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Abstract 

Colloidal suspensions flowing through microchannels were studied for the effects of both 

shear flow and the proximity of walls on the particles’ self-diffusion. Use of hydrostatic 

pressure to pump micron-sized silica spheres dispersed in water/glycerol through poly 

(dimethylsiloxane) channels with a cross section of 30 μm x 24 μm, allowed variation of 

the local Peclet number (Pe) from 0.01 to 50. To obtain the diffusion coefficients, image- 

time series from a Confocal Scanning Laser Microscope were analysed with a method 

that, after finding particle trajectories, subtracts the instantaneous advective 

displacements and subsequently measures the slopes of the Mean Squared Displacement 

in the flow (x) and shear (y) directions. For dilute suspensions, the thus obtained Dx and 

Dy are close to the free diffusion coefficient, at all shear rates. In concentrated 

suspensions, a clear increase with Peclet number (for Pe>10) is found, that is stronger 

for Dx than for Dy. This effect of shear-induced collisions is counteracted by the 

contribution of walls, which cause a strong local reduction in Dx and Dy.  
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1. INTRODUCTION 

Understanding the diffusion of colloidal particles in micro channel flows is important for 

both fundamental and practical reasons. Shear flows can be strong enough to cause 

anisotropy in the diffusion coefficient, which in turn can lead to structural inhomogeneity 

or ordering1-6. Additionally, the confining walls which are required to set up the flow, 

have their own influence on the particle dynamics. Especially how the combination of the 

two effects works out is far from understood, as most research efforts into (anomalous) 

diffusion have been focused on either the shear flow7-18 or the wall-confinement at rest19-

27.  

Fundamental studies of shear-induced diffusion at low volume fraction (where particle 

interactions are generally weak) were done for both Brownian28-30
 and non-Brownian10,17,18

 

suspensions. Studies on dense colloidal suspensions are scarcer. In two recent papers 

addressing this regime, string formation in simple shear flow was observed1,2 and 

explained from anisotropy in the diffusion coefficient. Possible implications hereof for 

directionally dependent colloidal interactions were mentioned. Earlier, also shear-induced 
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migration in concentrated suspensions was observed16,31-34 and explained using 

anisotropic diffusion. Stokesian Dynamics simulations35,36 have significantly contributed 

to the understanding of diffusion in concentrated systems by taking into account both the 

structural and hydrodynamic effects.  

The current scarceness of investigations into shear-induced diffusion of Brownian 

suspensions1,8,28,29 could partly be ascribed to difficulties in measuring diffusive behavior 

that is superimposed onto a flow. This applies in particular to flows at high Peclet 

number, where relatively small thermal motions are superimposed onto large advective 

displacements. But also the complexity of the phenomenon may have hampered studies. 

Phenomena like anisotropic diffusion and structure formation have shown a rich behavior 

even for simple (e.g. hard sphere) systems in well-defined (e.g. simple shear) flows37,38. 

Surprisingly, ordering of particles has been observed only in oscillatory shear flow and 

the reserchers3 could not find any evidence of structuring in steady shear field. To what 

extent these phenomena could also be influenced by gradients in shear rate, is unclear at 

present. In pressure-driven channel flows, the shear deformation patterns are different 

than in Couette or parallel plate flows; this might have consequences for the spatial 

distribution of the particles and/or ordering in the fluid. A recent study39 on charged 

colloids in electro-osmotically induced flow showed that the average diffusivity (in the 

flow direction) increases with flow velocity in strongly interacting systems, but not in 

weakly interacting or dilute systems. The spatial distribution of the diffusivity might have 

played a role but was not accessible.    

Confining walls are expected to play a role, especially in narrow microscopic geometries 

where they occur in close proximity to all particles. But the spatial extent of their 

influence is only well-known for a single particle near a single wall, in absence of flow. 

Only few studies have been focused on diffusion in concentrated systems near walls20,21,23. 

The interplay between the effects of shear and wall on the diffusion has hitherto never 

been addressed (as far as we know).  

