sequences, shown in Table 1, vary in the sizes of the cohesive and neutral clusters, increasing
from 1 to 5, while maintaining the same 1 : 1 ratio of neutral to cohesive monomers. For
each sequence and for each set of interaction parameters ε, Q, and LD, eight runs were
performed, each lasting 108 steps, with the time step of ∆T = 0.001 in simulation units.
Each run began with a self-avoiding random walk initial condition. The first 106 steps were
excluded from the analysis, and the averages were taken over time and the different runs.

Specifically, we focus on the size of cohesive “patches”, which differs among the
sequences while the overall composition stays the same. The “patchiness” of the sequence
can be quantified using the Sequence Charge Decoration (SCD) parameter (originally
introduced in [87] to describe the patterning of charged monomers). The SCD for the
cohesive/neutral sequence is defined in Equation (7),

SCD ≡ 1
N

[
N

∑
i=2

i−1

∑
j=1

qiqj
√

i− j

]
(7)
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where N is the number of the monomers in the sequence, and qi = +1 for a neutral
monomer and qi = −1 for a cohesive monomer at a position i.

Table 1. Sequences composed of 30 cohesive monomers (“H”) and 30 neutral monomers (“P”) of
different sizes (1, 2, 3, 4 or 5) of cohesive (and neutral) clusters. The subscripts indicate how many
times the sequence in parentheses is repeated.

Sequence SCD

(HP)30 −0.410
(PHHP)15 −0.537
(PHHHPP)10 −0.778
PP(HHHHPPPP)7HH −1.002
(PPHHHHHPPP)6 −1.319

The results are summarized in Figure 3, which explores the effects of the cohesiveness
ε of the “H” monomers and the size of the cohesive “patches” on the polymer dimensions.
Results for a corresponding homopolymer of 60 cohesive monomers are shown for com-
parison. On the x-axis, the monomer cohesiveness parameter ε is rescaled by the square
fraction of cohesive monomers.

At low cohesiveness, the radii of gyration of all sequences collapse onto an effective
homopolymer model with the corresponding value of ε rescaled by the fraction of cohesive
monomers squared ( fH = 1/2), reflecting the lower average probability of contacts between
cohesive monomers in the heterogeneous sequences. The simple correspondence with the
homopolymer begins to break down around ε ≈ 0.4 kT. For intermediate cohesiveness, the
sequences with larger “patch” sizes exhibit an earlier and steeper coil-to-globule transition.
Nevertheless, as shown in Figure 3a, even moderately cohesive patchy chains can be
mapped to an effective homopolymer model with effective cohesiveness that depends on
the size of the cohesive patch (see also Figure 4).

Interestingly, at the high values of cohesiveness in the globular regime, the relationship
between the polymer dimensions and the "patch” size is inverted: chains with larger “H”
and “P” clusters have larger dimensions. This likely arises from the fact that in this regime
“H” “patches” cluster to form a compact cohesive core, decorated by disordered loops of
“P” containing spacers.

These trends are reproduced in the behavior of the Rg/Rh ratio, as shown Figure 3d,
and are even more pronounced in the ratio of the end-to-end distance to the radius of gyra-
tion (Figure 3c). These results emphasize that care must be exercised when inferring poly-
mer properties from measurement of polymer dimensions in swollen vs. compact regimes.

We also investigated sequences containing mixtures of cohesive monomers with
charges of one type (either positive or negative). Interestingly, the overall results are
very similar to those of the mixtures of cohesive and neutral monomers. Essentially, in
this case, charged monomers serve as neutral/repulsive monomers of a renormalized
size that is dictated by the Debye length rather than the steric repulsion radius. The
complete examination of this regime is outside the scope of this paper and will be presented
elsewhere; see [88].

IDPs commonly contain higher fractions of both positively and negatively charged
amino acids in their sequences, compared to the natively folded proteins [23,25]. In partic-
ular, FG nucleoporins are known to contain mixtures of positive and negative charges in
their sequences which may play important roles in their spatial organization [5,15,16,20,54].
Importantly, for sequences with closely balanced numbers of positive and negative charges
the mean field type theories usually fail due to the cancellation of the mean attractive and
repulsive interactions, which necessitates in depth look into the effects of charge patterning
on the IDP properties.

In particular, Das and Pappu [49] computationally investigated the effect of charge
patterning on IDP properties using a family of polyampholyte sequences with different de-
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grees of segregation of positive and negative charges in their sequences, shown in Figure 4a.
Using Monte Carlo simulations of IDPs using an atomistic ABSINTH force field with im-
plicit solvent [89], they found that the radius of gyration was higher for sequences with
well mixed positive and negative charges, and lower for sequences with more segregated
charge “patches”. Similar findings were obtained in both the theoretical and experimental
analysis of segregation of order promoting (Proline) and charged residues [35,50].
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Figure 3. Polymer dimensions as a function of the cohesiveness. (a) Radius of gyration. (b) Equivalent

Homopolymer ε, determined using linear interpolation. The dotted line is the equivalence to
√
〈R2

g〉.
The solid line is a fit to (eaε − 1)/b for the points before the inflection; see text. (c) Ratio of the
end-to-end distance squared to the radius of gyration squared. (d) Ratio of the radius of gyration to
hydrodynamic radius (in Kirkwood approximation). All sequences are composed of 30 cohesive and
30 neutral monomers for varying monomer cohesiveness. The size of the hydrophobic patches varies
from 1 to 5; exact sequences are shown in the legend. For comparison, a homopolymer sequence
of 60 cohesive monomers is shown in black. The dashed lines correspond to the Gaussian chain
predictions, the solid lines correspond to a uniform sphere. f H is the fraction of cohesive monomers in

the sequence. Radius of gyration is in units of
√

2
3 b0 where b0 is the monomer diameter, as described

in Section 4.

