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ABSTRACT

In the framework of the spherical collapse model, we study the influence of shear and rota-

tion terms for dark matter fluid in clustering dark energy models. We evaluate, for different

equations of state, the effects of these terms on the linear overdensity threshold parameter, δc,

and on the virial overdensity, �V. The evaluation of their effects on δc allows us to infer the

modifications occurring on the mass function. Due to ambiguities in the definition of the halo

mass in the case of clustering dark energy, we consider two different situations: the first is the

classical one where the mass is of the dark matter halo only, while the second one is given by

the sum of the mass of dark matter and dark energy. As previously found, the spherical col-

lapse model becomes mass dependent and the two additional terms oppose the collapse of the

perturbations, especially on galactic scales, with respect to the spherical non-rotating model,

while on cluster scales the effects of shear and rotation become negligible. The values for δc

and �V are higher than the standard spherical model. Regarding the effects of the additional

non-linear terms on the mass function, we evaluate the number density of haloes. As expected,

major differences appear at high masses and redshifts. In particular, quintessence (phantom)

models predict more (less) objects with respect to the � colddarkmatter model, and the mass

correction due to the contribution of the dark energy component has negligible effects on the

overall number of structures.
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1 IN T RO D U C T I O N

One of the most complex puzzle in modern cosmology is the under-

standing of the nature of the accelerated expansion of the Universe.

This astonishing fact is the result of observations of high-redshifts

supernovae, which are less luminous of what was expected in a

decelerated universe (Riess et al. 1998; Perlmutter et al. 1999;

Tonry et al. 2003). Assuming general relativity and interpreting

the dimming of Type Ia supernovae (SNIa) as due to an accelerated

expansion phase in the history of the Universe, we are forced to

introduce a new component with negative pressure, and in particu-

lar, to cause accelerated expansion, its equation-of-state parameter

must be w < −1/3. This fluid, usually dubbed dark energy (DE),

is totally unknown in its nature and physical characteristics.

The latest observations of SNIa (Riess et al. 1998, 2004, 2007;

Perlmutter et al. 1999; Knop et al. 2003; Astier et al. 2006; Aman-

ullah et al. 2010), together with the cosmic microwave background

(CMB; Jarosik et al. 2011; Komatsu et al. 2011; Planck Collabo-
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ration 2013a,b,c; Sievers et al. 2013), the integrated Sachs–Wolfe

effect (Giannantonio et al. 2008; Ho et al. 2008), the large scale

structure (LSS) and baryonic acoustic oscillations (Tegmark et al.

2004a,b; Cole et al. 2005; Eisenstein et al. 2005; Percival et al. 2010;

Reid et al. 2010; Blake et al. 2011), the globular clusters (Krauss &

Chaboyer 2003; Dotter, Sarajedini & Anderson 2011), high-redshift

galaxies (Alcaniz, Lima & Cunha 2003) and the galaxy clusters

(Haiman, Mohr & Holder 2001; Allen et al. 2004, 2008; Wang et al.

2004; Basilakos, Plionis & Solà 2010), till works based on weak

gravitational lensing (Hoekstra et al. 2006; Jarvis et al. 2006) and

X-ray clusters (Vikhlinin et al. 2009) confirmed these early findings

and they are all in agreement with a universe filled with 30 per cent

by cold dark matter (CDM) and baryons (both fluids pressureless)

and with the remaining 70 per cent by the cosmological constant

� (the so-called �CDM model). The cosmological constant is the

most basic form of DE. Its equation of state is constant in time

(w = −1), it appears in Einstein field equations as a geometrical

term, it cannot cluster (being constant in space and time) and its

importance is appreciable only at low redshift.

Despite being in agreement virtually with all the observables,

the standard cosmological model suffers from severe theoretical
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problems (the coincidence and the fine-tuning problems), and there-

fore alternative models have been explored (but see also Astashenok

& del Popolo 2012). The most studied ones are minimally coupled

scalar fields (quintessence models). Since gravity is the main inter-

action acting on large scales, it is commonly believed that structures

in the Universe formed via gravitational instability of primordial

overdense perturbations that originated in the primeval inflationary

phase (Starobinsky 1980; Guth 1981; Linde 1990) of the Universe

from quantum, Gaussian distributed fluctuations (Del Popolo 2007,

2014; Komatsu 2010; Casaponsa et al. 2011; Curto et al. 2011;

Komatsu et al. 2011; Hinshaw et al. 2013).

Differently from the cosmological constant, even if often ne-

glected in the literature, dynamical DE models possess fluctuations

that can alter the evolution of structure formation, not only via

slowing down the growth rate but also giving rise to DE over-

densities and underdensities which can evolve into the non-linear

regime.

To study structure formation in the highly non-linear regime, it is

very useful to work within the framework of the spherical collapse

model (SCM), introduced by Gunn & Gott (1972) and extended in

many following works (Fillmore & Goldreich 1984; Bertschinger

1985; Hoffman & Shaham 1985; Ryden & Gunn 1987; Avila-Reese,

Firmani & Hernández 1998; Subramanian, Cen & Ostriker 2000;

Ascasibar et al. 2004; Mota & van de Bruck 2004; Williams, Babul

& Dalcanton 2004; Abramo et al. 2007; Pace, Waizmann & Bartel-

mann 2010; Pace et al. 2014). According to the model, perturbations

are considered as being spherically symmetric non-rotating objects

that, being overdense, decouple from the background Hubble ex-

pansion, reach a point of maximum expansion (turnaround) and

collapse (formally to a singularity). In reality, this does not happen

and the kinetic energy associated with the collapse is converted into

random motions creating an equilibrium configuration (a virialized

structure).

