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The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their

influence on the turbulent spectra are considered. We have developed the analog of the vortex line

representation as a transformation to the curvilinear system of coordinates moving together with the

divorticity lines. Compressibility of this mapping can be considered as the main reason for the

formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional

turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which

fall off as k−3 at large k, resembling the Kraichnan spectrum for the enstrophy cascade. For

turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients

coincides with the Saffman spectrum, E�k��k−4. We have compared the analytical predictions with

direct numerical solutions of the two-dimensional Euler equation for decaying turbulence. We

observe that the divorticity is reaching very high values and is distributed locally in space along

piecewise straight lines, thus indicating strong anisotropy, and accordingly we find a spectrum close

to the k−3 spectrum. © 2007 American Institute of Physics. �DOI: 10.1063/1.2793150�

I. INTRODUCTION

This paper is concerned with investigations of two-

dimensional �2D� hydrodynamical turbulent flows. In par-

ticular, we study the formation and dynamics of very sharp

vorticity gradients and their influence on the energy spectrum

in the enstrophy cascade regime. There are two kinds of

well-known 2D turbulent spectra. The first one was sug-

gested by Kraichnan
1

in 1967, it corresponds to the enstro-

phy cascade directed to the small-scale region where viscous

dissipation becomes essential. The Kraichnan spectrum has,

up to a logarithmic factor �see Ref. 2�, a power law depen-

dence for the intermediate wave numbers between source

and sink �the inertial interval�, E�k���2/3k−3, where � is the

enstrophy dissipation rate. �Recall that 2D turbulence addi-

tionally is characterized by an inverse energy cascade to-

wards large-scales leading to the Kolmogorov dependence

E�k��k−5/3 �see, e.g., Ref. 1��. The second spectrum sug-

gested by Saffman
3

in 1971 has a different power depen-

dence, E�k��k−4. According to Saffman vorticity disconti-

nuities will form in decaying 2D turbulence �in the absence

of viscosity� because fluid elements with different values of

vorticity will be driven close together by the flow. Due to

vorticity conservation the appearance of discontinuities will

respect the conservation of all other invariants involving the

vorticity, ��ndS, n=2,3 ,4 , . . .. Accounting for a finite vis-

cosity Saffman considers the “discontinuities” to have a

small width �, which results from the balance between iner-

tial and viscous forces. At high-Reynolds number this width

is assumed to be very small as compared to the length along

the discontinuities, L, which may be assumed to be of the

same order as the characteristic energy-containing length

scale. Under the assumption of isotropy and a dilute distri-

bution of discontinuities Saffman suggested that the energy

spectrum at large k could be constructed as a superposition

of the spectra from the individual discontinuities resulting in

E�k��k−4.

From the first sight, the spectra obtained by Kraichnan

and Saffman appear like two different results, but indeed, as

we show in this paper, it is possible to establish some con-

nection between them. This may be seen from the Fourier

transform of a step function. Let us assume that the vorticity

has a jump �=��x� along the line y=0. At first we neglect

effects connected with the finite jump width, �, and bending

of the line. Then we may write

��

�y
= ���y� .

Hence it is immediately seen that the Fourier transform will

have a power-law falloff at large k, i.e., inversely propor-

tional to ky multiplied by some function of kx due to the

dependence of � on x. If we neglect the dependence on kx

replacing it by some constant, we immediately obtain an en-

ergy spectrum with a power dependence, which appears to be

similar to the Kraichnan spectrum, E�k��k−3. This is an im-

portant conjecture demonstrating that a spectrum similar to

the Kraichnan spectrum, which is often observed in high

resolution numerical simulations, may be related to vorticity

jumps, which could be considered as possible candidates for

singularities in ideal fluids in two dimensions. However, for

ideal 2D fluids, i.e., in the framework of the Euler equations,

such singularities are not possible since the vorticity is a

Lagrangian invariant. Its gradient might grow very large, but

cannot become infinite in finite time. This is a consequence
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of the fundamental results obtained by Wolibner,
4