In [49], the degree of charge segregation or “patchiness” was quantified using the
parameter κ (defined in the Supplementary Information) whose value is low for well
mixed sequences and high for completely segregated sequences. An alternative parameter
that quantifies charge segregation and “patchiness” is known as the Sequence Charge
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Decoration (SCD) parameter [87], which can be defined for a polyampholyte sequence as
in Equation (7) with qi = 1 for a positively charged monomer and qi = −1 for a negatively
charged one. It has been shown [90] that the radius of gyration simulated by Das and
Pappu had a smoother dependence on SCD than on κ. The comparison between κ and
SCD is shown in the Supplementary Information. Other conceptually similar parameters
that describe the segregation of different types of monomers have been proposed in the
literature as well [50].

Figure 4 shows the dependence of the various polymer dimensions on the “patchiness”
of the polyampholyte sequences (quantified through SCD) calculated using the coarse-
grained force field of this paper; see Supplementary Information S3 for a comparison with
κ in Figure S2. As shown in Figure 4b, the coarse grained model captures well the overall
compaction of the radius of gyration of the chains with the increase the charge “patch”
size, as well as the sequence-specific variations in the Rg, compared to the ABSINTH model
of [49]. For comparison between our results and those of Das and Pappu [49], our radii of
gyration are rescaled by a factor of ∼1.4—the ratio of the average radii of gyration over all
sequences between our results and those of Das and Pappu. This difference likely arises due
to several assumptions of the coarse grained model that differ from the atomistic one: the
bond angle restrictions between subsequent amino acids are neglected in the coarse grained
model, amino acids are treated as spherically symmetric monomers ignoring the side-chain
geometry, and the amino acid size in the LJ steric repulsion potential is based on the volumes
of amino acids estimates in folded proteins, which could differ from the excluded volume of
amino acids in IDPs [85,86]. However, most of the differences between the two models are
less than 10%, as shown in the inset of Figure 4b. The sequence with the highest disagreement
(approximately 20%) is with SCD = 2.070, which comprises repeating periodic motifs of
5 negative amino acids followed by 5 positive ones. This particular (and biologically unlikely)
sequence enables the chain to fold into an almost crystalline structure in a coarse-grained
model, which is prevented by bond angle restrictions in the atomistic model.

Figure 4c,d show the ratios of the different polymer dimensions for the different
sequences. Unlike the“patchy” cohesive sequences of Figure 3, for the polyampholytic
sequences the ratio of the end-to-end distance to the radius of gyration is very sensitive
to the specific sequence. On the other hand, the ratio of the radius of gyration to the
hydrodynamic radius is correlated with SCD and the overall compaction reflected in Rg,
and determines well the position of the sequence on the disorder-to-order continuum. This
indicates that FRET measurements might be more indicative of local structure near the
polymer ends, and cannot always used to infer the other polymer dimensions.

Notably, the smooth way in which the radius of gyration and the Rg/Rk ratio depend
on the sequence “patchiness” (SCD) resembles the dependence of the homopolymer di-
mensions on the cohesiveness parameter ε. Moreover, it has been shown [90] that SCD and
Rg are both correlated with the critical temperature of the IDP phase separation, establish-
ing a connection between the SCD and the mean field Flory parameter χ that describes
the average attraction between chain monomers [29,91]. Thus, the effect of changing the
“patchiness” of a polyampholyte sequence (quantified via SCD) on the radius of gyration
and the phase separation behavior of IDPs is analogous to adjusting the global average
cohesiveness of the polymer. Thus, each polyampholyte sequence can be mapped onto
an effective homopolymer model, by finding the homopolymer ε that produces the same
Rg/Rkc ratio as the heterogeneous sequence, as shown in Figures 4d and 5b.