Despite its crude approximations, the model is very successful

in reproducing results of N-body simulations when mass is com-

bined with the function formalism (Del Popolo 2007; Hiotelis & del

Popolo 2013), either in usual minimally coupled DE models (Pace

et al. 2010) or in non-minimally coupled DE models (Pace et al.

2014). Nevertheless, it is important to extend the basic formalism

to include additional terms and make it more realistic.

Consequences of relaxing the sphericity assumption were studied

by Hoffman (1986, 1989) and Zaroubi & Hoffman (1993), while the

introduction of radial motions and angular momentum was deeply

studied by Ryden & Gunn (1987) and Gurevich & Zybin (1988a,b).

We refer to Del Popolo, Pace & Lima (2013c) for a more complete

list of references and for details on the different models and how to

link the angular momentum to the matter overdensity.

In this work, we will extend previous works on the extended

spherical collapse model (ESCM) in DE models (Del Popolo, Pace

& Lima 2013a; Del Popolo et al. 2013b,c) by taking into account

perturbations of the DE fluid. Since there are no N-body simula-

tions with clustering DE so far, such study is valuable in order to

have an idea about how DE fluctuations impact structure formation

in a more realistic scenario. By writing the differential equations

describing the dynamics of dark matter (DM) and DE, we will show

how to relate the additional terms (shear and angular momentum) to

the overdensity field and we will solve them to derive the time evo-

lution of the typical parameters of the SCM, in particular the linear

overdensity threshold for collapse δc and the virial overdensity �V,

and we will show how these quantities are modified by the intro-

duction of non-zero vorticity and shear terms. Afterwards we will

show how the mass function and its phenomenological extension to

include DE perturbations are affected.

This paper is organized as following. In Section 2, we discuss

and summarize the DE models used in this work. In Section 3, we

briefly derive the equations of the ESCM whose solution will lead

to the evaluation of δc and �V (see Section 4.1). In Section 4, we

show our results and in particular, we devote Section 4.2 to the

discussion of the effects of shear and rotation on the mass function.

Finally, we conclude in Section 5.

2 T H E M O D E L S

For this work, we use DE models previously analysed in the frame-

work of the SCM where the usual assumption of negligible DE

fluctuations is relaxed.

DE models, described by an equation of state w = P/(ρc2),

either constant or time dependent, satisfy the background continuity

equation

ρ̇ + 3H (1 + w)ρ = 0 . (1)

We consider eight different models and for the ones characterized by

an evolving equation-of-state parameter, we adopt the Chevallier &

Polarski (2001) and Linder (2003) (CPL) linear parameterization

w(a) = w0 + (1 − a)wa , (2)

where w0 and wa are constants and a is the scale factor.

The reference model is the standard �CDM model where DE

is represented by the cosmological constant with equation-of-state

parameter w = −1, constant along the whole cosmic history. A

consequence of this parameterization is that at early times this model

behaves essentially as the Einstein–de Sitter (EdS) model (with

�m = 1 and �de = 0), and the influence of the cosmological constant

becomes appreciable only late in the cosmic history.

Due to the latest observational results by the Planck satellite1

(Planck Collaboration 2013a,b,d), we will assume a spatially flat

model.

Of the remaining seven models, two have a constant equation-of-

state parameter w > −1 (the quintessence models DE1 and DE2)

and they differ from each other solely for the exact value of w. Other

two instead have w < −1 (the phantom models DE3 and DE4). The

latter are justified by recent SNIa observations (Novosyadlyj et al.

2012; Planck Collaboration 2013b; Rest et al. 2013; Scolnic et al.

2013; Shafer & Huterer 2014).

Finally, we consider three additional models with a time-varying

equation of state. Once again we can distinguish them according to

the general behaviour of the equation-of-state parameter. One model

enters in the quintessence model category (DE5), the second one

is a phantom model (DE6) and the last one (DE7) is characterized

by the barrier crossing, i.e. the model considered shows a phantom

regime at low redshifts (w < −1) and a quintessence regime at

earlier times (w > −1).

As previously stated, quintessence models are described by a

scalar field not interacting with matter and are fully described by

a kinetic and a potential energy term. Since the nature of DE is

unknown, the potential has an ad hoc functional form and its second

derivative represents the mass of the scalar field. These models

naturally have an evolving DE equation of state w. Scalar fields are

therefore viable candidates for the DE component.

Phantom models instead have w < −1 and challenge the foun-

dations of theoretical physics violating several energy conditions.

Phantom models have a negative defined kinetic energy term and

1 http://sci.esa.int/planck/
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Table 1. Values of the

parameters describing the

equations of state consid-

ered in this work.

Model w0 wa

�CDM − 1 0

DE1 − 0.9 0

DE2 − 0.8 0

DE3 − 1.1 0

DE4 − 1.2 0

DE5 − 0.75 0.4

DE6 − 1.1 − 1.0

DE7 − 1.1 0.5
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Figure 1. Time evolution of the equation-of-state parameter as a function

of the redshift z for the DE models studied in this work. The black, red, blue,

orange and brown lines represent the �CDM, the DE1, the DE2, the DE3

and the DE4 model, respectively. The grey line represents the DE5 model,

the purple line the DE6 model and the green line the DE7 model.

due to the super-negative equation of state, the energy budget of the

Universe gets completely dominated by them in the future.

The solution of equation (1) is (for a generic time-dependent

equation-of-state parameter w(a))

ρ(a) = ρ(a = 1)e−3
∫ a

1 [1+w(a′)]d ln a′

. (3)

In the particular case of constant equation of state, equation (3)

reduces to

ρ(a) = ρ(a = 1)a−3(1+w) , (4)

where it appears clearly that for the cosmological constant

ρ(a) = ρ(a = 1), and hence the name.

In this work, we will use the following cosmological parame-

ters (recall that the curvature is null): �m = 0.32 and �de = 0.68,

while h = 0.72, in agreement with recent determinations by Planck

(Planck Collaboration 2013b) for flat �CDM models. The normal-

ization of the power spectrum for the �CDM model is σ 8 = 0.776.

