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Effects of Single and Double Infections of Winter Wheat  
by Triticum mosaic virus and Wheat streak mosaic virus on Yield Determinants 

E. Byamukama, Department of Plant Pathology, S. Tatineni, United States Department of Agriculture–Agricultural Research Service 

(USDA-ARS) and Department of Plant Pathology, G. L. Hein, Department of Entomology, R. A. Graybosch, USDA-ARS and Depart-

ment of Agronomy and Horticulture, P. S. Baenziger, Department of Agronomy and Horticulture, R. French, USDA-ARS and 

Department of Plant Pathology, and S. N. Wegulo, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583 

Abstract 

Byamukama, E., Tatineni, S., Hein, G. L., Graybosch, R. A., Baenziger, P. S., French, R., and Wegulo, S. N. 2012. Effects of single and double 
infections of winter wheat by Triticum mosaic virus and Wheat streak mosaic virus on yield determinants. Plant Dis. 96:859-864. 

Triticum mosaic virus (TriMV) is a recently discovered virus infecting 
wheat (Triticum aestivum) in the Great Plains region of the United 
States. It is transmitted by wheat curl mites (Aceria tosichella) which 
also transmit Wheat streak mosaic virus (WSMV) and Wheat mosaic 

virus. In a greenhouse study, winter wheat ‘Millennium’ (WSMV sus-
ceptible) and ‘Mace’ (WSMV resistant) were mechanically inoculated 
with TriMV, WSMV, TriMV+WSMV, or sterile water at the two-leaf 
growth stage. At 28 days after inoculation, final chlorophyll meter (soil 
plant analysis development [SPAD]) readings, area under the SPAD 
progress curve (AUSPC), the number of tillers per plant, shoot and root 
weight, and total nitrogen and carbon content were determined. In 
Millennium, all measured variables were significantly reduced by sin-

gle or double virus infections, with the greatest reductions occurring in 
the double-infection treatment. In Mace, only final SPAD readings, 
AUSPC, and total nitrogen were significantly reduced by single or 
double virus infections. There was a significant (P ≤ 0.05), positive 
linear relationship between SPAD readings and shoot weight in Millen-
nium but not in Mace. The relationship between total nitrogen and 
shoot weight was positive, linear, and significant in both cultivars. The 
results from this study indicate that Mace, a WSMV-resistant cultivar, 
is also resistant to TriMV, and double infection of winter wheat by 
TriMV and WSMV exacerbates symptom expression and loss of bio-
mass in susceptible cultivars. 

 

Triticum mosaic virus (TriMV) (genus Poacevirus, family Poty-

viridae) is a newly discovered virus that infects winter wheat (Triti-

cum aestivum L.) in the Great Plains region of the United States 

(5,29). Since the first report in Kansas in 2006, TriMV has been 

found in Nebraska, South Dakota, Montana, Colorado, Texas, 

Wyoming, and Oklahoma (5; M. Burrows, unpublished data). 

TriMV has been found infecting wheat alone or in combination 

with Wheat streak mosaic virus (WSMV) (Tritimovirus, Potyviri-

dae) and Wheat mosaic virus (WMoV)/High Plains Virus (HPV) 

(unassigned, Bunyaviridae) (5,27). All three viruses are transmitted 

by wheat curl mites (WCM; Aceria tosichella Keifer) and are 

among many viruses reported to infect wheat in the central Great 

Plains (28,29). Seifers et al. (26) and Tatineni et al. (33) showed 

that the host range of TriMV included barley (Hordeum vulgare 

L.), oat (Avena sativa L.), rye (Secale cereale L.), triticale (X. Triti-

cosecale Wittmact), and several grass species. 

TriMV is a single-stranded positive-sense RNA virus with one 

open reading frame that encodes a polyprotein of 352 kDa (34). 

The complete genome sequence distinctively showed TriMV to 

belong to the family Potyviridae and to have 47 to 65% amino 

acid sequence similarity with Sugarcane streak mosaic virus 

(Poacevirus, Potyviridae) (34). TriMV infection elicits cultivar-

specific symptoms that include systemic chlorotic streaks, mo-

saic, and mottling (33). Chlorotic streak and mottling symptoms 

indicate depletion of chlorophyll. TriMV co-infects wheat with 

WSMV synergistically, leading to enhanced symptom expression 

and increased titer of both viruses in susceptible wheat cultivars 

(33). 