From an applied perspective, knowledge about the diffusive behavior in flow is important 

to understand and design the mixing of particles, the spreading of a liquid plug, or the 

formation of concentration gradients perpendicular to the flow direction. This applies in 

particular to microfluidics, where colloids are used for various purposes. Most current 

applications concern dilute systems using particles as tracers or scavengers40,41, but the 

flow of concentrated colloidal fluids through micro channels (e.g. in filtration, or after on-

chip synthesis) is emerging. Other practical scenarios where the diffusive behavior of 

particles plays a role are drug delivery42, the operation of semi-solid flow batteries43, the 

handling of nuclear waste44, and stagnant or slowly moving slurries of clay or sand 

particles in geological rock formations45.  
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Based on the foregoing considerations, it is clear that still a lot of understanding needs to 

be gained about how the diffusive behaviour of Brownian particles is influenced by the 

magnitude of the shear rate, its spatial variation and the proximity of the wall. In this 

work, we consider the diffusion coefficient (in two directions) of nearly hard sphere 

colloids in a Poiseuille-like flow, generated by pressure drop over a microfluidic channel. 

Use of rectangular flow geometry allows considering local flow patterns that are 

effectively 2-dimensional; the effects of shear and wall can then be studied in a single 

plane. Due to the lateral variation of the flow velocity, different local shear rates are 

probed for a given overall flow rate. Repeating the experiment for different pressure 

drops then allows to achieve the same shear rate at different distances from the wall. 

This is helpful in separating the contributions of the shear flow (i.e. local Peclet number) 

and the wall on the diffusion coefficients. We measure the diffusive behaviors by applying 

particle tracking on data that are collected with a Confocal Scanning Laser Microscope. 

While this method requires great care to ensure that the advective displacements are 

adequately removed before the diffusive ones are analyzed46, it offers two key 

advantages: i) the measurements are directional, i.e. both flow and shear directions are 

examined, and ii) the measurements are spatially resolved, i.e. a distinction is made 

between the different flow lanes. This makes the method particularly well suited for the 

study of micron-sized spheres under (nearly) refractive index matched conditions.  

As such, it is complementary to other methods: (Confocal) Differential Dynamic 

Microscopy (DDM)51-54 is able to handle also smaller particles and less transparent fluids, 

but does not offer positional resolution, and requires prior knowledge of the intermediate 

scattering function (ISF)52 based on the suspension concentration. Without suitable 

theoretical models for ISF, DDM becomes difficult to especially for concentrated 

suspensions. Alternatively, Particle Image Velocimetry (PIV)55-56 is more suited for 

measuring local velocities but less so for diffusion. get obscured for a statistically 

inhomogeneous tracer patterns55 or tracer flows coupled with Brownian motion. 

We study a low volume fraction (Φ=0.03) to approach the dilute limit, and an 

intermediate concentration (Φ=0.30) to represent a typical situation for transport and 

mixing of colloids that interact intensely, but not strong enough to cause ordering in the 

fluid. By comparing these two cases we will inspect the contribution of interparticle 

collisions to shear-induced diffusion. The scope of addressed Peclet numbers comprises 

the sub-range of 0.01-50 for both concentrations, and as such is very well suited to 

examine both the thermally and hydrodynamically dominated regimes.  

 

2. EXPERIMENTS 

All experiments were performed at room temperature (22 ± 1 ºC).  
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2.1 Fluid Preparation  

Silica spheres with a 0.5 µm diameter core tagged with Fluorescein Isothiocyanate (FITC) 

and a 1.0 µm outer diameter (2a) were synthesized47,48 and suspended in water–glycerol 

(1:4 by weight) mixtures. With this solvent the refractive index of the particles is nearly 

matched (close enough for confocal microscopy) while the viscosity η ~ 100±5 Pa·s. The 

fluorescence of the particles was found not to degrade even after years of storage. Also 

the colloidal stability was preserved over this period, in spite of the (omnipresent but 

weak) van der Waals attractions. This implies that the particles carry some weak surface 

charge. Inspection of suspensions with optical microscopy did not show any evidence for 

long range ordering (see movie 1). This suggests that the repulsions are only significant 

at short-ranges (see Appendix A2), and hence the particles should show a ‘nearly’ hard 

sphere behavior.  

Volume fractions of 0.03 and 0.3 were achieved by mixing weighed amounts. Measuring 

the mass density and the ‘dry weight’ fraction of a silica stock dispersion in pure water, 

and assuming no excess mixing volumes gave a mass density of 1.89 g/ml for the silica. 

Using the solvent mass density of 1.20 g/ml, we then calculated how much water-

glycerol mixture was needed to redisperse the silica present in a metered amount of 

stock. Solvent transfer was then achieved by a 4 times repeated centrifugation and 

resuspension.  