In Table 1, we give the values of the parameters describing the

equations of state of the models considered here both for a null time

evolution (models DEn, with n from 1 to 4) and for a time evolution

(models DEn, with n from 5 to 7) of the equation of state. We recall

that for wa = 0, the CPL parametrization reduces to a constant

equation of state with w = w0. We show the time evolution of the

equation-of-state parameter w(z) in Fig. 1. For models DEn, with

n = 5, 6, 7, the variation of the equation of state as a function of

the redshift is quite mild, with major variations for z � 2. At higher

redshifts, all the three models reach a constant value for the equation

of state, being w = −0.35, −2, −0.6 for models DE5, DE6, DE7,

respectively. We also point out that the barrier crossing for model

DE7 takes place for z ≈ 0.25, having a phantom (quintessence)

behaviour for smaller (higher) redshifts. We checked that all the

models do not have an appreciable amount of DE at early times;

therefore, they cannot be considered as belonging to the class of

early DE models.

Perturbations for DE are described by the effective sound speed

c2
eff that relates density perturbations to pressure perturbations via

the relation δp = c2
effδρc2. In the following, we will consider two

different values for the effective sound speed, usually assumed in

the literature: c2
eff = 0 (clustering DE) and c2

eff = 1 (smooth DE).

Canonical scalar fields have c2
eff = 1, whereas models with van-

ishing c2
eff can be built from k-essence models (Armendariz-Picon,

Mukhanov & Steinhardt 2001; Chimento & Lazkoz 2005; Crem-

inelli et al. 2009) or two scalar fields (Lim, Sawicki & Vikman

2010). We will show in Section 3 how this term enters into the

equations for the (extended) SCM.

3 E X T E N D E D SP H E R I C A L C O L L A P S E M O D E L

In this section, we review the basic formalism used to derive the

equations for the SCM and how this can be extended to include

shear and rotation terms.

The basic assumption in the framework of the SCM is that objects

form under the gravitational collapse of spherical DM overdense

perturbations. This is clearly a rather crude assumption because

it is known that primordial seeds are not spherical, but they are

triaxial and rotate (see e.g. Bardeen et al. 1986; Del Popolo, Ercan

& Xia 2001; Del Popolo 2002; Shaw et al. 2006; Bett et al. 2007).

Nevertheless, the model accurately reproduces the results of N-body

simulations.

The spherical and ellipsoidal collapse models were exten-

sively investigated in the literature (see e.g. Bardeen et al. 1986;

Bernardeau 1994; Ohta, Kayo & Taruya 2003, 2004; Basilakos,

Sanchez & Perivolaropoulos 2009; Basilakos et al. 2010; Pace et al.

2010) assuming that DE perturbations are negligible, while other

studies took into account also the effects of perturbations for the

DE fluid (see Mota & van de Bruck 2004; Nunes & Mota 2006;

Abramo et al. 2007, 2008, 2009b; Abramo, Batista & Rosenfeld

2009a; Creminelli et al. 2010; Basse, Eggers Bjælde & Wong 2011;

Batista & Pace 2013). More recently, the SCM was extended to

investigate coupled (Pettorino & Baccigalupi 2008; Wintergerst &

Pettorino 2010; Tarrant et al. 2012) and extended DE (scalar–tensor)

models (Pettorino & Baccigalupi 2008; Pace et al. 2014).

While the general equations including the shear and rotation were

explicitly written in the case of smooth DE (Pace et al. 2010) and for

clustering DE (Abramo et al. 2007), the effects of these two non-

linear terms were investigated only recently in Del Popolo et al.

(2013a,c) for smooth DE models and in Del Popolo et al. (2013b)

for Chaplygin cosmologies.

Following Abramo et al. (2007, 2008), the full perturbed equa-

tions describing the evolution of the dark matter (δDM) and dark

energy (δDE) perturbations are

δ′
DM + (1 + δDM)

θDM

aH
= 0 , (5)

δ′
DE −

3

a
wδDE + [1 + w + δDE]

θDE

aH
= 0 . (6)
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In the previous equations, w represents the equation of state of DE at

the background level and the prime is the derivative with respect to

the scale factor. The two variables θDM and θDE are the divergence

of the peculiar velocity for the dark matter and the dark energy

component, respectively. Equation (6) is valid in the limit c2
eff = 0,

the limit of clustering DE. For the case c2
eff > 0, DE perturbations

are usually negligible on small scales, as shown for example in

Batista & Pace (2013).

To determine the equation for the evolution of the divergence of

the peculiar velocity, we have to make some assumptions on the

influence of the shear and rotation terms on the perturbations of the

two fluids considered. If we assume that only DM experiences shear

and rotation terms, then the two peculiar velocities are different

(θDM �= θDE) and we will have two different equations: one including

shear and rotation for the DM and one for the DE component without

the extra terms. If instead we assume that DE experiences the effects

of the shear and the rotation terms in the same fashion of the DM

component, then the two peculiar velocities will be the same and

we need to solve a single differential equation.

Here, we explicitly write the two different equations for the pe-

culiar velocities and in the next sections, we will study the conse-

quences of this assumption. Having therefore two different Euler

equations, the equations for the divergence of the peculiar velocities

are

θ ′
DM +

2

a
θDM +

θ2
DM

3aH
+

σ 2
DM − ω2

DM

aH

+
3H

2a
[�DMδDM + �DEδDE] = 0, (7)

θ ′
DE +

2

a
θDE +

θ2
DE

3aH
+

3H

2a
[�DMδDM + �DEδDE] = 0 . (8)

The shear tensor σ ij and the vorticity tensor ωij are defined as

σij =
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)

−
1

3
θδij , (9)

ωij =
1

2

(

∂uj

∂xi
−

∂ui

∂xj

)

. (10)

The terms σ 2 and ω2 represent the contractions of the tensors σ ij

and ωij, respectively.