WSMV is by far the most prevalent and the most economically 

important virus infecting winter wheat in the Great Plains region of 

the United States (5,31,32,37,39). Management of WSMV is 

mainly through removal of volunteer wheat and other alternative 

weed hosts which act as a “green bridge” for viruliferous WCM 

between the summer-harvested and fall-sown winter wheat crops 

(5). Another WSMV management strategy is the use of host resis-

tance. Only a few winter wheat cultivars with highly effective 

resistance to WSMV are available (8,11,22) and some wheat lines 

with resistance to the disease have recently been identified (20,30). 

Cultivars with moderate resistance to WSMV have not been re-

ported. With the discovery of TriMV and the fact that both WSMV 

and TriMV are transmitted by the same vector, there is a need to 

reevaluate resistance to WSMV when wheat is co-infected with 

both viruses. Lommel et al. (19) showed that, in winter wheat, 

resistance to Wheat soilborne mosaic virus (Furovirus, Virgaviri-

dae) broke down in the presence of Wheat spindle streak mosaic 

virus (Bymovirus, Potyviridae) infection, indicating that the pres-

ence of a second virus in a host can cause resistance to the first 

virus to be ineffective. 

The number of fertile tillers (tillers with spikes) is an important 

yield determinant in winter wheat (4). Few studies have reported 

the effect of virus infection on tillers in winter wheat and other 

virus host crops (14–17). Larsen et al. (17) found no significant 

effect of WSMV infection on the number of tillers at 21 days after 

inoculation (DAI). Hunger et al. (14) reported up to 75% reduction 

in fertile tillers for seven winter wheat cultivars inoculated with 

WSMV in the fall. Shahwan and Hill (31) reported up to 93% 

reduction in fertile tillers when eight winter and four spring 

wheat cultivars were inoculated with WSMV in the greenhouse. 

Information is lacking on the effect of TriMV infection of wheat 

alone or in combination with WSMV on yield determinants such 

as number of tillers and plant biomass. Such information can be 

used to predict the expected yield loss when wheat is co-infected 

by both viruses. This information can, in turn, enable producers 
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to make informed decisions regarding profitability and choice of 

cultivars. 

Infection of winter wheat by WSMV has been shown to reduce 

shoot and root growth as well as yield. Larsen et al. (17) reported 

that ‘Homestead’ and ‘Scout 66’ wheat, both susceptible to WSMV, 

had similar reductions in their shoot or root growth when inocu-

lated with the virus in the greenhouse. Price et al. (24) showed that, 

when a susceptible and a resistant cultivar were inoculated with 

WSMV in the greenhouse, reduction in root weight and shoot bio-

mass was greater in the susceptible than in the resistant cultivar. 

The same study (24) demonstrated that, under field conditions, 

when the same cultivars were inoculated with WSMV, reductions 

in aboveground biomass and grain yield were greater in the sus-

ceptible compared with the resistant cultivar. Shahwan and Hill 

(31) reported significant reductions in the yield of eight winter and 

four spring wheat cultivars when inoculated with a single isolate of 

WSMV under greenhouse conditions. Edwards and McMullen (6) 

found up to 99% grain yield reduction when 19 spring wheat culti-

vars were mechanically inoculated with WSMV under field condi-

tions. 

These reductions in shoot and root biomass caused by WSMV 

demonstrate the potentially devastating effect of the virus in winter 

wheat. Howell (12) demonstrated a significant positive linear rela-

tionship between aerial dry matter and grain yield in winter wheat, 

indicating that reduction in shoot biomass can negatively impact 

grain yield. The occurrence of TriMV and WSMV in the same 

wheat crop can exacerbate yield loss due to the synergistic interac-

tion of the two viruses when they co-infect individual wheat plants 

(32,33). Hence, there is a need to quantify the effect of co-infection 

of winter wheat with TriMV and WSMV on yield and yield de-

terminants in susceptible and resistant cultivars. In this greenhouse 

study, we quantified the effects on yield determinants of single and 

double infections of a WSMV-susceptible cultivar and a WSMV-

resistant cultivar by TriMV and WSMV. 