 

2.2 Microfluidics and Microscopy 

We used 2 cm long PDMS microchannels with rectangular cross-sections (Fig. 1a). The 

channel design was fabricated in SU8 by lithography, replicated in PDMS, and bonded 

onto a 170 µm thick glass coverslip. Teflon tubing (0.91 mm inner diameter) was used to 

connect the inlet and outlet of the channel to elevated reservoirs with the colloidal 

suspension and the solvent, respectively. To facilitate the filling of the channel, it was 

first flushed with pure solvent. Subsequently the hydrostatic pressure drop was reversed 

to let the suspension flow in. After the particles had reached the other end, the pressure 

difference was set to zero and 10 minutes were waited to allow homogenization in the Y 

and Z directions. The flow rate inside the channel was tuned by adjusting (with sub-mm 

accuracy) the height difference between the fluid columns. The lowest centreline velocity 

that could thus be reached was of O(0.01 µm/s). The highest explored velocity was 10 

µm/s, which was still low enough to avoid formation of a concentration peak at the 

channel centre31,32. After adjusting the pressure head (typically 10 values were explored 

per experiment) 1 minute was given to let the flow become steady again. Observations 

were made at a distance of ~ 1 cm (104 particle diameters) from the channel inlet to 

avoid the entry length effect31, and at the symmetry plane 12 µm above the bottom to 

eliminate vertical shear components.  
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Fig.1 (color online): a) Schematic of the experimental setup. Typical (X,Y,Z) channel 

dimensions are 2 cm, 30 µm and 24 µm. b) Confocal image taken at a height of 12 µm 

from the bottom of a suspension at volume fraction 0.3, flowing through the channel 

from left to right with a maximum velocity of 5.4 µm/s. Scale bar: 10 µm. 

 

Images (Fig. 1b) were obtained with an UltraView LCI10 Confocal Scanning Laser Micro-

scope (CSLM) in fluorescence mode, using a 488nm laser, and a 100X/NA1.3 oil objective 

giving a field of (X,Y) view of 88×67 µm2 and an effective pixel size of 0.135 x 0.135 

µm2. Most data were collected at a rate of 10 fps using a Hamamatsu 12 bit CCD camera. 

Typically, 500 frames were grabbed at Φ = 0.3 while it was 1500 frames at Φ = 0.03. 

Additionally, a few movies of the low volume fraction sample were collected at the same 

magnification and frame rates up to 100 fps using a Visitech Infinity-3 system equipped 

with a Hamamatsu (flash 4.0) camera.  

Accurate localization (along Z) of the X,Y plane where the flow velocities are maximal, is 

important for avoiding contributions of velocity gradients in the Z direction. After setting 

the pressure drop, this Z location was determined visually by moving the objective using 

the piezo positioner and judging the (changes in) flow speed. To allow a posteriori 

verification, time series were recorded at different Z-locations. Our data analysis (as 

explained in Sec. 2.3) corroborated that the velocity profile in the vertical direction had 

the expected shape, and that the optimal Z- location was always very close to the mid-

plane of the channel. 

 

2.3 Data analysis 

To measure the velocity profile we extended publicly available particle tracking codes49,50, 

to allow accurate measurement of diffusive motions that are superimposed onto a flow46. 

Briefly, the flow velocity vx(y) is first measured by dividing the Y-range into bins and 
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averaging intra-bin displacements over (many) frames. Using an iterative scheme, 

subtraction of the (estimated) advective displacements is used to improve the quality of 

the tracking per iteration step. The diffusive motions are obtained from the trajectories of 

the final iteration, by first subtracting the instantaneous advective displacements (this 

eliminates the effect of Taylor dispersion8,57), subsequently calculating the Mean Squared 

Displacements in the x- and y-directions, and finally by fitting these obtained (lag-time 

dependent) MSDs to a straight line in order to obtain Dx(y) and Dy(y). The measured 

diffusion coefficients are short-time self-diffusion as the involved time scale (O(10)) is 

much smaller than the long-time (O(100)) measurements.   