It is convenient to consider a dimensionless divergence of the co-

moving peculiar velocity, defined as θ̃ = θ/H . Therefore, equations

(5)–(8) read now

δ′
DM + (1 + δDM)

θ̃DM

a
= 0 , (11)

δ′
DE −

3

a
wδDE + [1 + w + δDE]

θ̃DE

a
= 0 , (12)

θ̃ ′
DM +

(

2

a
+

H ′

H

)

θ̃DM +
θ̃2

DM

3a

+
σ̃ 2

DM − ω̃2
DM

a
+

3

2a
[�DMδDM + �DEδDE] = 0, (13)

θ̃ ′
DE +

(

2

a
+

H ′

H

)

θ̃DE +
θ̃2

DE

3a

+
3

2a
[�DMδDM + �DEδDE] = 0. (14)

We remind the reader that this set of equations is valid when DE

is not affected by shear and rotation, otherwise equations (13) and

(14) will be identical and θDM = θDE.

To solve the system of equations (11)–(14), it is necessary to

determine the initial conditions. At early times, the aforementioned

system of equations can be linearized and it reads

δ′
DM = −

θ̃DM

a
, (15)

δ′
DE −

3

a
wδDE = −(1 + w)

θ̃DE

a
, (16)

θ̃ ′
DM +

(

2

a
+

H ′

H

)

θ̃DM = −
3

2a
[�DMδDM + �DEδDE] , (17)

θ̃ ′
DE +

(

2

a
+

H ′

H

)

θ̃DE = −
3

2a
[�DMδDM + �DEδDE] . (18)

Hence at the linear level, the peculiar velocity perturbations are

identical for both fluids.

The initial value for the DM overdensity can be found as outlined

in Pace et al. (2010, 2012, 2014) and Batista & Pace (2013). Here

we just recall the general procedure. Since at collapse time ac the

collapsing sphere reduces to a point, its density is formally infinite.

Therefore, the initial overdensity δDM, i is given by the value such

that δDM → +∞ for a → ac. Knowing δDM, i and assuming that

at early times it behaves as a power law, δDM = Aan, it is easy to

evaluate the initial amplitude for the DE and the peculiar velocity

perturbations:

δDE,i =
n

(n − 3w)
(1 + w)δDM,i , (19)

θ̃DM,i = −nδDM,i . (20)

θ̃DE,i = θ̃DM,i . (21)

For an EdS model, n = 1, but in general, deviations for DE models

are very small, even for early DE models (Ferreira & Joyce 1998;

Batista & Pace 2013).

To evaluate the functional form of the term σ 2
DM − ω2

DM, we refer

to the works by Del Popolo et al. (2013a,c), and we define the

quantity α as the ratio between the rotational and the gravitational

term

α =
L2

M3RG
, (22)

where M and R are the mass and the radius of the spherical overden-

sity, respectively, and L its angular momentum. Values for α range

from 0.05 for galactic masses (M ≈ 1011 M⊙ h−1) to 3 × 10−6 for

cluster scales (M ≈ 1015 M⊙ h−1).

As explained in Del Popolo et al. (2013c), the basic assumption

made here is that the collapse preserves the value of the ratio of the

acceleration between the shear rotation term and the gravitational

field. This is a reasonable assumption as explained in Del Popolo

et al. (2013c). As shown in Del Popolo et al. (2013b), based on the

above-outlined argument for the definition of the rotation term, the

additional term in the equations for the SCM (see equation 13) is

σ̃ 2
DM − ω̃2

DM = −
3

2
α�DMδDM . (23)

According to this ansatz, equation (13) now reads

θ̃ ′
DM +

(

2

a
+

H ′

H

)

θ̃DM +
θ̃2

DM

3a

+
3

2a
[(1 − α)�DMδDM + �DEδDE] = 0. (24)
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If instead also DE is affected by shear and rotation, in the same way

as DM, both velocity fields are determined by the equation

θ̃ ′ +

(

2

a
+

H ′

H

)

θ̃ +
θ̃2

3a
+

3

2a
(1 − α) [�DMδDM + �DEδDE] = 0 .

(25)

4 R ESU LTS

In this section, we present results for the linear and non-linear

evolution of perturbations. We first start with quantities derived in

the framework of the SCM and then continue with a discussion of

how rotation and shear affect the mass function in clustering DE

cosmologies.

As shown in Batista & Pace (2013), the main difficulty is to study

the evolution of DE perturbations in the non-linear regime (see also

Mota & van de Bruck 2004; Nunes & Mota 2006; Abramo et al.

2007; Creminelli et al. 2010; Basse et al. 2011).

Batista & Pace (2013) clearly demonstrated that DE fluctuations

are very sensitive to the value of c2
eff : when c2

eff = 1, on small scales,

where non-linear evolution is important, DE fluctuations are negli-

gible with respect to the DM fluctuations δDM; therefore, ignoring

them when solving the system of equations describing the ESCM

(equations 11, 12, 14 and 24) does not introduce any significant

error. Different is the situation when c2
eff = 0, since DE fluctua-

tions can be comparable to the DM ones. In this case, we cannot

neglect them, otherwise the error introduced will be significant and

invalidate our results and conclusions.

4.1 Parameters of the ESCM

The two main quantities that can be evaluated working within the

framework of the ESCM are the linear overdensity parameter δc

and the virial overdensity �V. The linear overdensity parameter is a

fundamental theoretical quantity entering, together with the linear

growth factor, into analytical formulations of the mass function

(see e.g. Press & Schechter 1974; Sheth, Mo & Tormen 2001;

Sheth & Tormen 2002). The virial overdensity, instead, is used to

define the size of haloes when considered spherical. Given a halo

of mass M, it represents the mean density enclosed in the radius

R and the mass and the radius are related to each other via the

relation M = 4/3πρ̄(z)�V(z)R3, where ρ̄(z) = ρ̄,0(1 + z)3 is the

mean matter density in the Universe.