Materials and Methods 
Virus inoculum source, maintenance, and preparation. 

WSMV Sidney 81 isolate was obtained from an infectious cDNA 

clone (33). A TriMV isolate was originally obtained from wheat 

plants collected from a field in Red Willow County, NE and puri-

fied by inoculating crude sap at high dilutions (1:6,600) to single-

leaf-stage seedlings of ‘Tomahawk’ wheat for three successive 

passages (34). Both viruses were maintained on winter wheat ‘Mil-

lennium’ (PI 613099) in a greenhouse room that was kept free of 

WCM to avoid possible contamination with WMoV. The absence 

of WMoV, which is not mechanically transmitted, was confirmed 

by the absence of virus symptoms on noninoculated control plants. 

TriMV and WSMV inocula were prepared from the top fully devel-

oped leaves of Millennium that exhibited severe symptoms of 

TriMV or WSMV in the greenhouse. The harvested leaves were 

ground in a general extraction buffer (1:10, wt/vol) using a mortar 

and pestle. The extraction buffer consisted of sodium sulfite (6%), 

polyvinylpyrrolidone (molecular weight 24,000 to 40,000; 85%), 

and powdered chicken egg albumin (9%) dissolved in phosphate-

buffered saline Tween-20. TriMV+WSMV inoculum was prepared 

by mixing equal volumes of TriMV and WSMV inocula. TriMV or 

WSMV inoculum was further diluted 1:1 with extraction buffer to 

a final dilution of 1:20. The inoculum was placed on ice and imme-

diately transported to the greenhouse for inoculation, which lasted 

approximately 30 min. 

Treatments and experimental design. Two winter wheat culti-

vars, Millennium (WSMV susceptible) and ‘Mace’ (PI 651043, 

WSMV resistant), were used in this study. Millennium is a popular 

winter wheat cultivar (36) released for its superior and broad 

adaptation to rainfed wheat production systems in Nebraska and 

adjacent states (2). Mace was recently released primarily for its 

resistance to WSMV and adaptation to rainfed and irrigated wheat 

production systems in Nebraska and adjacent states (8). Two repli-

cate experiments were conducted. Seed of the two cultivars was 

planted in 38-cm-diameter pots on 5 November 2010 (experiment 

1) and 4 January 2011 (experiment 2). The potting mix consisted of 

33% clay loam soil, 33% peat soil, 16.5% sand, and 16.5% ver-

miculite. Plants were maintained on a greenhouse bench. Tempera-

ture in the greenhouse ranged between 21°C minimum (nighttime) 

and 27°C maximum (daytime). The lighting regime was 14 h of 

light and 10 h of darkness. Plants were watered twice daily in the 

morning and in the evening and were fertilized with a water-solu-

ble 20-10-20, N-P-K fertilizer (Peter's Professional Peat-Lite spe-

cial; Everris, Marysville, OH) at 250 ppm 5 days a week. To obtain 

sufficient samples for measurement of dependent variables, an 

experimental unit consisted of four pots (rather than one pot) and 

each pot was thinned to 12 plants. 

At the two-leaf growth stage, both cultivars were mechanically 

inoculated with either TriMV, WSMV, or TriMV+WSMV in the 

greenhouse by gently rubbing Carborundum-dusted leaves with a 

pestle dipped in the respective virus inoculum. A fourth treatment 

(control) consisted of rubbing Carborundum-dusted leaves with a 

pestle dipped in sterile water. Previous experiments showed no 

difference in infectivity between sap prepared with sterile water 

and sap prepared with 20 mM phosphate buffer at pH 7.0 (S. Tati-

neni, unpublished). At the termination of each replicate experiment 

at 28 DAI, presence of TriMV or WSMV in plants from each virus-

inoculated treatment was confirmed with enzyme-linked immu-

nosorbent assay. The experimental design for each of the two ex-

periments was a split plot in randomized complete blocks with four 

replicates. Main plots were the cultivars and subplots were the 

inoculation treatments. 