From the velocity profile vx(y), the local shear rate is determined by taking the gradient: �̇�(𝑦) = 𝑑𝑣𝑥𝑑𝑦 , and subsequently converted to the dimensionless Peclet number (Pe), defined 

as the ratio between the Brownian diffusion time (𝜏𝐵 = a2/𝐷0) and the advective diffusion 

time (𝜏𝐶= �̇�−1) 31,32:  

                                          𝑃𝑒 = 𝜏𝐵𝜏𝐶 =  𝑎3�̇�(𝑦)𝐷0               (1)                 

where a is particle radius and 𝐷0 is its free diffusivity in the dilute limit.  

  

3. RESULTS AND DISCUSSION 

 

3.1 Velocity profiles 

The velocity profiles measured at different pressure drops are illustrated in Fig. 2a for 

Φ=0.03 and in Fig. 2b for Φ=0.3. They appear smooth for all concentrations and pressure 

drops. The highest local velocity is 10 µm/s. Since this produces elongated images of the 

particle for exposure times of 100 ms, some additional experiments were performed with 

a high-speed confocal system (section 2.3). At the lowest flow rate, the maximum 

velocity is only 0.01 µm/s. The smoothness and near-parabolic shapes of the velocity 

profiles indicates that they were accurately measured.  

This is further corroborated by analysing the mechanics of the flow problem. For 

Newtonian fluids, the amplitude of vx(y) should be proportional to ∆P, while its shape 

should remain constant. The former turns out to be the case within the measurement 

accuracy of the pressure drop. In Figs. 2c and d we inspect the flow-rate dependence of 

the shape of vx(y) by normalizing each curve via its maximum. The changes in shape 

turn out to be small. Due to the way of normalizing, the largest deviations are seen near 

the walls, where velocities are lowest. This is best visible for Φ=0.03 (Fig. 2c). However, 

at this volume fraction the suspension should behave as a Newtonian liquid at all shear 

rates. The deviations at low velocities might be due to (x-) drift of the microscope table, 

which gets incorporated in the measured vx(y) as an offset. Usually in vibration isolated 

systems, a microscope table will always show a slow motion with respect to the objective 
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(noise). This motion gets incorporated in the found trajectories of the particle. In 

experiments without flow, a correction for this drift is possible by tracking the center of 

mass of all particles. In flow experiments, the motion contains both the flow velocity and 

the table drift velocity. These two are difficult to separate, but generally the drift is 

negligible: except at very low local velocities. 

In Figs. 2c and d, also a comparison is made with theoretical profiles for a Newtonian 

liquid in the given channel geometry. Assuming no-slip boundary conditions at the walls, 

the velocities can be expressed as58:  

 

                           

 

with x, y and z and ∆P as previously defined, h, w and L the channel height, width and 

length, and 𝜂0 the viscosity. The agreement between experiments and theory appears to 

be good. Small deviations near the walls might be caused by the finite size of the particles 

in the experiments: in reality the particles also need to rotate, to accommodate the 

velocity gradient. This effect could change the flow pattern somewhat, especially close to 

the walls. The Newtonian velocity profile also appears to describe the experiments at 

Φ=0.3 well. In principle, flow curves of colloidal hard spheres should show a transition 

from a low- to a high-shear plateau around Pe ≈ 1. Measurement of the viscosity of a 

similar (near)hard sphere suspension (water-glycerol mixture with 0.96 µm silica spheres 

at Φ=0.34) by X. Cheng et al.59 for different shear rates, clearly shows the Newtonian 

nature of the suspension between Pe numbers 3 and 110. Summarizing, the deviations 

from the theoretical velocity profiles for Newtonian fluids are modest, and do not suggest 

that there are issues regarding the correctness of the measured particle velocities60-62.  

𝑣𝑥(𝑦, 𝑧) = 4 ℎ2∆𝑃𝜋3𝜂0𝐿  ∑ 1𝑛3∞𝑛,𝑜𝑑𝑑 [1 − cosh(𝑛𝜋𝑦ℎ)cosh(𝑛𝜋 𝑤2ℎ)] sin (𝑛𝜋 𝑧ℎ)                             (2) 
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Fig.2 (color online): Particle velocity profiles across the channel for different pressure 

drops. Panels a) and b) show the measurements from the videos. Panels c) and d) show 

the comparison of normalized velocity profiles (black points) with theory (red lines). 

Particle volume fractions are 0.03 for a) and c), and 0.3 for b) and d). 