Similar mapping can be achieved for the “HP” sequence above, as shown in
Figures 3b and 5c.
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Sequence κ SCD
EKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEK 0. 0009 - 0. 413
EEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEEEKKKEK 0. 0026 - 1. 010
KEKKKEKKEEKKEEKEKEKEKEEKKKEEKEKEKEKKKEEKEKEEKKEEEE 0. 0138 - 1. 495
KEKEKKEEKEKKEEEKKEKEKEKKKEEKKKEEKEEKKEEKKKEEKEEEKE 0. 0140 - 0. 981
KEKEEKEKKKEEEEKEKKKKEEKEKEKEKEEKKEEKKKKEEKEEKEKEKE 0. 0245 - 0. 738
EEEKKEKKEEKEEKKEKKEKEEEKKKEKEEKKEEEKKKEKEEEEKKKKEK 0. 0273 - 0. 981
EEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEK 0. 0450 - 1. 462
KKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKE 0. 0450 - 1. 462
EEKKEEEKEKEKEEEEEKKEKKEKKEKKKEEKEKEKKKEKKKKEKEEEKE 0. 0624 - 2. 080
EKKKKKKEEKKKEEEEEKKKEEEKKKEKKEEKEKEEKEKKEKKEEKEEEE 0. 0834 - 2. 098
EKEKKKKKEEEKKEKEEEEKEEEEKKKKKEKEEEKEEKKEEKEKKKEEKK 0. 0840 - 1. 372
EKKEEEEEEKEKKEEEEKEKEKKEKEEKEKKEKKKEKKEEEKEKKKKEKK 0. 0864 - 3. 154
KEKKKEKEKKEKKKEEEKKKEEEKEKKKEEKKEKKEKKEEEEEEEKEEKE 0. 0951 - 2. 991
EKKEKEEKEEEEKKKKKEEKEKKEKKKKEKKKKKEEEEEEKEEKEKEKEE 0. 1311 - 2. 284
KKEKKEKKKEKKEKKEEEKEKEKKEKKKKEKEKKEEEEEEEEKEEKKEEE 0. 1354 - 4. 349
EKEKEEKKKEEKKKKEKKEKEEKKEKEKEKKEEEEEEEEEKEKKEKKKKE 0. 1459 - 1. 938
EKEKKKKKKEKEKKKKEKEKKEKKEKEEEKEEKEKEKKEEKKEEEEEEEE 0. 1643 - 5. 657
KEEKKEEEEEEEKEEKKKKKEKKKEKKEEEKKKEEKKKEEEEEEKKKKEK 0. 1677 - 2. 043
EEEEEKKKKKEEEEEKKKKKEEEEEKKKKKEEEEEKKKKKEEEEEKKKKK 0. 1941 - 2. 070
EEKEEEEEEKEEEKEEKKEEEKEKKEKKEKEEKKEKKKKKKKKKKKKEEE 0. 2721 - 7. 374
EEEEEEEEEKEKKKKKEKEEKKKKKKEKKEKKKKEKKEEEEEEKEEEKKK 0. 2737 - 4. 082
KEEEEKEEKEEKKKKEKEEKEKKKKKKKKKKKKEKKEEEEEEEEKEKEEE 0. 3219 - 4. 521
EEEEEKEEEEEEEEEEEKEEKEKKKKKKEKKKKKKKEKEKKKKEKKEEKK 0. 3546 - 11. 457
EEEEKEEEEEKEEEEEEEEEEEEKKKEEKKKKKEKKKKKKKEKKKKKKKK 0. 4456 - 16. 998
EEEEEEEEEEEKEEEEKEEKEEKEKKKKKKKKKKKKKKKKKKEEKKEEKE 0. 5283 - 12. 771
KEEEEEEEKEEKEEEEEEEEEKEEEEKEEKKKKKKKKKKKKKKKKKKKKE 0. 6102 - 16. 210
KKEKKKEKKEEEEEEEEEEEEEEEEEEEEKEEKKKKKKKKKKKKKKKEKK 0. 6729 - 11. 407
EKKKKKKKKKKKKKKKKKKKKKEEEEEEEEEEEEEEEEEEKKEEEEEKEK 0. 7667 - 15. 986
KEEEEKEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKK 0. 8764 - 22. 571
EEEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKK 1. 0000 - 27. 842
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Figure 4. Dimensions of charged polymers. (a) Sequences composed of 25 positively and 25 negatively
charged amino acids with their corresponding Sequence Charge Decoration (SCD) κ charge pattern
parameters; see text. “K” represents positively charged lysine and “E” represents negatively charged
glutamic acid. (b) Radii of gyration of the sequences. Black symbols: coarse-grained model; red
symbols: ABSINTH model. (c) Squared ratio of the end-to-end distance to the radius of gyration.
(d) Ratio of the radius of gyration to the hydrodynamic radius (in Kirkwood approximation). Solid
black line is the effective homopolymer representation (see Figure 5). The dashed lines correspond to
the Gaussian chain predictions, the solid lines correspond to a uniform sphere.
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Figure 5. Equivalent homopolymer model. (a) Cohesiveness εh of the effective homopolymer model
that reproduces the radii of gyrations of sequences with cohesiveness ε shown in Figure 3 and Table 1,
as a function of their SCD. (b) Cohesiveness εh of the effective homopolymer model that reproduces
the Rg/Rk ratio of the sequences composed of 25 positively and 25 negatively charged monomers
shown in Figure 4, as a function of their SCD value. The red dots show the individual correspondence
for each sequence based on Figure 3. The black line is the smoothed isotonic regression Rg/Rk vs.
SCD; see text.

2.2. Dynamics of IDP Conformational Reconfiguration

Fluctuations in the distance between the donor and acceptor fluorophores, usually
placed at the ends of the chain, result in fluctuations of the fluorescence intensity. Correla-
tions in fluorescence intensity fluctuations, measured through the combination of FRET
and fluorescence correlation spectroscopy (FCS), provide information about the internal
dynamics of the chain [13,56]. The outcomes of such experiments have generated several
puzzling results, and are still incompletely understood. In particular, increase in the denat-
urant concentration that causes swelling of the end-to-end distance, has been observed to
correspond to the decrease in the end-to-end distance reconfiguration time, contrary to the
naive expectation that the reconfiguration time would increase with the longer end-to-end
distances [56,92]. These observations can potentially be attributed to the “internal friction”
resulting from several intra-chain interactions at lower denaturant concentrations, but the
physical and molecular origin of internal friction in IDPs is still under debate [13,57,58].
Theoretical approaches based on Rouse (and Zimm)-like models can capture some of the
experimentally observed effects but often assume that the end-to-end distance dynamics
resemble those of the end-to-end vector [93–95].

In this section, motivated by experimental studies of the dynamics of IDP config-
urational changes [56,92,96,97], we investigate the dynamics of the end-to-end distance
of IDPs using several coarse-grained examples. We focus on the dynamics of the two
experimentally motivated quantities: the auto-correlation times of the end-to-end-vector
and the end-to-end distance.

The normalized auto-correlation function of the end-to-end vector is defined as:

c~Re
(t) =

〈〈~Re(t) · ~Re(0)〉〉
〈R2

e 〉
(8)

The double angle brackets represent averaging over both the initial conditions and realiza-
tions of the random simulation trajectories. The decay time of this function is referred to as
the “relaxation time” of the end-to-end vector or the “rotation time” [29,93].