Kato,
5

and

Yudovich
6 �see also the reviews in Refs. 7 and 8�. The su-

premum of the vorticity gradient is bounded from above by a

double exponential law with a characteristic time of about

the vortex turnover time. This dependence is very sharp from

the physical point of view. Indeed, if one considers the

double exponential function exp�exp��0t�� as an estimate

�compare with Eq. �10�� then within two turnover times,

�0t=2, the maximal possible amplification of the vorticity

gradient is larger than 103 ��0 is the vorticity�. It should also

be noted that for viscous fluids, i.e., in the framework of the

Navier-Stokes equation, the initial smoothness of the solu-

tion will remain for all times as proven first by Olga

Ladyzhenskaya
9

many years ago. Moreover, this is valid also

for the Navier-Stokes equations with hyperviscosity.
10

It is necessary to mention some examples of 2D flows in

ideal fluids presented by Yudovich,
6

where the appearance of

weaker singularities �vorticity is allowed to be discontinuous

but bounded� are possible, however, they are formed in infi-

nite time. Another approach based on the numerical analysis

of the complex singularities for the inviscid flow with two-

mode initial conditions showed that the width of its analyt-

icity strip follows a ln�1/ t� law at short times.
11,12

Addition-

ally many numerical experiments for 2D turbulence �see

Refs. 13–16� show that the Saffman spectrum is formed with

a good accuracy in the initial stage, before the excitation of

the long-scale coherent vortices. The high-resolution numeri-

cal simulation performed by Legras et al.
17

demonstrated the

power dependence k−3.5. Analytical calculations presented by

Gilbert
18

using spiral structures provide a power dependence

with exponent between −3 and −4 �see also Refs. 19 and 20�.
In particular, we would like to point to the interesting work

by Ohkitani,
21

where by means of the Weiss decomposition
22

it was shown that the so-called h regions �h hyperbolic, i.e.,

regions where straining is dominating over vorticity� give the

spectrum k−3, i.e., coinciding up to a logarithmic factor with

the Kraichnan spectrum; the contribution from the e regions

�e elliptic, i.e., vorticity dominated regions� yields a behavior

like the Saffman spectrum �k−4. Similar observations were

reported by Chen et al.
23

and by Do-Khac et al.,
24

who ap-

plied a wavelet analysis to separate 2D turbulent flow into

regions having different dynamical behaviors. The appear-

ance of a power law type spectrum in the short-wave region

has been connected with different physical mechanisms like

vortex merging
25–27

and vortex stripping
28,29

which give a

certain confirmation of the original idea of Saffman.
3

In the present paper we present qualitative physical ar-

guments in favor of the formation of sharp vorticity gradients

in the 2D Euler equations for smooth initial conditions. The

main idea in the description of 2D flows is to use the La-

grangian invariance of the vorticity. Kuznetsov and Ruban
30

�see also Ref. 31� developed a new description for three-

dimensional vortical flows—the so-called vortex line repre-

sentation �VLR�. This representation is based on the mixed

Lagrangian-Eulerian description and connected with mov-

able vortex lines. The VLR, which is a mapping to a curvi-

linear system of coordinates, turns out to be compressible.

This is considered to be the main reason for steepening of

gradients and ultimate breaking in hydrodynamics. Here we

shall demonstrate how this approach can be modified for the

2D Euler hydrodynamics. The main observation is that for

2D flows the curl of the vorticity, sometimes referred to as

the divorticity,
14,21,22

represents a frozen-in field, i.e., it sat-

isfies the same equation as, e.g., the equation for the mag-

netic field in ideal 2D magnetohydrodynamics �MHD�.
Therefore the generalization to the 2D Euler equations be-

comes straightforward. In the local case, as it was demon-

strated for the 2D Euler equations in Ref. 32, the vorticity

plays the role of a Lagrangian coordinate and the other vari-

able coincides with the Cartesian coordinate, say, x. In terms

of these variables the 2D Euler equations transform into

equations of motion for a layered fluid, similar to a stratified

fluid, where each layer is labeled by its vorticity �. In terms

of the new variables the “new” hydrodynamics becomes

compressible. The derivative y�, as a function of time and

coordinate x, plays the role of density of each layer, and it is

proportional to the width between two neighboring layers

with closed vorticity contours.

Another aim of this paper is revisiting the energy spectra

for 2D turbulence with emphasis on the angle distribution,

following the arguments of Saffman connected with vorticity

discontinuities. Using the stationary phase method we dem-

onstrate that the contribution from one discontinuity is very

anisotropic; it has a sharp angular peak along the direction

perpendicular to the discontinuity. In the peak the energy

spectrum falls-off like k−3 at large k. After averaging over

angles in the case of isotropic turbulence the spectrum coin-

cides with the Saffman spectrum.
3

In order to investigate whether the spectrum at large k is

defined by sharp vorticity gradients, we have performed nu-

merical experiments on decaying turbulence based on a di-

rect numerical solution of the 2D Euler equations. In the

turbulent state when the formation of power law tails in the

spectrum is observed, we examined the structure of the di-

vorticity �B=���ẑ�. We found that the divorticity is dis-

tributed very sharply in space concentrated on a random net

of lines. In our opinion, these results can be interpreted in

favor of the Saffman mechanism for the formation of 2D

turbulent spectra due to discontinuities.