 
3.2 Diffusion Coefficients 

 

  

Fig.3 (color online): Mean Squared Displacements (MSD) for a suspension at Φ=0.3, for 

the experiment where vmax=5.4 µm/s. Different datasets in the same panel correspond to 

different locations: from bottom to top y=4.5, 5.6, 7.5, 9.7 and 10.5 µm from the centre 

line. This order corresponds to an increasing local shear rate (�̇�). Panel a): MSDs in flow 

direction (after correction for advection) and panel b): MSDs in the velocity gradient 

direction. Solid lines are linear fits to the experimental data.   
 

a) b) 
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Typical MSDs obtained for an experiment at Φ=0.3 are shown in Fig. 3 for both flow (Fig. 

3a) and shear (Fig. 3b) directions. The linearity of the data is good, also for the flow 

direction where (large) advective displacements had to be subtracted first. Both MSDs 

are found to depend on y-location; this is ascribed to the y-dependence of the local shear 

rate. Extrapolation of the linear fits to zero lag-time reveals that both MSDs have an 

offset of ≈ 70 nm2. This value is close to the typical noise floor of an MSD 

measurement27, but still contributes significantly to the magnitudes of the MSDs. 

Therefore Dx and Dy are calculated from the slopes of the linear fits to the MSDs (using 

the Einstein relation). 

 

3.2.1 Influence of shear  

In dilute suspensions (Φ=0.03), both Dx and Dy are practically equal to each other, and 

almost independent of the overall flow rate and the y-location (data shown elsewhere 46) 

Exceptions to this are only found in close proximity of the walls due to the (anisotropic) 

hydrodynamic resistance close to the wall. As the particles are only weakly interacting 

with each other in dilute suspensions, their diffusive behavior should be similar to that of 

a solitary particle; at rest as well as in flow. In contrast, for concentrated systems 

(Φ=0.3), both Dx and Dy do show a dependence on both overall flow rate and y-location. 

Representative examples are shown in Fig. 4 for a low and a high flow rate.  

 

 

Fig.4 (color online). Experimental results for a concentrated suspension (Φ=0.3) nearly 

at rest (a) and in a strong flow (b). Upper graph: (black square) diffusion coefficients in 

the flow (x) and (red circle) shear (y) directions as a function of the lateral (y) position in 

the channel. Lower graph: Local velocity and shear rate in the same channel. The walls 

are located at y=±15 µm. Symbols represent experimental data while lines are to guide 

the eye. 

a) b) 
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Analysing Dx(y) and Dy(y) in conjunction with the local shear rate �̇�(𝑦) reveals that both 

diffusion coefficients are influenced by two opposing effects; i) first of all, the diffusion is 

enhanced by the local shear. At the centreline y=0 where �̇� is zero, Dx and Dy are equal 

while for |𝑦| > 0 both Dx and Dy show an (initial) increase. These observations can be 

attributed to shear-induced collisions, which are well known to occur also for non-

colloidal fluids at high concentrations8,15,16. This increase turns out to be stronger for Dx 

than for Dy. ii) as the side walls are approached, the diffusion coefficients reach a 

maximum followed by a steep decrease. Considering that the shear rate shows a 

continuous increase up to the point where the wall is reached, this illustrates that the 

diminishing effect that the wall has on Dx and Dy, ultimately becomes dominant. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 (color online). Diffusion coefficients in the flow (x) and shear (y) directions as a 

function of lateral (y) position, for a suspension at Φ=0.3 studied at different flow rates. 

At y=0, fluid elements are advected without any shear (irrespective of flow rates) and all 

the measured Dx and Dy coincides. Maximum flow velocities (vmax): black squares:1.44 

µm/s, red circles:2.24 µm/s, violet up-triangles:3.05 µm/s, blue down-triangles: 3.89 

µm/s, green diamonds: 4.75 µm/s. Symbols represent experimental data while lines are 

to guide the eye.  
 

More insight regarding shear-induced diffusion and the wall effect can be obtained by 

collecting the results obtained at different pressure drops in the same graph (see Fig. 5). 

Besides a confirmation of the general trend, this also allows comparing Dx and Dy at the 

same y-location but different flow rates. Clearly, both Dx and Dy increase systematically 

with the flow rate, for all y-locations except at the center where �̇� is zero regardless of 

the velocity. This corroborates that both diffusion coefficients are enhanced by shear (to 

an extent that depends on the shear rate, or as we will see, the Peclet number).  