Int. J. Mol. Sci. 2023, 24, 1444 15 of 25

The normalized auto-correlation function of the end-to-end distance is defined as:

cRe(t) =
〈〈|~Re(t)||~Re(0)|〉〉 − 〈|~Re|〉2

〈~R2
e 〉 − 〈|~Re|〉2

(9)

The decay time of this function is referred to as the “reconfiguration” time. It excludes con-
tributions from the rotation modes of the entire polymer, and is closer to the reconfiguration
times captured by the FRET and FCS experiments [13,93,94].

We calculate the correlation times τ of the end-to-end vector and the end-to-end
distance as the integral of their normalized auto-correlation functions: τ =

∫ ∞
0 c(t)dt where

c(t) is c~Re
(t) or cRe(t) [88]. For computational convenience, the upper limit of the integral

was cut off at t = 3τe where τe satisfies c(τe) = e−1. Other methods, such as approximating
the auto-correlation by an exponentially decaying function, produce substantially the
same results, although further investigation is required to understand the shapes of the
auto-correlation functions [88,98].

To understand the effects of sequence composition and patterning, we focus on four
sequences composed of cohesive (“H”) and neutral (“P”) monomers comprising N = 100
monomers each. The first sequence is the homopolymer introduced in Section 2.1.1, (H)100.
The second sequence consists of a repeated “HP” motif, (HP)50. The two remaining
sequences consist of a repeated “HPP” motif: one with cohesive monomers at the ends,
(HPP)33H and the other with neutral monomers at the ends, P(HPP)33.

For the homopolymer, the cohesive interactions strengths ranged from E = ε
kT = 0 to

E = ε
kT = 1.9 inclusive, in intervals of 0.1. Because different heteropolymer sequences have

different fractions of cohesive monomers, in order to compare end-to-end dynamics for
comparable chain dimensions for the “(HP)50” sequence the cohesive interaction strengths
were: 0.5, 1, 1.5, 2.0, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, and 4.8; for the
“(HPP)33H” and “P(HPP)33” sequences, the cohesive interaction strengths were: 0.5, 1, 1.5,
2, 2.5, 3, 3.5, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.

For each E = ε
kT , 240 runs were performed, each lasting ∼1.8× 107 steps, with a time

step of ∆T = 0.001 in simulation units. Each run began with a self-avoiding walk initial
condition. The first 2× 106 steps were excluded from the analysis and the averages were
taken both over the time and the ensemble. For each run, the auto-correlation functions
were calculated using the Fast Correlation Algorithm [98]. The auto-correlation functions
were subsequently averaged over different runs for each ε. These auto-correlation functions
are shown in Figure 6.
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Figure 6. Normalized autocorrelation functions (ACF) of the (a) end-to-end vector and (b) end-to-end
distance. Homopolymer model with N = 100.
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For all four sequences, the end-to-end vector relaxation time decreases monotonically
with ε, Figure 7a. As expected, in the swollen regime, above the θ-point the end-to-end
relaxation rotation time is well described by the classical Zimm time in the good and

θ-solvent regimes τZ ∼
ηR3

g
kBT ∼ R3

g, shown by the black line [29]. More globular chains
below the θ-point start to deviate from the Zimm time, although agreement is still good for
all sequences except (HPP)33H. We return to the special behavior of this sequence below.
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Figure 7. Relaxation times of the end-to-end vector and distance. (a) Relaxation time of the end-
to-end vector (“rotation time”) and (b) the end-to-end distance (“reconfiguration time”) for the
different sequences indicated in the legend of (a). The x-axis shows the mean square radius of
gyration controlled by monomer cohesiveness in the simulations. (c) End-to-end distance probability
distribution. Red line: H100 sequence; ε/kT = 0.9. Blue line: (HP)50 sequence; ε/kT = 3.2. Green
line: (HPP)33H sequence; ε/kT =5.4. Purple line: P(HPP)33; ε/kT = 5.6. The radius of gyration
Rg ≈ 6± 0.1 for all sequences (see (d)). (d) Variance of the end-to-end distance as a function the
radius of gyration of the chains. Stars indicate the radii of gyration of the sequences for the parameter
values in (c). Deviation of the green line from the others below the θ-point reflect the emergence of
the secondary peak in the end-to-end distribution in (c). See text.

The behavior of the end-to-end distance reconfiguration time is shown in Figure 7b.
Similarly to the relaxation time of the end-to-end vector, the reconfiguration time decreases
monotonically with the chain compactness for the homopolymer, the (HP)50 and the
“P(HPP)33” sequences, although the dependence does not obey the Zimm law anymore.
On the contrary, for the “(HPP)33H” sequence that has cohesive monomers at the ends, the
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reconfiguration time is a non-monotonic function of the chain dimensions in the compact
regime below the θ-point.

This behavior can be understood by examining the distributions of the end-to-end
distances for the chains of different sequences (Figure 7c). For the homopolymer, the
“(HP)50” and the“P(HPP)33” sequences, the end-to-end distance distributions have a single
peak around a typical value of the end-to-end-distance. However, for the “(HPP)33H”
sequence, additional peaks emerge immediately after the polymer compacts beyond the
θ solvent condition. This feature is further illustrated in Figure 7d which shows the
variances of the end-to-end distance distributions for the four sequences as a function of the
compactness. Above the θ-point, the variances are identical for all sequences. In contrast,
below the θ-point for the “(HPP)33H” chain with cohesive monomers the variance is
significantly higher than for the other sequences, reflecting the emergence of the secondary
compact conformation shown in Figure 7c).

The transition between these two conformations—with ends bound to each other and
far apart, respectively—is responsible for the non-monotonic dependence of the reconfigu-
ration time on the chain compaction exhibited in Figure 7b). Namely, for the “(HPP)33H”
sequence the free energy landscape in conformation space is more rugged, and the poly-
mer is sampling a few highly probable conformations rather than smoothly transitioning
between conformations of a Gaussian chain. In conclusion, the anomalous behavior of the
reconfiguration time arises from the particular properties of the sequence.