The remaining of the paper is organized as follows: In

Sec. II we derive the equation for the divorticity and apply

the VLR to investigate the development of steep vorticity

gradients in 2D flows. Then in Sec. III we discuss the energy

spectrum in 2D turbulence and its relation to steep vorticity

gradients. The relation between the spectrum and the devel-

oping steep vorticity gradients is examined in Sec. IV by

direct numerical solutions of the 2D Euler equations. Finally,

Sec. V contains our concluding remarks.

II. TWO-DIMENSIONAL ANALOG OF THE VORTEX
LINE REPRESENTATION

Consider a 2D ideal fluid, described by the Euler equa-

tion for the vorticity ��x ,y , t�,

d�

dt
�

��

�t
+ �v · ��� = 0, � · v = 0, �1�
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where the velocity field v defines the vorticity, �= ��
�v� · ẑ=�vy /�x−�vx /�y. Equation �1� shows that the vortic-

ity is a Lagrangian invariant advected by the fluid, i.e., the

vorticity is invariant along a fluid particle trajectory defined

as the solution of the system of ordinary differential equa-

tions �ODEs�,

dr

dt
= v�r,t�, �r�t=0 = a . �2�

Let us introduce the divergence-free vector field B with

the components

Bx =
��

�y
, By = −

��

�x
,

i.e., B=���ẑ. It is easily seen that this vector is tangent to

the line ��x ,y�=const because the vorticity gradient ��

= ��x� ,�y�� is normal to this line. The equation of motion for

B can be obtained from Eq. �1� after differentiating with

respect to coordinates,

�B

�t
= � � �v � B� . �3�

Thus, the vector B constitutes a frozen-in quantity, and it is

often called the divorticity �see Ref. 14�. In terms of the

substantial derivative, Eq. �3� can be rewritten as

dB

dt
= �B · ��v �

1

2
��ẑ � B� + ŜB . �4�

Here the first term on the rhs describes the rotation of the

divorticity vector with the angular velocity −� /2 and the

second term is responsible for stretching of the divorticity

lines, where

Ŝik =
1

2
	 �vk

�xi

+
�vi

�xk


 �5�

is the stress tensor. Hence the divorticity length �B� will lo-

cally increase due to stretching when

1

2

dB
2

dt
= �B · ŜB� � 0. �6�

It is interesting to note that this equation resembles the equa-

tion for the vorticity square �
2 for three-dimensional turbu-

lence, where the stretching of vorticity lines enhances the

vorticity, cf. Ref. 33. Increasing �or decreasing� the divortic-

ity field, based on Eq. �6�, is not sufficient to clarify the

physical mechanism for its growth. As is seen from Eq. �3�
only one velocity component, vn, normal to the vector B

changes the field B. In this case the tangential component v�

�parallel to B� plays a passive role providing the incompress-

ibility condition, � ·v�+� ·vn=0. This observation is the key

point for introducing the VLR for the three-dimensional Eu-

ler equations �see, e.g., Ref. 31�. To construct the analog of

VLR for the 2D Euler equations we consider new Lagrang-

ian trajectories, given by vn,

dr

dt
= vn�r,t�, �r�t=0 = a . �7�

The solution of these ODEs defines a new mapping

r = r�a,t� , �8�

which is different from that given by Eq. �2�. In terms of this

mapping the divorticity equation �3� can easily be integrated,

B�r,t� =
�B0�a� · �a�r�a,t�

J
, �9�

where B0�a� is the initial divorticity, J is the Jacobian of the

mapping �8�, J=��x ,y� /��ax ,ay�. According to the definition

of this mapping the Jacobian is not fixed, it may change in

time and space. In other words, the mapping r=r�a , t�, as a

change of variables, represents a compressible mapping. This

means that the divorticity lines can be compressed. In this

approach the velocity of motion of divorticity lines is simply

the normal velocity vn.

It should be noted that this approach in slightly different

form was suggested in Ref. 32. There the basis is the mixed

Lagrangian-Eulerian description when all desired quantities

are considered as functions of vorticity � �or any other La-

grangian invariant� and a Cartesian coordinate x.

The representations �7�–�9� do not work at singular

points where the B-field vanishes, B�r�t� , t�=0, and where,

respectively, the normal velocity is not defined. For the vor-

ticity � these points correspond to the maximal, minimal or

saddle points. It is observed that the null points are advected

by the fluid, but the velocity v at these points is defined

through the B-field by inverting the Laplacian operator, v

=−�−1
B. The null-points for the normal vector field, n�r�,

represent topological singularities. Topological constraints as

additional conditions to the systems �7�–�9� are written as

integrals of the vector field n�r� along a loop enclosing the

null-points �see, e.g., Ref. 34�,

� ��	 · dr� = 2
m ,

where 	 is the angle between the vector n and the x-axis and

m, the topological charge, is an integer equal to the total

number of turns of the vector n, while passing around the

closed contour with the null-point inside it �see also Ref. 32�.
For instance, at X-points or O-points m= ±1.