Yield determinants. Relative chlorophyll content was assessed 

nondestructively (25) every 4 days beginning 4 DAI using a chlo-

rophyll meter (soil plant analysis development [SPAD], model 502 

Plus; Konica Minolta Sensing, Inc., Osaka, Japan; 9). In each treat-

ment, 10 SPAD readings were taken and averaged. Higher SPAD 

Table 1. P values from analysis of variance of data from a study conducted to determine the effect of single and double infections of two winter wheat 
cultivars by Triticum mosaic virus and Wheat streak mosaic virus on yield determinantsz 

Source of 

variation 

 

df
 

Final SPAD 

reading 

 

AUSPC 

 

TPP 

 

SFW 

 

SDW 

 

RFW 

 

RDW 

Total 

nitrogen 

Total 

carbon 

Experiment (E) 1 0.0016 0.0549 0.0007 0.0003 0.0001 0.0127 0.8933 0.0003 0.0401 
Replication (R) 6 … … … … … … … … … 
Cultivar (C) 1 <0.0001 0.5203 0.3827 0.0010 0.0165 0.0030 0.0148 <0.0001 0.5369 
E × C 1 0.2790 0.1783 0.6271 0.0977 0.7174 0.2550 0.8961 0.0022 0.0362 
Error (a) 6 … … … … … … … … … 
Inoculation (I) 3 <0.0001 0.0035 0.1009 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.3240 
E × I 3 <0.0001 0.0522 0.0998 0.0179 0.0630 0.2276 0.0250 0.0443 0.0106 
C × I 3 <0.0001 0.0088 0.0070 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 0.0200 
E × C × I 3 0.3822 0.0442 0.6346 0.0026 0.021 0.1237 0.6102 0.6148 0.2145 
Error (b) 36 … … … … … … … … … 
Total 63 … … … … … … … … … 

z Abbreviations: df, degrees of freedom; AUSPC, area under the soil plant analysis development (SPAD) progress curve; TPP, tillers per plant; SFW, shoot 
fresh weight; SDW, shoot dry weight; RFW, root fresh weight; and RDW, root dry weight. 
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readings indicate higher intensity of greenness of leaf tissue (mild 

symptoms) and lower SPAD readings indicate lower chlorophyll 

levels and more severe symptoms (8,9). The number of tillers per 

pot was determined at 28 DAI and divided by the number of plants 

per pot to obtain the number of tillers per plant (TPP). Plants in 

each pot were cut at the soil surface at 28 DAI and shoot fresh 

weight (SFW) was determined. Roots were washed with pressur-

ized water and dried with paper towels, and the root fresh weight 

(RFW) was determined. The shoots and roots were then dried for 

48 h at 60°C in a hot-air-blast oven and shoot dry weight (SDW) 

and root dry weight (RDW) were determined. Dry shoot samples 

were ground to powder and total nitrogen and total carbon for 

shoots (percent by weight) were determined using a combustion 

analysis method (1) in a Costech Analytical Elemental Combustion 

System 4010 (Costech Analytical Technologies, Inc., Valencia, 

CA). 

Data analysis. SPAD readings were graphed against the ob-

servation date (DAI) to compare changes in chlorophyll content 

among different treatments over time. Trapezoidal integration was 

used to calculate area under the SPAD progress curve (AUSPC) as 

described by Madden et al. (21). The variables final SPAD reading, 

AUSPC, TPP, SFW, SDW, RFW, RDW, total nitrogen, and total 

carbon were subjected to analysis of variance using PROC GLM 

(SAS v.9.2; SAS Institute Inc., Cary, NC). Data from the two ex-

periments were combined based on the F ratio test for each vari-

able (23). PROC GLIMMIX (SAS v.9.2) was used to separate 

cultivar–inoculation interaction least squares means at P = 0.05. 

Fixed effects were experiment, cultivar, and inoculation. Replica-

tion and residual error were the random effects. To determine the 

relationship for each cultivar between relative chlorophyll content 

(SPAD readings) and shoot weight, the data (total of eight treat-

ment means for each variable within a cultivar from the two experi-

ments) were subjected to linear regression analysis using PROC 

REG (SAS v.9.2; SAS Institute Inc.). The relationship for each 

cultivar between shoot weight and total nitrogen was similarly 

modeled using PROC REG. 