Once the initial conditions are found, we can evolve equations

(15)–(18) from the initial time ai ≈ 10−5 to the collapse time ac.

This function therefore depends on both the linear and non-linear

evolution of perturbations.

In Fig. 2, we show the time evolution of the linear overdensity

parameter δc for the usual case when shear and rotations are not

included. We do so in order to better show how the additional terms

modify this function. We show our results grouping the models

as quintessence (top panel), phantom (middle panel) and barrier-

crossing models (bottom panel). We refer to the caption for line

styles and colours of each model.

The first important point to highlight is that quintessence models

(w ≥ −1) always show a lower δc(z) with respect to the �CDM

model, while the phantom models always have a higher value, due

to the fastest accelerated expansion of the universe, which hinders

structure formation. We also notice that models with c2
eff = 0 are

more similar to the �CDM model than for the case with c2
eff = 1,

in agreement with what was found by Batista & Pace (2013) for

early DE models, where we refer for a deeper explanation. For

Figure 2. Linear overdensity parameter δc(z) for quintessence (upper

panel), phantom (middle panel) and models with barrier crossing (bottom

panel). In the upper panel, model DE1 with c2
eff = 0 (c2

eff = 1) is shown

with a dashed red (blue short dashed) curve, model DE2 with c2
eff = 0

(c2
eff = 1) is shown with cyan dotted (yellow dot–dashed) curve and model

DE5 with c2
eff = 0 (c2

eff = 1) with a violet dotted short-dashed (brown dot-

dotted) curve. In the middle panel, model DE3 with c2
eff = 0 (c2

eff = 1)

is shown with a red dashed (blue short-dashed) curve, model DE4 with

c2
eff = 0 (c2

eff = 1) is shown with a cyan dotted (yellow dot–dashed) curve

while model DE6 with c2
eff = 0 (c2

eff = 1) is shown with violet dotted short-

dashed (brown dot-dotted) curve. In the bottom panel, model DE7 with

c2
eff = 0 (c2

eff = 1) is shown with a dark green dot-dotted short-dashed (light

green dot-dot-dotted) curve. In all the panels, a solid black line shows the

�CDM model. For simplicity, we used the notation s = c2
eff in the labels.

our purposes, it suffices to recall that this happens because DE

perturbations contribute to the gravitational potential via the Poisson

equation. Model DE7 has a very similar behaviour to the other

classes of models, in particular to the quintessence models. The

linear overdensity parameter is smaller than the one for the �CDM

model. When c2
eff = 0, this model is almost identical to the �CDM

model, while it differs substantially when c2
eff = 1. All the models
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Figure 3. Linear overdensity parameter δc(z) for quintessence (upper

panel), phantom (middle panel) and models with barrier crossing (bot-

tom panel) including the shear and rotation terms in the equations for the

evolution of the perturbations. Panels refer to galactic-scale mass objects

(M ≈ 1011 M⊙ h−1), corresponding to α = 0.05. Line styles and colours

are the same as in Fig. 2.

with effective sound speed c2
eff = 0 converge very rapidly (z � 3) to

the �CDM model and hence to the EdS model, since DE becomes

negligible at such high redshifts. Different again is the situation for

the c2
eff = 1 case, where the DE models recover the �CDM model

at much higher redshifts (quintessence models), while phantom

models reproduce the reference model very quickly. Models DE5

and DE7 with c2
eff = 1 instead do not recover the �CDM model even

at high redshifts. As said before, this is largely due to the additional

source for the gravitational potential and largely independent of the

background equation of state w, as shown in Pace et al. (2010).

In Fig. 3, we show results for δc when the shear and rotation

terms are taken into account for the DM Euler equation. As already

shown and discussed in Del Popolo et al. (2013a,b,c), the main

effect appears at galactic scales (M ≈ 1011 M⊙ h−1). We verified

that this is indeed the case also for clustering DE models; there-

fore, we will limit ourselves to present our results for galactic-scale

objects. The differences between the SCM and the ESCM become

increasingly smaller with increasing mass, disappearing at cluster

scales. Qualitatively, therefore, clustering and non-clustering DE

models behave in the same way with respect to the mass depen-

dence. We refer to the caption for line styles and colours of each

model.

As expected, and in analogy with the ESCM, when the influence

of DE is only at the background level (Del Popolo et al. 2013c), the

additional term opposes the collapse; therefore, the values for the

linear overdensity parameter are higher than for the case in which

these terms are neglected. Also in this case, quintessence models

with c2
eff = 1 differ more from the �CDM model than for the case

with c2
eff = 0. Phantom models are now very similar to the �CDM

model, differently from before. Differences between the case with

c2
eff = 0 and 1 are now negligible. Model DE7 behaves qualitatively

as for the standard SCM. Also in this case all the models, except for

models DE5 and DE7 with c2
eff = 1, recover the �CDM model at

high redshifts. As shown in Del Popolo et al. (2013a,c), in the ESCM

major differences take place at low redshifts. We can therefore

conclude that clustering DE models behave similarly to the non-

clustering DE models when shear and rotations are included in the

analysis.