As well-known from gas dynamics, compressibility of

the mapping is the main cause for steepening and ultimately

breaking, resulting in the formation of sharp gradients for the

velocity and density of the gases. This happens in finite time

and in the general situation the singularity first appears at

one separate point, i.e., it may be related to collapse. In gas

dynamics this process is completely characterized by the

mapping determined by the transition from the Eulerian to

the Lagrangian description. Vanishing of the Jacobian corre-

sponds to the emergence of a singularity. For three-

dimensional incompressible Euler equations compressibility

of the VLR is a possible reason for the appearance of infinite

vorticity in one separate point resulting in breaking of vortex

lines. The first study of vortex-line breaking for three-
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dimensional integrable hydrodynamics with the Hamiltonian

��� �dr was performed by Kuznetsov and Ruban.
35

Recent

numerical experiments
36,37

have confirmed the possibility of

this type of scenario.

The Jacobian in the denominator of the expressions �9�
can tend to zero implying the increasing of the divorticity.

We do not see any restrictions why this process should be

forbidden. In 2D hydrodynamics compressibility of the map-

ping guarantees only compression of divorticity lines corre-

sponding to the formation of sharp gradients for the vorticity.

However, the breaking process for 2D flows of ideal fluids

can only take place in infinite time. As it was shown by

Wolibner,
4

Kato,
5

and Yudovich
6

collapse as a process of

singularity formation in finite time is forbidden for 2D ideal

fluid flows. In accordance with these results the distance ��t�
between two fluid particles occurs to be bounded from below

by the double exponential dependence �see also the reviews

in Refs. 7 and 8�,

��t� � L exp�− log�L/�0�exp�C���Lt�� ,

where �0 is the initial separation, L is the characteristic size

of the fluid domain, ���L is the supremum of the vorticity,

and C is a constant of order 1. This estimate shows the im-

possibility of vanishing separation, ��t�, in finite time. For

the vorticity gradient—or the divorticity—this means bound-

edness from above, also by a double exponential

dependence,
7,8

����t��L � ���0�Lexp� C��0��
C1��0�L

exp�C1t��0�L� − 1�� .

�10�

Here ��0�� is the Hölder norm of the initial vorticity and C1

is another constant of order 1. The rhs of Eq. �10� defines the

time T= ��0�
L
−1

coinciding with the characteristic turnover

time. At t=0 the estimate �10� becomes precise. A significant

deviation of ����t��L from the initial value ���0�L should

be expected for t�T. At these times, in principle, we cannot

exclude some intermediate asymptotics with a sharp growth

different from the estimate �10�. In Sec. IV we present nu-

merical results for the evolution of ����t��L and its relation

to Eq. �10�.
The most important point in our opinion is that the ten-

dency of vorticity steepening indeed exist. For ideal fluids

the appearance of infinite vorticity gradients can happen only

in infinite time. It is, however, possible to imagine that this

process may be accelerated in the presence of external forces

driving the turbulence.

III. 2D SPECTRUM

In the previous section we presented arguments in favor

of the formation of sharp gradients of the vorticity in 2D

Euler flows. In the following we will suppose that this pro-

cess is possible and consider how it can effect the form of the

turbulent spectrum. For 2D turbulence, in the presence of

finite viscosity and external forcing, we will assume that the

sharp vorticity gradients have a finite value, which is defined

from the balance between inertial and viscous terms. The

value of the gradient is related to a characteristic scale length

�= ���� � / �� � �−1, which determines the width of the corre-

sponding localized stripes of strongly enhanced amplitude in

the ���� field. At high Reynolds number the width � will be

much less than the characteristic �energy-containing� scale L.

In the turbulent state such enhanced stripes in ���� are natu-

rally forming a set of vorticity jumps with random positions

of their centers, random forms and random distributions over

angles. Our aim is to calculate the contribution to the spec-

trum from such sharp jumps. We will be interested in the

region of wave numbers k lying between L−1 and the inverse

width �−1,

L−1
≪ k ≪ �−1.

To simplify the problem all jumps are supposed to be con-

centrated on pieces of straight lines �finite intervals� with the

vorticity jump vanishing at the endpoints of the intervals. As

we will see later this simplification is not so essential. The

result, which we obtain, will also account for bends of the

stripes.

To find the spectrum we need to calculate the Fourier

transform of the pair correlation function,

F�r� = ���x���x + r�� ,

where angle brackets means average over the ensemble of

jumps. Hence the energy density spectrum ��k� is given by

the standard expression,

��k� =
Fk

2k2
=

��k�
2

8
2Sk2
,

where �k is the Fourier transform of the vorticity ��r�,

�k =� ��r�e−i�kr�dr, ��r� =
1

�2
�2 � �ke
i�kr�dk ,

where the overbar denotes average with respect to random

variables and S is the average area, which is assumed to be

sufficiently large.