Results 
Yield determinants. Chlorophyll content over time as measured 

by the chlorophyll meter (SPAD readings) differed among inocula-

tion treatments in the two cultivars (Table 1; Fig. 1). There was a 

significant inoculation–cultivar interaction for final SPAD reading 

(P < 0.0001) and AUSPC (P = 0.0088) (Table 1). Overall, in virus 

inoculation treatments, final SPAD and AUSPC values in Mace 

were higher than those in Millennium. In the control treatment, 

AUSPC was higher in Mace than in Millennium; however, the two 

cultivars did not significantly differ in final SPAD values (Fig. 1; 

Table 2). 

In Mace, SPAD values over time for the TriMV treatment were 

similar to those in the control treatment and were consistently 

higher than those in the TriMV+WSMV and WSMV treatments 

throughout the sampling period (Fig. 1A). Similarly, final SPAD 

and AUSPC values in the TriMV treatment did not differ from 

those in the control treatment but were significantly higher than 

those in the WSMV and TriMV+WSMV treatments (Table 2). In 

Millennium, SPAD values throughout the sampling period were 

highest in the control treatment, intermediate in the TriMV or 

WSMV treatment, and lowest in the TriMV+WSMV treatment 

Table 2. Treatment means from a study conducted to determine the effect of single and double infections of two winter wheat cultivars by Triticum mosaic 

virus (TriMV) and Wheat streak mosaic virus (WSMV) on yield determinantsz 

 

Cultivar, 

treatment 

 

Final SPAD 

reading 

 

 

AUSPC
 

 

 

TPP 

 

 

SFW (g) 

 

 

SDW (g) 

 

 

RFW (g) 

 

 

RDW (g)
 

Total 

nitrogen (% 

by weight) 

Total 

carbon (% 

by weight) 

Mace          
TriMV 44.8 a 45.9 a 5.9 bc 50.6 bc 7.5 c 21.9 a 2.6 ab 5.1 b 40.0 ab 
WSMV 41.5 b 44.4 b 5.9 bc 55.7 ab 8.0 ab 20.5 ab 2.7 a 5.1 b 39.7 bc 
TriMV+WSMV 41.1 b 44.6 b 6.1 abc 53.4 b 7.9 bc 19.1 bc 2.3 bc 4.8 c 40.0 ab 
Control 45.7 a 46.4 a 5.9 bc 54.3 b 7.8 bc 21.7 ab 2.8 a 5.4 a 39.8 abc 

Millennium          
TriMV 41.7 b 40.1 d 6.2 ab 47.0 c 7.3 c 16.9 cd 2.2 bc 4.7 c 39.6 bc 
WSMV 38.2 c 38.4 e 6.8 a 49.8 bc 7.5 c 15.5 d 2.0 c 4.7 c 40.1 ab 
TriMV+WSMV 32.0 d 33.1 f 5.5 c 25.2 d 4.7 d 6.2 e 0.8 d 3.8 d 39.2 c 
Control 44.6 a 42.9 c 6.4 ab 61.2 a 8.6 a 21.1 ab 3.0 a 5.1 b 40.3 a 

z Abbreviations: SPAD, soil plant analysis development; AUSPC, area under the SPAD progress curve; TPP, tillers per plant; SFW, shoot fresh weight; SDW, 
shoot dry weight; RFW, root fresh weight; and RDW, root dry weight. Means followed by the same letter within a column are not significantly different 
according to the least significant difference test at P = 0.05. 