To separate the contributions of the shear flow and the wall, we utilize the fact that many 

different overall flow rates were explored. As can also be seen from Fig. 2a and b, each 

curve covers a range of slopes (i.e. shear rates), and the overlap is such that the same �̇� 

can often be found in several different curves: further away from the wall as the flow 

 

a) b) 
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rate gets higher. This allows making graphs of Dx and Dy vs y, under the constraint that 

the shear rate is the same. Our analysis, most significantly, revealed that (at least) for |𝑦| ≤ 0.7|𝑦|𝑚𝑎𝑥 the data at different velocities superimpose well. This finding, which is in 

good agreement with the observation that peaks in Dx(y) and Dy(y) are generally found 

at |𝑦| ≈ 0.8|𝑦|𝑚𝑎𝑥 (see Figs. 4 and 5), has two implications. Firstly, away from the walls, 

the diffusion coefficients appear to be determined by the local shear rate only. This makes 

it possible to construct master plots for Dx and Dy as a function of �̇�. And secondly, using 

these master plots, it should be possible to quantify the wall effect in presence of shear.  

We first discuss the effect of local shear alone. In Fig. 6 we plot Dx and Dy as a function 

of Peclet number. To make the plot more general, diffusion coefficients are normalized 

with respect to their value in absence of shear. Interestingly, for the dilute system 

(Φ=0.03, Fig. 6a), Dx and Dy are found to be equal within their uncertainty ranges, for all 

Peclet numbers. Moreover, a clear dependence on Peclet number is absent. This confirms 

that under dilute conditions, the motion of a particle is simply a superposition of an 

unimpaired Brownian diffusion and a spatially dependent advection (in the limiting case, 

all particle interactions are neglected). Qiu et al8, and Orihara and Takikawa9,28 who used 

an oscillating flow to study shear-induced diffusion in a very dilute system, observed a 

constant diffusivity perpendicular to the flow direction as well.  

Considering the diffusivity in the flow direction, Orihara et.al.9,28 found a strong 

enhancement by shear. This apparent contrast with our results can be ascribed to the 

contribution of advection: unlike the earlier studies9,28, we have eliminated the local 

affine motions (in order to highlight the effect of shear induced collisions). Hence both 

the earlier and our present findings show that the particle motions in flow can be under-

stood from a superposition.  

 

Fig.6(color online). Short time self-diffusion coefficients in the flow (x) and velocity 

gradient (y) directions, as a function of Peclet number (Pe). a) At Φ=0.03, diffusion is 

isotropic and independent of Pe number. b) At Φ=0.3, the diffusion coefficient is isotropic 

up to Pe ≈5, after which it increases with Pe. Beyond Pe=10, diffusion becomes strongly 

a) b) 
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anisotropic. Red points(circle) are for Dy and black points(square) are for Dx. Blue dashed 

lines indicate the diffusion coefficient at Pe=0.  
 

For the concentrated system (Φ=0.3), the diffusivity of the particle increases with Peclet 

number (Fig. 6b). This increase applies to both Dx and Dy, and becomes noticeable for Pe 

> 1. A transition from a thermally to a hydrodynamically dominated diffusion regime is 

indeed expected to take place in this Pe number range. While in this respect our findings 

are not unexpected, we also like to point out that this is the first time that such a master 

plot for Dx and Dy is reported for Brownian (near-hard sphere) suspensions in pressure 

driven flow. Apparently, the local Peclet number provides adequate specification of the 

flow, i.e. knowing it suffices to calculate its contribution to the two diffusion coefficients.  

A striking observation in Fig. 6b is that once the shear dominated regime is reached, the 

diffusion becomes strongly anisotropic. Since all affine motion was taken out prior to 

calculation of the diffusion coefficients, this trend indicates that that the shear induced 

collisions have a clear directionality. Superposition of diffusion coefficients (fig.6) from 

different experiments where the data points correspond to different shear gradients but 

same Pe number suggests that the gradients in shear rate are not very important for 

shear induced diffusion.   