Consider first one jump with the center at r0= �x0 ,y0�
oriented along the y-axis. Approximating the jump by a step

discontinuity we have for the y-derivative of �,

��

�y
= ��x���y − y0� + regular terms. �11�

Here ��x� is a continuous function of x inside the interval

�x1 ,x2� vanishing at the end points x=x1,2 and equal to zero

outside the interval.

Hence, the Fourier transform from the singular part of �

is given by the integral

�k = −
i

ky

e−ikyy0�
x1

x2

��x�e−ikxxdx ,

where k= �kx ,ky�. This is the contribution from one jump. If

we assume that the jumps are not very densely distributed,

they may be considered “independent” and the spectrum for

the whole ensemble of jumps is obtained by a superposition

of the spectra from the individual jumps, i.e., from the sum-

mation with respect to all jumps which results in
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�k = − �
�

i

�k · n��
e−i�k·n��y0��

x1�

x2�

���x�e−i�k·���xdx . �12�

Here we have introduced two unit vectors: Normal n� and

tangent �� �n�
2 =��

2 =1, �n� ·���=0� characterizing the orien-

tation of the �th jump. The coordinates x1� ,x2� ,y0� together

with the two unit vectors define completely the positions of

the jumps.

To find the enstrophy spectrum one needs to perform the

average of ��k�
2 with respect to all random variables. Assum-

ing the coordinates of the jumps to be randomly distributed

uniformly in space, the first average gives

��k�
2 = N� 1

�k · n�2��
x1

x2

��x�e−i�k·��xdx�2� . �13�

N is the number of jumps in area S, angle brackets means the

average with respect to both x1 , x2, and angle distribution.

We are interested in short-wave asymptotics of the spec-

trum, kL≫1, then the integrand in Eq. �13� represents a

rapidly varying function of x, and the integral can be esti-

mated by means of the method of stationary phase. This

method can be applied for all angles except for a narrow

cone of angles, �k ��k is the angle between the vectors n and

k� where kL�k�1. In this region the integral can be consid-

ered as constant which results in the following form for the

energy distribution �before angle averaging!�:

�1�k� �
n

8
2k4
���̄l�2�, �k � �0 � �kL�−1, �14�

where n=N /S is the density of jumps and

�̄l = �
x1

x2

��x�dx, l = x2 − x1, �l� = L .

For angles �k lying far from �0��kL�−1 the integral in Eq.

�13� is estimated by means of the method of stationary phase.

However, the leading order, proportional to �k ·��−1, gives

zero input because ��x1,2�=0. Therefore one needs to keep

the next order approximation that gives

�2�k� �
N

4
2k2

�����2�

�k · n�2�k · ��4
, �k ≫ �kL�−1, �15�

where �� is the derivative of � taken at the endpoints xi. This

formula demonstrates singular behavior for ��k� for angles

�k close to 0 and 
 /2 �as well as to 
 and −
 /2�. At small

angles �k� �kL�−1 this expression has to be matched with Eq.

�14�. For the angle range close to 
 /2 the integral in Eq. �15�
should be cut-off due to the bending of the line of the jump.

This factor switches on at angles ��k−
 /2 � ��ka�−1, where a

is a characteristic bending length of the jump �roughly of the

order of L�. Thus, the energy density distribution ��k� has a

very narrow angle maximum at �k near zero with decay at

large wave numbers as �k−4, this results in the energy spec-

trum E�k��k−3, which, up to the logarithmic factor, corre-

sponds to the Kraichnan spectrum. For all other angles ��k�
decays proportionally to k−6 at large k.

We would like to stress once more that the expressions

�14� and �15� are resulting from a noncomplete averaging,

i.e., the average with respect to coordinates x1�, x2�, y0�. In

order to get the final result for the energy spectrum it is

necessary to average with respect to angles.

Let us assume first that the angle distribution is isotropic.

Then, integrating over angles it is easily seen that from the

first region �14� we have the following contribution:

E1�k� = 2k�
−�0

�0

�1�k�d�k �
n

2
2k4L
���̄l�2� . �16�

Here the factor 2 appears because of two equal contributions

from the two regions near �k=0 and �k=
. Averaging Eq.