These results have important implications for the interpretation of the experimental
results of FRET and FCS experimental results that commonly assume a Gaussian end-to-end
distribution, and where the interaction between the FRET dyes can be of importance [97].
This effect might explain the behavior observed for chemically denatured proteins and
IPDs in FRET and FCS experiments [56,92,96,97].

3. Discussion and Experimental Implications

IDPs play important roles in many processes in the cell. One prominent example is
the Nuclear Pore Complex, where the assembly of FG nucleoporins with multiple IDRs fills
its transport channel and controls the transport speed, efficiency and selectivity. Although
many aspects of the FG nucleoporin function can be understood within simple mean field
models, disrupting specific aspects of their sequence can have profound effects on NPC
architecture and function. A number of mesoscopic models that incorporate salient aspects
of the FG nucleoporin sequence have been proposed but the universally accepted consensus
model is still lacking.

The absence of agreed upon computational models of IDPs makes the of the experi-
mental results difficult, and often leads to apparent discrepancies. Although specific models
have been successful in explaining experimental results in a number of systems, the full
picture of the effects of amino acid composition and sequence specificity on the behavior
of IDPs and IDRs still remains incomplete. In this paper, we systematically investigated
the effects of internal interactions and sequence heterogeneity on the dimensions of IDPs,
with emphasis on the sequence “patchiness” and with potential applications to several
experimental techniques. Although we use a minimal coarse-grained model, our results
are likely to be general, as illustrated by their good agreement with the results obtained
using atomistic simulations.

For the homopolymer model with internal cohesiveness, which serves as a “null
model” against which the more complex models can be benchmarked, increase in the
cohesiveness results in a consistent compaction of all polymer dimensions (end-to-end
distance Re, radius of gyration Rg and the hydrodynamic radius Rh (or its approximate
value Rk). The degree of compaction differs for each of the polymer dimensions and their
ratios (Re/Rg and Rg/Rk). We also found that the conformations of the homopolymers
are aspherical for low values of cohesiveness, and the ratio of end-to-end distance to the
radius of gyration is correlated with asphericity. In terms of dynamical quantities, both the
rotation and the reconfiguration times of the end-to-end distance decreases monotonically
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with the polymer compactness caused by the increase in the cohesiveness. These ratios
can serve as the markers for positioning the IDP in the swollen–compact continuum as a
function of the internal cohesiveness (see below).

Sequence heterogeneity can significantly modulate the polymer dimensions indepen-
dently of the composition or the attraction strength between cohesive monomers. For
polymers composed of mixtures of cohesive and neutral monomers, an increase in the size
of cohesive “patches” resulted in the more significant compaction of the polymer, reflected
in all dimensions and their ratios. Nevertheless, the overall behavior of these polymers can
be semi-quantitatively mapped onto that of a simple homopolymer with an appropriately
chosen value of the average cohesiveness in agreement with previous works. For low
values of cohesiveness below the theta-point, this effective cohesiveness is proportional to
the square of the fraction of the cohesive monomers in the chain, reflecting the mean field
reduction in the average number of inter-monomer contacts. For more cohesive sequences
in a compact regime, the mean field description starts to break down, and the effective
homopolymer cohesiveness depends on the “patch” size. In this regime, the effective
cohesiveness correlates with the SCD of the sequence, which also was shown to correlate
with the macroscopic Flory parameter describing the mean field cohesive behavior of single
chains, and their collective properties such as the phase separation.

The presence of monomers of positive and negative charges in the sequence can have
a dramatic effect on polymer dimensions, as described in Section 2.1.1. Notably, in this case
the mean field description completely breaks down due to the cancellation of interactions
between oppositely charged monomers. To study the effects of charge patterning, and to
validate our model, we studied a polyampholyte sequence composed of positively and
negatively monomers. The dimensions of the polyampholytes predicted by our coarse-
grained model were similar to those predicted by an all-atom model with explicit ions,
and exhibited the same trends. Overall, the radius of gyration, Rg and the ratio of the
radius of gyration to the hydrodynamic radius, Rg/Rk, monotonically decayed with the
sequence patterning parameters SCD and κ, enabling mapping from SCD onto an average
cohesiveness of an effective homopolymer model. These results are consistent with the
findings that the SCD correlates with the phase transition temperature and thus with the
Flory parameter χ.

However, unlike for the cohesive/neutral chains, for the polyampholytes the end-to-
end distance Re and the ratio Re/Rg were highly sequence specific. This partial decoupling
between the Re and Rg, arising from the high sensitivity of Re to the details of the sequence
at the chain ends, is in agreement with previous observations and modeling. Thus, while
Rg/Rk ratio appears to be a robust parameter that locates the IDP on the order-disorder
continuum and is useful in the interpretation of experiments, the end-to-end distance
Re and its ratio Re/Rg are not, and care should be exercised when interpreting FRET
experiments.

Nevertheless, rather than being the source of a discrepancy, the combined measure-
ments of several polymer dimensions can guide the interpretation of experimental results
and the inference of the internal interactions of an IDP. For example, the ratio between the
radius of gyration and the hydrodynamic radius can reveal the location of a particular IDP
on the disorder-to-order continuum, whereas the ratio of the end-to-end distance to radius
of gyration may reveal the relative importance of the direct end-to-end interactions.