However, DE and its perturbations can also affect the virializa-

tion process of DM. A reference work focusing on this issue is

Maor & Lahav (2005). In this seminal work, it was shown that a

different result for the ratio between the virialization radius and the

turnaround radius (the radius of maximum expansion) y changes

according to the recipe used, in particular if the DE takes part or

not into the virialization process. Whatever is the correct formu-

lation for the virialization process in clustering DE models, our

ignorance on the exact value of y will not qualitatively affect our

discussion and conclusions; therefore, for simplicity we will use

y = 1/2, as in the EdS model (see also the discussion in Batista

& Pace 2013). Since clustering DE does not alter the temporal

evolution of the DM energy density parameter, we can still write

�V = ζ (x/y)3, where ζ represents the non-linear overdensity at

turnaround and x is the scale factor normalized at the turnaround

scale factor. Our results for the (non-)rotating case are presented

in Figs 4 and 5.

As before, we limit ourselves to the study of the effects of the

shear and rotation terms at galactic scales, since this is the mass

scale where the effect is stronger. As for the δc parameter, also in this

case the DE models differ mostly from the reference model when

the effective sound speed is of the order unity, while for c2
eff = 0

the models are closer to the �CDM model. We also notice that,

since at high redshifts the amount of DE is negligible, DE models

recover the �CDM model. The model differing more is, once again,

the DE5 with c2
eff = 1 (see Fig. 2). Quintessence (phantom) models

have lower (higher) values of �V with respect to the �CDM model.

These results are qualitatively similar to what found in Pace et al.

(2010). Model DE7 behaves like the quintessence models having

slightly smaller values for the case c2
eff = 0.

We find qualitatively similar results in the ESCM (see Fig. 5).

With respect to the usual case, we observe, as expected, that

the virial overdensity is higher than for the usual SCM but the

�CDM model is recovered at high redshifts. Once again ma-

jor differences take place when c2
eff = 1. We notice that our re-

sults are similar to what was found in Del Popolo et al. (2013c).
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Figure 4. Virial overdensity for the difference DE models. In the upper

(middle) panel, we show results for the quintessence (phantom) models

while in the bottom panel, we present results for the model with barrier

crossing. Line styles and colours are as in Fig. 2.

We can therefore conclude that clustering DE models behave

qualitatively as non-clustering DE models in both the SCM and

ESCM. Shear and rotation terms only oppose the collapse, without

modifying it.

As said before, we have made the assumption that the shear and

the rotation terms affect only DM. We performed a similar analysis

relaxing this assumption and supposing that both DM and DE are

influenced by these additional non-linear terms, and then using a

single equation for the velocity field, equation (25). The results

obtained are very similar to what presented here; therefore, in the

following, we will assume that DM and DE have a different peculiar

velocity.

Figure 5. Virial overdensity for the difference DE models with shear and

rotation terms included. In the upper (middle) panel, we show results for

the quintessence (phantom) models while in the bottom panel, we present

results for the model with barrier crossing. Panels refer to galactic-scale

mass objects (M ≈ 1011 M⊙ h−1), corresponding to α = 0.05. Line styles

and colours are as in Fig. 2.

4.2 Mass function

Here we study the effect of the shear and rotation terms on the num-

ber counts of haloes. We assume that the analytical formulation by

Sheth and Tormen (Sheth & Tormen 1999, 2002; Sheth et al. 2001)

is valid also for clustering DE models without any modification

(but see also Del Popolo & Gambera 1999; Del Popolo 2006). The

mass function critically depends on the linear overdensity parameter

δc, the growth factor and on the linear power spectrum normaliza-

tion σ 8. To properly evaluate the effects of the extra terms in the

SCM formalism, we assume that all the models have the same σ 8

at z = 0 and to highlight the effect, we consider the number of

objects at z = 0 and 1 above a given mass M of the halo. We will
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Figure 6. Ratio of the number of objects above a given mass M for haloes at z = 0 (left-hand panels) and z = 1 (right-hand panels) between the DE models

and the �CDM model. The upper panels show ratios for the usual SCM while the bottom panels ratios for the ESCM. The red dashed curve represents the

DE1 model, the blue short-dashed curve the DE2 model, the cyan dotted curve the DE3 model, the yellow dot–dashed curve the DE4 model, the violet dotted

short-dashed curve the DE5 model, the brown dot-dotted curve the DE6 model and the green dashed dot-dotted curve the DE7 model.

assume as transfer function for the linear matter power spectrum the

functional form given by Bardeen et al. (1986) and σ 8 = 0.776 as

normalization of the power spectrum, in agreement with the most

recent measurements (Planck Collaboration 2013b,e).

A comment is necessary at this point to explain the choice of the

matter power spectrum normalization. In Batista & Pace (2013) and

Del Popolo et al. (2013c), we had a different normalization for each

model, such that all the models would have the same amplitude

of perturbations at the CMB epoch (z ≈ 1100). Here, instead we

enforce all the models to share the same normalization today. While

a model-dependent normalization should be in general preferred,

here we want to isolate the effect of the shear and rotation terms

and analyse their behaviour. If we would also have a different σ 8

for each model, a direct comparison between them would be more

difficult.

In Fig. 6, we show the ratio of the number of objects above a given

mass M between the DE models and the �CDM model, restricting

the analysis to the case c2
eff = 0. In the upper (lower) panel, we

present results without (with) rotation and shear terms. Left-hand

(right-hand) panels are for haloes at z = 0 (z = 1). As expected,

since the models have the same normalization of the matter power

spectrum, at z = 0 the models have essentially the same number

of objects, with very small differences for masses M ≈ 1015. In

particular, quintessence models (DE1, DE2, DE5) show a slight ex-

cess of structures, while phantom models (DE3, DE4, DE6) show a

decrement in the number of structures. Model DE7 is at all effects

identical to model DE1. Differences grow with redshift and at z = 1,

they can be few tens of per cent, keeping though the same qualita-

tive behaviour. Models with highest differences are those with the

equation-of-state parameter differing mostly from w = −1. Inter-

estingly enough, model DE7 shows now a decrement of ≃10 per

cent with respect to the �CDM model. With the inclusion of the

shear and rotation terms, we see a behaviour qualitatively similar to

the standard case, with major differences at higher redshifts (due to

the time evolution of the DE), but with a smaller number of objects,

at the level of per cent for the phantom models, while quintessence

models are largely unaffected. Results are consistent with the time

evolution of the linear overdensity factor δc (see Figs 2 and 3). The

case of model DE7 is interesting, which shows a very strong depen-

dence on the inclusion of the non-linear terms already at very low

redshifts, but its time dependence is very weak. This is probably due

to the change of regime between the phantom and the quintessence

one. Note that ratios shown in the second row are taken with respect

to the �CDM model evaluated in the ESCM.