�15� over angles gives divergence at �→0 and �→
 /2. The

main contribution to the energy spectrum comes from the

cut-off at small angles ��kL�−1,

E2�k� �
nL3

3
2k4
�����2� . �17�

Thus, both regions of angles give contributions of the same

order of magnitude. The complete answer for the energy

spectrum for isotropic turbulence �i.e., isotropic distribution

of discontinuities� is given by the sum of Eqs. �16� and �17�,

E�k� �
n

2
2k4L
����̄l�2� +

2L4

3
�����2�� , �18�

which coincides with the spectrum obtained by Saffman.
3

In order to find the spectrum in the anisotropic situation

one needs to average expressions �14� and �15� with the cor-

responding distribution function. In numerical experiments

anisotropy can be conditioned by box boundaries as well as

by anisotropy of the pumping of turbulence. In the case when

such ordering is strong enough the spectrum may get some

peculiarities originating from nonaveraged spectra given by

Eqs. �14� and �15�. If the width of the angle distribution

function �� will be narrower than �0= �kL�−1, then in the

angle cone �k��� the energy spectrum E�k ,�� will have the

fall-off �k−3, i.e., the same power dependence as for the

Kraichnan spectrum, with a decrease like �k
�

−4 perpendicular

to the cone direction in accordance with Eq. �15�. Note, how-

ever, that this asymptotic is only intermediate because �0

= �kL�−1 decreases with increasing k. Therefore starting from

k=k*= �L�0�−1, the average over the angles becomes sensi-

tive relative to the singularities of Eq. �15� that results in the

spectrum decreasing proportional to the Saffman falloff. If

the influence of anisotropy is not so essential then we should

expect the spectrum to be close to the Saffman one, of

course, in the case when the main contribution to the spec-

trum at large k is connected with strong vorticity gradients.

The most interesting observation following from the analyti-

cal results of this section is that in the very anisotropic case

with strong ordering of jumps the sharp angular maximum of

the spectrum has the power falloff coinciding with that for

the Kraichnan spectrum. While in the isotropic case our re-

sult coincides with the Saffman spectrum. In the next section

we present results of numerical simulations of decaying 2D

turbulence at high-Reynolds numbers. In particular, the ap-

pearance of the power law tails in the energy spectrum at

large k can be explained by discontinuities, rather than by a

cascading process with constant enstrophy.
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IV. NUMERICAL INVESTIGATIONS

To support the arguments of the previous sections and

reveal the direct connection between the formation of the

sharp vorticity gradients and the tail of the energy spectrum,

we have performed a numerical study of the evolution of

decaying 2D turbulence. The 2D Euler equations in the

vorticity-stream-function formulation,

��

�t
+ �,�� = �2n�

2n� , �19�

are integrated numerically on a double periodic domain by

employing a high resolution fully dealiased spectral scheme.

� is the stream function, �=−�2� is the vorticity, v

= �vx ,vy�=��� ẑ is the velocity, and the bracket

�,�� � v · �� =
��

�x

��

�y
−

��

�x

��

�y
.

In Eq. �19� we have included a hyperviscosity term to keep

the integration scheme stable and avoid the so-called bottle-

neck instability �see, e.g., Ref. 38�. Typically we have used

n=3 and �6=10−20. This term was observed to decrease the

energy by less than 0.002% and the enstrophy by less than

20%. We verified that the global features of our results were

not dependent on the type of viscosity and also kinematic

viscosity was applied. In this connection we refer to Ref. 39

for detailed investigations of decaying 2D turbulence with

Newtonian viscosity and increasing Reynolds numbers. In

the present context we apply the hyperviscosity to allow as

wide a dynamical range as possible within the given resolu-

tion. The domain size was taken to be unity and the resolu-

tion was 2048�2048. For the time integration we employ a

third order stiffly stable scheme. We have chosen the time

scale to correspond to �0
−1, where �0 corresponds to the

maximum vorticity, and the spatial scale is the domain size.

As initial conditions we have placed a number of posi-

tive and negative vortices randomly on the domain, ensuring

that the total circulation is zero. We have employed circular

vortices with various profiles from vortex patches �Rankine

vortices� to Gaussian vortices. In the simulation run de-

scribed here we have used 10 vortices of each sign with

Gaussian profiles,

��r,�� = �0 exp�− r2/R0
2� , �20�

where �0=1 for all vortices, while their radii R0 are varying

in the range 0.02�R0�0.075. In other runs we have applied

different initial conditions with different vortex profiles and

different spatial distribution yielding essentially the same

results.

In Fig. 1�a� we show the initial vorticity field and Fig.