The sensitivity of the end-to-end distance to the properties of the monomers at the
chain ends shows itself also in the end-to-end dynamics. Puzzlingly, both IDPs and
chemically denatured proteins can exhibit a non-monotonic dependence of the end-to-
end distance reconfiguration times on denaturant concentrations and the associated chain
compaction. Molecular dynamics studies have proposed “internal friction” as the source
of this behavior, but its microscopic origin still remains unclear, and the reconfiguration
dynamics is still not fully understood.

The course grained model of this paper shows that the end-to-end distance distribu-
tion and thus the end-to-end distance reconfiguration time is sensitive to the properties
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of the monomers near the chain ends. The sequence with cohesive monomers at the ends
exhibited a regime in which the reconfiguration time increases with the compaction of the
polymer dimensions, qualitatively following the experimental observations. This increase
was contingent on the emergence of multiple peaks in the end-to-end distance distribution
due to the presence of cohesive monomers at the ends, indicating bi-stability between a
compact and a swollen conformations. Chains with more homogeneous sequences explore
Gaussian conformational landscapes and have faster end-to-end distance reconfiguration
times, whereas those with more heterogeneous sequences explore more distant conforma-
tional states and therefore have slower reconfiguration times. This difference between the
conformational ensembles would not appear in a static measurement of polymer dimen-
sions. This emphasizes again the importance of sequence for the end-to-end dynamics and
statics, and might contribute to the understanding of the origin of the “internal friction”
of IDPs.

In summary, the coarse-grained models studied here encapsulate a wide range of IDP
behaviors, semi-quantitatively agree with atomistic simulations, and serve as the basis for
mode complex models. Our coarse-grained models add to the toolkit of computational
tools for the investigation of the IDPs on mesoscopic scales and for the interpretation of
the equilibrium and dynamics experiments. This study also has important limitations. In
particular, it has focused on the effects of composition and sequence, but the effects of
length can have important effects on IDP function, and will be systematically investigated
in future work. Furthermore, in some cases, such as short linear motifs and transcription
factors, the precise locations of specific residues may play an important role in conferring
specificity that is not captured in the coarse grained “patchy” models. On the technical
side, the employed interaction potentials do not capture potential anisotropy of some
interactions, such as π − π stacking, which might be important in limiting the valence of
the attractive/cohesive groups. Similarly, implementation of hydrodynamic interactions
directly through the Rotne–Prager–Yamakawa formalism is relatively computationally
costly and limits somewhat the lengths of the studied IDRs even with optimized coding
efficiency. This can be alleviated by using dissipative particle dynamics or other coarse-
grained tools to describe hydrodynamic interactions. These factors will be included, where
necessary, in future investigations that will apply the coarse-grained models to specific cases
of IDPs—in particular to FG nucleoporins—to understand their behavior in multi-chain
assemblies and their interaction and binding with other proteins.

4. Materials and Methods

We represent an IDP as a polymer consisting of N monomers. To accommodate various
levels of detail, sequence effects are introduced by assigning each monomer to one of the
four types: neutral, cohesive, positively charged or negatively charged. Similar models and
computational implementations have been used to represent IDPs [15,38,51,53,64,99–103].

The monomers are kept on a chain via the finitely extensible non-linear elastic potential
(FENE) bonds between nearest neighbor monomers [104]:

UFENE = −1
2

kl2
max ln(1−

(
r

lmax

)2
) (10)

All monomer pairs interact via a repulsive 8–6 LJ potential modeling the steric repul-
sion between the monomers:

UEV =





εLJ

[(
b
r

)8
− 4

3

(
b
r

)6
]
+ 1

3 (εLJ − ε) if r < b

0 if r > b
(11)

b =
bi + bj

2
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where εLJ is the strength of the repulsion, and b (equal to the sum of the radii of the two
interacting monomers) is the distance between the monomer centers where the force is
zero. An exception to this rule occurs if the two interacting beads are bonded monomers of
a polymer: in this case b = b0, which reflects the bond length rather than the radius. The
potential is shifted by 1

3 (εLJ − ε) in order to maintain continuity at r = b with the attractive
potential described in the following section.

In addition to the universal repulsive interaction, “cohesive” monomers interact
through the attractive potential

UC =





ε

[(
b
r

)8
− 4

3

(
b
r

)6
]

if b < r < 4b

0 if r ≤ b or r ≥ 4b
(12)

b =
bi + bj

2

The parameter ε controls the strength of the attraction between the monomers. The sum
of the radii of the two beads (b) is the same as in the repulsive force described previously.
The attractive potential smoothly splines with the repulsive part at r = b. To reduce
computational complexity, the potential is cut off beyond r = 4b, where it is ∼0.1% of its
maximal depth.

Interaction between two charged monomers is modeled via the screened Coulomb
potential:

UQ =
q1q2

4πε0r
e−

r
lD , (13)

where q1 and q2 are the charges of the beads, and ε0 is the dielectric permittivity of the
solution. The Debye length lD describes the screening of the electrostatic potential by
salt ions.

The dynamics of the chain are described by the over-damped Langevin dynamics im-
plemented via the Ermak–McCammon [105] algorithm, as described below. Hydrodynamic
interactions are included via the Rotne–Prager–Yamakawa tensor [106,107].