DE models with c2
eff = 1 (see also Del Popolo et al. 2013b) de-

serve a comment. Due to the major differences between the linear

overdensity parameter δc of these models with respect to the �CDM

one, we expect differences already at z = 0 and they increase in

value at z = 1. Qualitatively, the same behaviour is nevertheless

recovered, so models DE3, DE4 and DE6 (phantom models) show

a decrement in the number of objects. Analogously to the case with

c2
eff = 0, the two additional non-linear terms just slightly increase
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differences with respect to the standard case, in agreement with

Figs 2 and 3.

As explained before in Section 4.1, the linear overdensity pa-

rameter δc becomes mass dependent when shear and rotation are

included. To evaluate the mass function when these additional non-

linear terms are included, we therefore explicitly evaluate the con-

tributions of the shear and rotation terms to δc for each mass, so as

to have an exact evaluation of the mass function. This means that

major differences will take place at small masses, while at cluster

scales differences between the two different mass functions will be

negligible. This is indeed the case in the lower panels of Fig. 6, with

the exceptions of model DE7 as clarified above.

After establishing the effect of the shear and rotation terms on the

mass function, we investigate deeper the effects of the clustering of

the DE fluid. In this case, the total mass of the halo is affected by

DE perturbations (Creminelli et al. 2010; Basse et al. 2011; Batista

& Pace 2013), and we need to take this into account evaluating

the fraction of the halo mass given by the clustering of the DE.

How and how much DE contributes to the halo mass depends on

the virialization process, in particular whether DE virializes and on

which time-scale. If the halo mass is modified, then the merging

history (see e.g. Lacey & Cole 1993) must also reflect somehow

this additional contribution. According to the equation-of-state pa-

rameter, DE can add or subtract mass to the total halo mass. An

exact treatment of this problem must take into account the nature

of the DE fluid and its exact virialization process. This is beyond

the purpose of this work and we will use an approximate recipe,

limiting ourselves to the case in which c2
eff = 0 and we will assume

that DE virializes with DM on the same time-scale (see Batista &

Pace 2013). In the following, we will describe how to evaluate the

fraction of DE with respect to the total mass of the halo (Batista &

Pace 2013).

As done in Section 4.1, we will assume that y = Rvir/Rta = 1/2

as in the EdS universe. For this model, the virial overdensity

�V can be evaluated analytically, and in the literature two dif-

ferent definitions are usually adopted. The most common one

(Wang & Steinhardt 1998) evaluates it at the collapse redshift zc:

�V(zc) = ρm(zv)/ρ̄m(zc) ≃ 178, where zv is the virialization red-

shift. According to Lee & Ng (2010) and Meyer, Pace & Bartelmann

(2012), it is more correct to evaluate it at the virialization red-

shift: �V(zv) = ρm(zv)/ρ̄m(zv) ≃ 147. These values will obviously

change in the presence of DE and they depend on the properties of

DE (Lahav et al. 1991; Maor & Lahav 2005; Creminelli et al. 2010;

Basse et al. 2011).

The fraction (ǫ(z)) of DE mass (MDE) with respect to the DM

mass (MDM) is

ǫ(z) =
MDE

MDM

. (26)

We define the DM mass as

MDM = 4π

∫ Rvir

0

dRR2(ρ̄DM + δρDM) , (27)

and the DE mass as

MDEP
= 4π

∫ Rvir

0

dRR2δρDE(1 + 3c2
eff) . (28)

We label the DE mass as MDEP
(see equation 28) to indicate that

in its definition we consider only the contribution coming from the

perturbation.

Figure 7. Fraction of the DE mass with respect to the DM mass according

to the definition of equations (28) (upper panel) and (29) (lower panel). The

black solid curve shows the �CDM model, the red dashed curve the DE1

model, the blue short-dashed curve the DE2 model, the cyan dotted curve

the DE3 model, the yellow dot–dashed curve the DE4 model, the violet

dotted short-dashed curve the DE5 model, the brown dot-dotted curve the

DE6 model and the green dashed dot-dotted curve the DE7 model.

If instead we also consider the background contribution, the mass

definition becomes

MDET
= 4π

∫ Rvir

0

dRR2
[

(1 + 3w)ρ̄DE + (1 + 3c2
eff)δρDE

]

, (29)

in analogy with the Poisson equation. In this case, there will also be a

contribution for the �CDM model. However, since the background

term varies in time, regardless of the halo formation history, this

contribution is not constant and should be interpreted just as a crude

estimate of the background DE energy to the halo mass.

In Fig. 7, we show the fraction of the DE mass with respect to

the DM mass according to the definition used in equations (28)

(upper panel) and (29) (lower panel) for the case c2
eff = 0 only in

the standard SCM. For a deeper discussion on the mass definition

adopted, see Batista & Pace (2013). We just show results for the

standard SCM since rotation and shear have a negligible effect on

ǫ(z). In particular for quintessence models, the extra terms slightly

reduce the DE contribution, while for the phantom models, ǫ(z) be-

ing negative and therefore subtracting mass to the halo, this function

is slightly higher, or in absolute values, again slightly smaller. The

same result is obtained for the barrier-crossing model. The effect of

the shear and rotation terms is of the order of tenth of per cent.