1�b� shows the vorticity field at t=100, which corresponds to

around 8 vortex internal turnover times �T
v
�4
 /�0�. The

vorticity field has the typical structure for 2D turbulence; it

consist of large scale structures �vortices� with concentrated

vorticity and strongly filamented structures between the vor-

tices. At this time there is still strong dynamics in the flow

evolution, with shearing and straining due to mutual interac-

tions of nearby structures. Corresponding to the vorticity

field we show the instantaneous one-dimensional energy

spectrum E�k� �total energy: E=�o
E�k�dk� in Fig. 2. The

spectrum E�k� for t=0 in Fig. 2 shows the spectrum of su-

perimposed Gaussian vortices. The spectrum is expanding to

the high k-values, and at t=95 a k−� spectrum has developed

at high wave numbers. For the present case ��3 as clearly

demonstrated in Fig. 2, which show the compensated

spectrum k3E�k� is practically constant over almost 2 de-

cades in k.

We investigate the details of the dynamics and how the

k−� spectrum is generated by examining the divorticity field

B defined in Sec. II. Figure 3 show the length �B�, which is

equal to size of the vorticity gradient, ����. It is clear from

the figure that very sharp vorticity gradients appears. These

are localized in stripes that are mostly along straight lines.

The stripes are mainly formed outside the dominating vortex

structures, and their formation can be explained by the analy-

sis discussed in Sec. II. Furthermore it is evident that the

concentration of the stripes is relatively low. In Fig. 4 we

show the time evolution of the maximum value of �B�2, Bmax
2 ,

i.e., the square of the maximum value of the vorticity gradi-

ent. The function is not smooth since we have plotted the

FIG. 1. �Color� �a� Initial vorticity field. �b� Vorticity field at time 100

corresponding to �8 vortex turnover times; �0=1.
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absolute maximum within the domain at each time, and

jumps in the first derivative appear when the maximum is

appearing at a new position. Each smooth part of the curve

relates to the development of the maximum value at one

point. We observe a rapid growth of Bmax, which then satu-

rates and decays. The highest value attained by Bmax during

this simulation approaches 1000, which with a maximum

value of the vorticity �0=1 corresponds to the width of the

filaments ��0.001. It is evident that the growth of �B� is

arrested by the hyperviscosity, and indeed the highest value

of Bmax scales with �6
−1/6. The growth of Bmax in one point is

monitored Fig. 4�b� for a couple of cases. It is observed that

the growth initially is exponential, but for later times the

growth saturates and becomes weaker than exponential. This

evolution certainly respects the bound on the vorticity gradi-

ent in Eq. �10�.

We compare the structure of the divorticity field with the

high pass filtered vorticity field shown in Fig. 5. The very

similar structure of the high pass filtered vorticity field and

the divorticity field strongly suggests that the vorticity gra-

dients are responsible for the large-k part of the spectrum,

i.e., the k−� part. This is further supported by the structure of

the Weiss field,
22

which is defined by W=1/4�� 2−�2�,

where � 2=−det�Ŝ�= ��xvx−�yvy�
2+ ��xvy +�yvx�

2is the square

strain rate, i.e., minus the determinant of the stress tensor

defined in Eq. �5�. The Weiss field, which is depicted in Fig.

6, separates the flow into regions with W�0 that are strain

dominated �h regions� and regions with W�0 that are vor-

ticity dominated �e regions�. Comparing Figs. 3 and 6, we

observe that the vorticity gradient stripes are aligned with the

contours of W in the strain dominated regions, W�0, mainly

at the edge of the vortex structures and in between the struc-

tures. A careful inspection, however, reveals that in the

stripes W�0, i.e., vorticity dominates. This is in line with

the original arguments of Weiss �see also Refs. 21 and 23�
that vorticity gradients will tend to concentrate in the strain

dominated regions. In particular in the work of Chen et al.
23

it was demonstrated that the dynamics leading to the enstro-

phy cascade in driven 2D turbulence is most significant in

strain dominated regions. We note that the Weiss field is

given by the determinant of the velocity gradient tensor, and

it is possible to express the “linearized” evolution �in a fro-

zen velocity field� of the divorticity as �e.g., Ref. 21�

�B� � exp��Wt� ,

which shows that in the hyperbolic regions the divorticity

will grow exponentially, while it will have an oscillatory

behavior in the elliptic regions.

The spectra we have observed are characterized by hav-

ing the exponent close to �=3. Thus, with reference to Sec.

III this corresponds to the spectrum in the anisotropic regime

where the stripes of vorticity gradients are near straight lines.

Indeed in Fig. 3 we see that the stripes are close to straight

FIG. 2. �Color online� Compensated

energy spectrum k3E�k� at different

times corresponding to the vorticity

field in Fig. 1.

FIG. 3. �Color� The squared length of the divorticity vector �B�2 at time 100.

The maximum value is 2.5·105.
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lines and the spectrum is in keeping with the expectations. To

illustrate the anisotropic nature of the spectrum directly we

plot in Fig. 7 the two-dimensional spectrum, ��kx ,ky�. We

observe a clear anisotropy that becomes particular apparent

in the compensated spectrum in Fig. 7�b�, which is obtained

by subtracting the angle average of ��kx ,ky� �i.e.,

�2
�−1�0
2
��kx ,ky�d��. Here we observe a clear angular struc-

ture with significant “jets” pointing in specific directions.