For convenience, we define the following dimensionless variables: the position of a
monomer ~X = ~x

xc
, the simulation time step ∆T = ∆t

tc
, the sum of the deterministic forces on

a monomer due to its interactions with the other monomers ~Fint =
~fint
fc

. The units of force

are fc = 2kBT
xc

, the units of length are xc =
√

2kBT
k =

√
2
3 b0 (k and b0 are defined below),

and the units of time are tc = ξ0
k , where ξ0 = 6πηa0, is the Stokes drag coefficient for a

bead with hydrodynamic radius a0. In these units, the displacement of a monomer in one
simulation time step is:

∆~X = M̄~Fint∆T + H̄ ~∆W. (14)

When hydrodynamic interactions are included, M̄ is the Rotne–Prager–Yamakawa
tensor [107] multiplied by ξ0, and H̄H̄ᵀ = M̄. In the simulations, H̄ is chosen to be a lower
triangular matrix obtained using the Cholesky decomposition of H̄. For the calculation
of the equilibrium quantities, such as the radius of gyration of the end-to-end distance,
hydrodynamic interactions are immaterial and all off-diagonal entries of M̄ can be set
to 0. The components ∆Wi of ~∆W are independent random variables with Gaussian
distributions such that 〈∆Wi〉 = 0 and 〈∆Wi(T)∆Wj(T′)〉 = ∆Tδ(T′ − T)δij [105,108,109];
see Supplementary Information for details.

Expressed in the simulation units, the range (diameters) of the repulsive volume

interactions between the bonded monomers is B0 = b0
xc

=
√

3
2 . The maximal extension of the

FENE bonds between monomers is Lmax = lmax
xc

= 2B0. The strength of the excluded volume
interactions is εLJ

kT = 1. The hydrodynamic radii of the monomers are A = a
xc

= b
2xc

= B
2 .
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38. Davis, L.K.; Šarić, A.A.; Hoogenboom, B.W.; Zilman, A. Physical modelling of multivalent interactions in the nuclear pore

complex. Biophys. J. 2021, 9, 1565–1577. [CrossRef]
39. Yoo, T.Y.; Meisburger, S.P.; Hinshaw, J.; Pollack, L.; Haran, G.; Sosnick, T.R.; Plaxco, K. Small-angle X-ray scattering and

single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state. J. Mol. Biol. 2012,
418, 226–236.

40. Watkins, H.M.; Simon, A.J.; Sosnick, T.R.; Lipman, E.A.; Hjelm, R.P.; Plaxco, K.W. Random coil negative control reproduces the
discrepancy between scattering and FRET measurements of denatured protein dimensions. Proc. Natl. Acad. Sci. USA 2015,
112, 6631–6636. [CrossRef]

41. Borgia, A.; Zheng, W.; Buholzer, K.; Borgia, M.B.; Schüler, A.; Hofmann, H.; Soranno, A.; Nettels, D.; Gast, K.; Grishaev, A.; et al.
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods. J. Am. Chem.
Soc. 2016, 138, 11714–11726. [CrossRef]

42. Zheng, W.; Borgia, A.; Buholzer, K.; Grishaev, A.; Schuler, B.; Best, R.B. Probing the Action of Chemical Denaturant on an
Intrinsically Disordered Protein by Simulation and Experiment. J. Am. Chem. Soc. 2016, 138, 11702–11713. [CrossRef]

43. Fuertes, G.; Banterle, N.; Ruff, K.M.; Chowdhury, A.; Mercadante, D.; Koehler, C.; Kachala, M.; Estrada Girona, G.; Milles, S.;
Mishra, A.; et al. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs.
FRET measurements. Proc. Natl. Acad. Sci. USA 2017, 114, 201704692. [CrossRef]

44. Zerze, G.H.; Best, R.B.; Mittal, J. Modest influence of FRET chromophores on the properties of unfolded proteins. Biophys. J. 2014,
107, 1654–1660. [CrossRef] [PubMed]

45. Riback, J.A.; Bowman, M.A.; Zmyslowski, A.M.; Plaxco, K.W.; Clark, P.L.; Sosnick, T.R. Commonly-used FRET fluorophores
promote collapse of an otherwise disordered protein. Proc. Natl. Acad. Sci. USA 2019, 116, 8889–8894. [CrossRef]

46. Theillet, F.X.; Kalmar, L.; Tompa, P.; Han, K.H.; Selenko, P.; Dunker, A.K.; Daughdrill, G.W.; Uversky, V.N. The alphabet of
intrinsic disorder I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically
Disord. Proteins 2013, 1, e24360-1. [CrossRef] [PubMed]

47. Oldfield, C.J.; Dunker, A.K. Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions. Annu. Rev. Biochem.
2014, 83, 553–584. [CrossRef]

http://dx.doi.org/10.1016/j.febslet.2004.09.036
http://dx.doi.org/10.1038/cr.2009.87
http://dx.doi.org/10.1042/BJ20121346
http://www.ncbi.nlm.nih.gov/pubmed/23240611
http://dx.doi.org/10.1002/pro.2261
http://dx.doi.org/10.1146/annurev-biophys-070317-032838
http://dx.doi.org/10.1038/nphys3532
http://dx.doi.org/10.7554/eLife.14119
http://dx.doi.org/10.1073/pnas.1207719109
http://dx.doi.org/10.1073/pnas.1001743107
http://www.ncbi.nlm.nih.gov/pubmed/20639465
http://dx.doi.org/10.1016/j.bbapap.2012.12.008
http://dx.doi.org/10.1163/_q3_SIM_00374
http://dx.doi.org/10.1103/PhysRevLett.80.4092
http://dx.doi.org/10.1016/j.bpj.2010.02.006
http://www.ncbi.nlm.nih.gov/pubmed/20483348
http://dx.doi.org/10.1016/j.bpj.2019.02.028
http://www.ncbi.nlm.nih.gov/pubmed/30902367
http://dx.doi.org/10.1038/nchem.2715
http://dx.doi.org/10.1016/j.bpj.2021.01.039
http://dx.doi.org/10.1073/pnas.1418673112
http://dx.doi.org/10.1021/jacs.6b05917
http://dx.doi.org/10.1021/jacs.6b05443
http://dx.doi.org/10.1073/pnas.1704692114
http://dx.doi.org/10.1016/j.bpj.2014.07.071
http://www.ncbi.nlm.nih.gov/pubmed/25296318
http://dx.doi.org/10.1073/pnas.1813038116
http://dx.doi.org/10.4161/idp.24360
http://www.ncbi.nlm.nih.gov/pubmed/28516008
http://dx.doi.org/10.1146/annurev-biochem-072711-164947