It is interesting to compare our results to earlier findings. Cheng et. al.1, studied a similar 

fluid in a plate-plate geometry, and found shear enhancement of the diffusion in the 

velocity and vorticity directions. Remarkably, they used a power law with an exponent of 

0.81 to describe the lag-time dependence of the x-MSD, whereas we found a linear 

behavior. Considering the effects of spatial confinement27 on MSD, this difference might 

be due to the stronger confinement (3 to 10 particle diameters) in their system. In an 

early study using Stokesian Dynamics, Bossis and Brady13 observed a reduction of short-

time self-diffusion coefficients with increasing shear. This opposing trend might be 

related to the fact that they considered a monolayer of colloids. The enhancement of the 

y-diffusion coefficient as we found, appears in good agreement with the shear induced 

migration of particles from the wall to the channel centre found by other researchers for 

concentrated suspensions at high Peclet number31,32.  

 

3.2.2. Combined influence of wall and shear 

Given the master curves for Dx and Dy as a function of Pe, it is possible to make a 

quantification of the contribution of the wall ΔDx and ΔDy, for different shear rates. We 

remark that in presence of (strong) flow, the calculated effects are less accurate than the 

data presented in Fig. 5 and Fig. 6, because the diffusion coefficients become rather 

small close to the wall and because more data processing steps (see Appendix A1) were 

needed to arrive at the results. Nevertheless they should still be interesting since they 

indicate trends that have never been measured. From the master plots (fig.6), we 
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extrapolated diffusion coefficients at all shear rates including near the wall. Measuring 

the difference between extrapolated and observed data for all experiments, we quantified 

the wall influence on diffusivity. 

To assess the accuracy, we first consider the experiment at low volume fraction (0.03). 

Here the particles can be reasonably approximated as isolated species while the effect of 

shear is negligible. This renders a comparison of the measured Dx and Dy with the 

theoretical expressions meaningful. Approximatively, the reduction in diffusivity relative 

to the free diffusion coefficient D0 can be expressed as:  

                              𝛽𝑥−1 =  𝐷𝑥𝐷0  ≅ 1 − 916  ( 𝑎𝛥𝑦 ) + 𝑂 ( 𝑎𝛥𝑦)3
                     (3) 

for diffusion parallel to the wall63-65, and  

                            𝛽𝑦 =  𝐷𝑦𝐷0  ≅   6𝛥𝑦2+2𝑎𝛥𝑦6𝛥𝑦2+9𝑎𝛥𝑦+2𝑎2                (4) 

in the perpendicular direction66. Here a is the particle radius while Δy is the distance 

between particle centre and wall (note that Δy≥0.5). Defining ΔDx(Δy) as [1 − 𝐷0−𝐷𝑥(Δy)𝐷0 ], 

and similarly for ΔDy(Δy), allows comparison of the experimental data with Eqs. 3 and 4. 

The agreement between solid lines and black symbols in Figures 7 a and c turns out to be 

fairly good; it is the noise in the experimental data which precludes a more accurate  

comparison.  

In the presence of shear flow, we define ΔDx as Dx(Δy)-Dx(Pe), where the latter term is 

interpolated from the master curve (Fig. 6) after looking up the Peclet number at Δy.                      

A detailed description of the procedure can be found in the Appendix A1. Fig. 7 shows 

ΔDx(Δy) and ΔDy(Δy) as function of normalized distance (Δy/d) at rest and in flow for Φ = 

0.03 (panels a and c) and Φ = 0.3 (panels b and d). It is suggested by all graphs that, 

after correcting for the direct effect of shear flow, the remaining deviation in the diffusion 

coefficient is mainly due to the wall. In other words: indirect effects of the shear flow 

(e.g. via a change of the local structure) are weak as compared to the local wall effect. 

This could be expected for Φ=0.03, but also appears to be the case for Φ=0.3. 

Two additional remarks can be made: i) for Φ=0.3, Dx is less supressed by the wall as 

compared to Φ=0.03 (Figs. 7 a and b), and ii) the typical length scale over which Dx and 

Dy are influenced by the wall appears to be smaller for the concentrated fluid. This 

'increased hydrodynamic screening’ is in line with earlier experimental and theoretical 

measurements23,67. 
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Fig.7 (color online): Change in normalized diffusion coefficients as a function of 
normalized distance (Δy/d) from the wall. d (=2a) is the particle diameter. Symbols show 

the experimental data, solid and dotted lines are the analytical solutions (Eqs. 3 and 4) 

while dashed lines indicate the free diffusion coefficient. Left panels [a,c] show the data 
for Φ=0.03. Maximum flow speed (vmax): black square: 0.16 µm/s, red circle: 5.4 µm/s, 

green down-triangles: 10.6 µm/s. Right panels [b,d] show the data for Φ=0.3. Here the 

dotted lines are plotted just to visualize the difference with the experimental data for 
Φ=0.03. vmax: black square: 0.13 µm/s, red circle: 0.80 µm/s, green down-triangles: 4.0 

µm/s.  