As expected (see Fig. 7), quintessence models give a positive

contribution to the total mass of the halo while phantom models

subtract mass. Differences are of the order of the per cent level,

except for model DE5, where differences are up to ≈14 per cent. In
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Figure 8. Ratio of the number of objects above a given mass M for haloes at z = 0 (left-hand panels) and z = 1 (right-hand panels) between the DE models

and the �CDM model, using the mass definition in equation (28). The upper panels show ratios for the usual SCM while the bottom panels show the ratios for

the ESCM. Line styles and colours are as in Fig. 6.

agreement with Batista & Pace (2013), we also notice that the mass

correction evaluated with equation (29) is smaller than when only

perturbations are taken into account. Major differences are at z = 0

and become null at higher redshifts. This is expected, since ǫ(z) is

significantly different from zero at low redshifts. Exception is once

again model DE5. This is due to the fact that its equation of state

is very different from w = −1. The inclusion of a mass correction

term will affect the mass function and major differences will take

place for z ≈ 0, as we show in Fig. 8. Differences are again more

pronounced for high masses where they can be up to 20 per cent

while for low masses they are only of the order of 5 per cent at

most. The hierarchy of the models, i.e. how much they are affected,

directly reflects the values of the mass correction.

In Fig. 8, we show the ratio of the mass function with the new

mass definition, M(1 − ǫ), where ǫ is given by equation (26).

Since we only consider the contribution of the DE perturbations,

the cosmological constant does not contribute to the total mass of

the system. Quintessence (phantom) models have a lower (higher)

number of objects at the low-mass end of the mass function and

a higher (lower) number of objects at the high-mass tail. This can

be easily explained by taking into account the relative contribution

of the DE component to the total mass of the halo (see the up-

per panel of Fig. 7). A positive (negative) contribution to the total

mass shifts the mass function towards lower (higher) values and, as

consequence, we obtain a higher (lower) number of objects. At the

high-mass end, the contribution of the linear overdensity parameter

δc dominates, giving the opposite trend with respect to the low-mass

tail.

We can conclude that shear and rotation terms have in general

a negligible contribution also when the mass definition in equation

(28) is adopted.

Similar results apply for the case ceff = 1, where we note that

since perturbations in DE are negligible, so is the mass correction.

5 C O N C L U S I O N S

In this work, we studied the effect of the inclusion of the term

σ 2 − ω2. We analysed its impact in the framework of the SCM and

in particular on the linear overdensity parameter δc and on the virial

overdensity �V. The parameter δc is one of the ingredients of the

mass function, and its variation reflects on the mass function and,

as consequence, on the number of objects at a given redshift.

We consider DM and DE component as two fluids described by

the respective equation of state and both of them can cluster. In par-

ticular, we relate the pressure perturbations to density perturbations

for the DE component with the effective sound speed parameter

c2
eff , which we assume to be constant and its values were fixed to

c2
eff = 0 and 1, as currently done in the literature.

The σ 2 − ω2 term, being non-linear, appears only in the non-

linear equation describing the evolution of the peculiar velocity;

therefore, the growth factor is not affected. We made the assumption

that only DM is affected by this additional non-linear term, but if
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we instead suppose that both DM and DE experience shear and

rotation, we showed that results are largely unaffected, since for the

models studied DE perturbations are subdominant.

We showed that the additional non-linear term opposes the col-

lapse, as for the case in which the DE is only at the background

level. Opposing the collapse, it makes such that both δc and �V

have a higher value with respect to the standard SCM. Increments

in the linear overdensity parameter are of the order of 40 per cent

for low masses, analogously to what found in Del Popolo et al.

(2013c), where the ESCM was studied in non-clustering DE mod-

els. Quintessence models have always a lower value of δc, both in

the standard and in the ESCM. Phantom models instead present

higher values, due to the faster expansion of the universe. A similar

behaviour is found for the virial overdensity parameter �V.

Differences in the SCM parameters reflect obviously in the mass

function and in particular in the number of objects above a given

mass (see Section 4.2). To properly evaluate the effect of the ad-

ditional term, we use the same normalization of the linear matter

power spectrum for all the models. Moreover, considering the num-

ber of objects above a given mass does not introduce any geometri-

cal dependence on the results that will therefore depend only on the

particular model considered (DE equation-of-state parameter and

effective sound speed). Comparing results in the ESCM with the

standard SCM, we notice that the differences are in general small,

of the order of the per cent for all the models considered in this

work.

When DE clusters, following Batista & Pace (2013), we speculate

that the halo mass can be modified by the inclusion of the DE

perturbation into its definition. We therefore evaluate the correction

to the halo mass and we found that this is generally of the order

of few per cent at low mass (but higher on cluster scales) and

its sign (being positive or negative) depends on the equation of

state of the DE component. The shear and rotation terms slightly

modify this function, making it closer to zero when these terms are

taken into account. Due to the small value of this correction factor,

modifications in the number of objects are also small.

We can therefore conclude that effects of rotations in clustering

DE models are modest and comparable to what found in Del Popolo

et al. (2013a,c) for non-clustering DE models. Hence, we may also

expect that the effect of clustering DE in more realistic models of

structure formation can be well described by the usual SCM.
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González E., 2011, MNRAS, 416, 457

Chevallier M., Polarski D., 2001, Int. J. Mod. Phys. D, 10, 213

Chimento L. P., Lazkoz R., 2005, Phys. Rev. D, 71, 023505

Cole S. et al., 2005, MNRAS, 362, 505

Creminelli P., D’Amico G., Noreña J., Vernizzi F., 2009, J. Cosmol.

Astropart. Phys., 2, 18

Creminelli P., D’Amico G., Noreña J., Senatore L., Vernizzi F., 2010,

J. Cosmol. Astropart. Phys., 3, 27
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