Int. J. Mol. Sci. 2023, 24, 1444 23 of 25

48. Uversky, V.N. Paradoxes and wonders of intrinsic disorder: Complexity of simplicity. Intrinsically Disord. Proteins 2016,
4, e1135015. [CrossRef]

49. Das, R.K.; Pappu, R.V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of
oppositely charged residues. Proc. Natl. Acad. Sci. USA 2013, 110, 13392–13397. [CrossRef]

50. Martin, E.W.; Holehouse, A.S.; Grace, C.R.; Hughes, A.; Pappu, R.V.; Mittag, T. Sequence Determinants of the Conformational
Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation. J. Am. Chem. Soc. 2016,
138, 15323–15335.

51. Ginell, G.M.; Holehouse, A.S. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates.
In Phase-Separated Biomolecular Condensates; Springer: Berlin/Heidelberg, Germany, 2023; pp. 95–116.

52. Mittag, T.; Pappu, R.V. A conceptual framework for understanding phase separation and addressing open questions and
challenges. Mol. Cell 2022, 82, 2201–2214. [CrossRef]

53. Huang, K.; Tagliazucchi, M.; Park, S.H.; Rabin, Y.; Szleifer, I. Nanocompartmentalization of the Nuclear Pore Lumen. Biophys. J.
2019, 118, 219–231. [CrossRef]

54. Peyro, M.; Soheilypour, M.; Ghavami, A.; Mofrad, M.R.K. Nucleoporin’s Like Charge Regions Are Major Regulators of FG
Coverage and Dynamics Inside the Nuclear Pore Complex. PLoS ONE 2015, 10, e0143745. [CrossRef]

55. Popken, P.; Ghavami, A.; Onck, P.R.; Poolman, B.; Veenhoff, L.M. Size-dependent leak of soluble and membrane proteins through
the yeast nuclear pore complex. Mol. Biol. Cell 2015, 26, 1386–1394. [CrossRef] [PubMed]

56. Soranno, A.; Buchli, B.; Nettels, D.; Cheng, R.R.; Müller-Späth, S.; Pfeil, S.H.; Hoffmann, A.; Lipman, E.A.; Makarov, D.E.; Schuler,
B. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl.
Acad. Sci. USA 2012, 109, 17800–17806. [CrossRef] [PubMed]

57. Echeverria, I.; Makarov, D.E.; Papoian, G.A. Concerted dihedral rotations give rise to internal friction in unfolded proteins. J. Am.
Chem. Soc. 2014, 136, 8708–8713. [CrossRef] [PubMed]

58. De Sancho, D.; Sirur, A.; Best, R.B. Molecular origins of internal friction effects on protein-folding rates. Nat. Commun. 2014,
5, 1–10. [CrossRef] [PubMed]

59. Rauscher, S.; Pomes, R. Molecular simulations of protein disorder. Biochem. Cell Biol. 2010, 88, 269–290. . [CrossRef] [PubMed]
60. Rauscher, S.; Gapsys, V.; Gajda, M.J.; Zweckstetter, M.; De Groot, B.L.; Grubmüller, H. Structural ensembles of intrinsically

disordered proteins depend strongly on force field: A comparison to experiment. J. Chem. Theory Comput. 2015, 11, 5513–5524.
61. Mercadante, D.; Wagner, J.A.; Aramburu, I.V.; Lemke, E.A.; Gräter, F. Sampling Long-versus Short-Range Interactions Defines

the Ability of Force Fields to Reproduce the Dynamics of Intrinsically Disordered Proteins. J. Chem. Theory Comput. 2017,
13, 3964–3974. [CrossRef]

62. Chong, S.H.; Chatterjee, P.; Ham, S. Computer Simulations of Intrinsically Disordered Proteins. Annu. Rev. Phys. Chem. 2017,
68, 117–134. [CrossRef]

63. Piana, S.; Donchev, A.G.; Robustelli, P.; Shaw, D.E. Water dispersion interactions strongly influence simulated structural properties
of disordered protein states. J. Phys. Chem. B 2015, 119, 5113–5123. [CrossRef]

64. Ashbaugh, H.S.; Hatch, H.W. Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space.
J. Am. Chem. Soc. 2008, 130, 9536–9542. [CrossRef]

65. Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-Grained Protein Models and Their Applications.
Chem. Rev. 2016, 116, 7898–7936. [CrossRef]

66. Best, R.B. Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2017,
42, 147–154. [CrossRef] [PubMed]

67. Song, J.; Gomes, G.N.; Gradinaru, C.C.; Chan, H.S. An Adequate Account of Excluded Volume Is Necessary to Infer Compactness
and Asphericity of Disordered Proteins by Forster Resonance Energy Transfer. J. Phys. Chem. B 2015, 119, 15191–15202. [CrossRef]

68. Ananth, A.N.; Mishra, A.; Frey, S.; Dwarkasing, A.; Versloot, R.; van der Giessen, E.; Görlich, D.; Onck, P.; Dekker, C. Spatial
structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics. Elife 2018, 7, e31510.
[CrossRef] [PubMed]

69. Fragasso, A.; De Vries, H.W.; Andersson, J.; Van Der Sluis, E.O.; Van Der Giessen, E.; Dahlin, A.; Onck, P.R.; Dekker, C. A designer
FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nat. Commun. 2021, 12, 1–15. [CrossRef]
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