Similar jet-like structures in k-space have been anticipated

by Dubrulle et al.
40

based on a stochastic distortion approach

for strongly nonlocal interactions �see also Ref. 41�. We

should emphasize that the spectra obtained here are instanta-

neous spectra obtained at one time and for one realization.

Ensemble averaged spectra may be expected to show a much

higher degree of angle isotropy.

V. CONCLUDING REMARKS

We have performed a detailed investigation of the rela-

tion between turbulent spectra and sharp vorticity gradients

in 2D turbulent flows. First, we have demonstrated that the

k-behavior of the spectra generated by sharp vorticity gradi-

ents, based on the compressible advection of divorticity, de-

pends significantly on the anisotropy of the spectra. If the

angular distribution in the spectrum has one or more very

sharp peaks, then the one-dimensional spectrum has a tail

falling-off like k−3 at large k, which resembles the Kraichnan

spectrum, derived from spectral cascade arguments. In the

opposite case of an isotropic smooth angular dependence the

spectrum has an asymptotic behavior k−4 as for the Saffman

spectra. These arguments allow us to suggest an interpreta-

tion of the many numerical experiments where the spectral

exponent varies in the whole interval between −3 and −4.

For instance, in the simulations by Ohkitani
21

the e regions,

because of their geometry, would mainly contribute to the

isotropic component of the spectrum, which explain the Saff-

man exponents for the observed spectrum in these regions.

For h regions the situation is different; these regions contain

stretched vorticity level lines and their contribution to the

FIG. 4. �Color online� �a� The temporal evolution of the squared maximum

of the divorticity equal to the squared maximum vorticity gradient ����2. �b�
Close-up of the growth of the maximum in two cases.

FIG. 5. �Color� High pass filtered vorticity field from Fig. 1�b�, i.e., the

vorticity at mode numbers k�10 is plotted. The amount of energy in the

filtered field is about 1% of the total energy.

FIG. 6. �Color� Weiss field for the vorticity field in Fig. 1�b�. Red designates

strain dominated �h-� regimes. Blue designates vorticity dominated �e-�
regimes.
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spectrum would be expected to be very anisotropic. This is

why these regions contribute to the k behavior for the

Kraichnan spectrum. A similar situation takes place in our

present investigations in comparison to previous

investigations,
25,26

where the spectra were isotropic resulting

in spectral exponents like for the Saffman spectrum. In the

simulations presented in the present paper we have very

strong vorticity gradients concentrated on narrow stripes and

therefore the exponent is close to that for the Kraichnan

spectrum. Employing a filtering of the vorticity field suggests

that the tail of the spectrum originates from the sharp vortic-

ity gradients. We should emphasize that in the derivation of

the spectra from the spatial structure of the vorticity we have

inherently assumed that the distribution of sharp vorticity

gradient stripes are dilute in the sense that they may be con-

sidered independent and the spectrum can thus be con-

structed by summing up their individual contributions.

Breaking of this assumption may lead to a different spectral

form tending to become more shallow, e.g., as demonstrated

by Vassilicos and Hunt.
20

The energy spectrum is one of the statistical characteris-

tics of the turbulent state. In order to get more information

about such states one needs to investigate higher moments in

k-space, especially if it concerns k-jets. As it was shown in

Ref. 40 �see also Ref. 41� the higher moments are very sen-

sitive to such distributions. However, this problem is beyond

the scope of the present paper, and will be the subject of

future investigations.

FIG. 7. �Color� �a� 2D energy spectrum ��kx ,ky�, logarithmic scale. �Red designates the highest positive values, blue the negative values.� �b� The 2D energy

spectrum ��kx ,ky� compensated by subtracting the angle averaged spectrum, linear scale. �Red designates the highest values, deep blue is “zero.”�
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The strong amplification of the divorticity of up to one

thousand times is one of the main results of our simulations.

Fitting of the temporal behavior for the maxima demon-

strates an initial exponential increase with saturation at later

times. This dependence is far from the double exponential

growth given by the estimate in Eq. �10�. In conclusion, we

stress that this amplification has a natural explanation in the

compressibility of the mapping �8� providing the transfer

from the Eulerian description to the system of movable cur-

vilinear divorticity lines as described in Sec. II.

Finally, we note that similar arguments as presented in

this paper on the connection between the Kraichnan and

Saffman spectra, can also be applied for turbulence of water

�gravity� waves, where wedges represent surface singulari-

ties as well as for acoustic turbulence where shocks play the

role of singularities.
42
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