 
4. CONCLUSIONS 

We studied the shear induced diffusion of dilute and concentrated Brownian near-hard 

sphere suspensions flowing through micro channels. Direct measurements of such 

diffusion coefficients in flow are scarce, and our results complement the existing 

literature. Our measurements indicate that the local Peclet number provides an adequate 

characterization of the effect of flow on diffusion (except close to the walls). Diffusion 

coefficients in the flow and velocity-gradient directions show different dependences on Pe 

for dilute and concentrated systems. At low volume fraction, both coefficients are equal 

and practically independent of the shear rate, in line with the definition. At high volume 

fraction, isotropic Brownian diffusion dominates at low Peclet numbers (Pe <1) while for 

Pe >> 1 both diffusion coefficients grow, due to shear-induced particle collisions. For Pe 

> 10 the diffusion becomes strongly anisotropic. Close to the wall, a strong reduction in 

diffusivity is observed for all concentrations and shear rates, indicating that as the wall is 
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approached, the effect of the wall dominates over the effect of shear. We did not obtain 

evidence for a strong coupling between the wall and shear effects.  
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Appendix A1 

For a neutrally buoyant particle in Newtonian liquid, the effective diffusion (Deff) is equivalent to the 

Brownian diffusion  (DB) 

 

 

In presence of a flat wall, the effective diffusion coefficient reduces due to wall influence  

 

 

This is same as  H. Brenner’s prediction. Now we assume that the shear effect acts additively with 

wall effect and hence shear induced diffusivity (Dsheff ) can be expressed as 

 

 

The master curve is constructed considering the data points free from strong wall effect. So the 

extrapolated diffusivity (Dmextra) from the master curve contains only the shear term which can be 

formulated by the following way 

 

  

Now, if we subtract the observed diffusivity in shear (Dsheff ) from the extrapolated diffusivity, we will 

end up of having the wall effect only and the relation becomes 

 

 

If we compare this with Brenner’s prediction (comparing eq. A5.1 with eq. A2.1), then the relation 

becomes  

 

General normalized form can be represented as  

                                 ∆𝐷𝑖 = 1 −  𝐷𝑚,𝑖−𝐷𝑖𝐷𝑃𝑒=0     ,   𝑖 = 𝑥, y                  (𝐴7.0)                              

DeffDB = 1                                          (𝐴1.1) 

Deff = DB                                       (𝐴1.0)                   

DeffDB = 1 + DwDB                                  (𝐴2.1) 

Deff = DB + Dw  ( Dw indicates the influence of wall only)        (𝐴2.0) 

DsheffDB = 1 + DwDB + DshDB                     (𝐴3.1) 

Dsheff = DB + Dw + Dsh ( D𝑠ℎ indicates the shear effect only)       (𝐴3.0) 

DmextraDB = 1 + DshDB                            (𝐴4.1)   
Dmextra = DB + Dsh                        (𝐴4.0) 

Dmextra − DsheffDB = − DwDB                   (𝐴5.1)  
Dmextra − Dsheff = (DB + Dsh) − (DB + Dw + Dsh) = −Dw            (𝐴5.0) 

 

DBrenner = DeffDB = 1 + DwDB = 1 − Dmextra − DsheffDB           (𝐴6.0)          
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where 𝐷𝑚,𝑖 is the extrapolated diffusivity from master curve. So, for dilute concentration, wall 

effect on diffusivity at rest as well as in flow can be compared with analytical solution63-66. 

Appendix A2 

We measured the pair potential of silica spheres (diameter=1µm) in water-glycerol mixtures by 

approximately measuring the 2-dimensional radial distribution function (g(r))68. The potential falls 

steeply to (near) zero within ≈ 50 nm. This distance seems comparable to other near-HS systems.  

 

           

Fig.8. Pair potential normalized by kT (blue circles) of silica spheres (d=1 µm; diameter) in water-glycerol solvent. r is the 

distance between two particle centers. Φ=0.03. 
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