Fig. 1. Soil plant analysis development (SPAD) readings over time in winter wheat
A, ‘Mace’ and B, ‘Millennium’ inoculated with Triticum mosaic virus (TriMV), Wheat 

streak mosaic virus (WSMV), TriMV+WSMV, or sterile water (control). 

http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PDIS-11-11-0957-RE&iName=master.img-000.jpg&w=243&h=369
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PDIS-11-11-0957-RE&iName=master.img-000.jpg&w=243&h=369
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PDIS-11-11-0957-RE&iName=master.img-000.jpg&w=243&h=369
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PDIS-11-11-0957-RE&iName=master.img-000.jpg&w=243&h=369
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PDIS-11-11-0957-RE&iName=master.img-000.jpg&w=243&h=369
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PDIS-11-11-0957-RE&iName=master.img-000.jpg&w=243&h=369
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(Fig. 1B). Final SPAD and AUSPC values differed among all treat-

ments, with the highest values in the control treatment and the 

lowest values in the TriMV+WSMV treatment. Final SPAD and 

AUSPC values were significantly higher in the TriMV than in the 

WSMV treatment (Table 2). 

The F values for cultivar and inoculation were not significant for 

number of TPP (Table 1). However, cultivar–inoculation interaction 

was significant (P = 0.007). Only the TriMV+WSMV treatment in 

Millennium significantly reduced TPP (Table 2). In the control 

treatment, the two cultivars did not significantly differ in TPP. 

Effects of cultivar, inoculation, and inoculation–cultivar interac-

tion were highly significant (P ≤ 0.017) for both SFW and SDW 

(Table 1). Overall, in the virus inoculation treatments, SFW and 

SDW were higher in Mace than in Millennium. In the control treat-

ment, SFW and SDW were significantly higher in Millennium than 

in Mace (Table 2). In Mace, SFW and SDW did not differ between 

the control treatment and the virus inoculation treatments (Table 

2). In Millennium, however, SFW and SDW varied among virus 

inoculation treatments. The TriMV+WSMV treatment had the 

lowest SFW (59% reduction) and SDW (45% reduction). The 

TriMV and WSMV treatments did not significantly differ in SFW 

and SDW (Table 2). 

RFW and RDW were significantly impacted by both cultivar (P 

≤ 0.015) and virus inoculation (P < 0.0001) (Table 1). The F value 

for cultivar–inoculation interaction was also highly significant (P < 

0.0001) for both RFW and RDW. Overall, in the virus inoculation 

treatments, RFW and RDW were higher in Mace than in Millen-

nium. In the control treatment, the two cultivars did not signifi-

cantly differ in RFW and RDW (Table 2). In Mace, only the 

TriMV+WSMV RDW was significantly lower than the noninocu-

lated control RDW. In Millennium, however, RFW and RDW in all 

virus inoculation treatments were significantly lower than in the 

control treatment. RFW and RDW did not differ between the 

TriMV and WSMV treatments but were significantly higher than in 

the TriMV+WSMV treatment. Therefore, the TriMV+WSMV 

treatment in Millennium had the lowest RFW (71% reduction) and 

RDW (73% reduction). 

The effects of cultivar and virus inoculation on total nitrogen 

were highly significant (P < 0.0001). Cultivar–inoculation interac-

tion was also highly significant (P = 0.0001; Table 1). Total nitro-

gen in all treatments was higher in Mace than in Millennium. In 

both cultivars, total nitrogen in all virus inoculation treatments was 

significantly lower than in the control treatment. In Mace, total 

nitrogen was lowest in the TriMV+WSMV treatment (11% reduc-

tion) followed by the WSMV and TriMV treatments (6% reduc-

tion). In Millennium, the greatest reduction in total nitrogen oc-

curred in the TriMV+WSMV treatment (25% reduction) and the 

least reduction occurred in the TriMV and WSMV treatments (8% 

reduction). In contrast to total nitrogen, the F values for cultivar 

and inoculation effects were not significant for total carbon. Total 

carbon in virus inoculation treatments did not differ from total 

carbon in the control treatment in Mace, and only the TriMV and 

TriMV+WSMV treatments had significantly lower total carbon 

than the control treatment in Millennium. Reduction in total carbon 

was less than 1% in the TriMV and TriMV+WSMV treatments in 

Millennium (Table 2). In the control treatment, the two cultivars 

did not significantly differ in total carbon. 

Relationship between shoot weight and SPAD readings. 

SPAD readings and SFW had a significant positive linear relation-

ship in Millennium (P = 0.0052) but not in Mace (P = 0.0561) 

(Fig. 2A). In Millennium, SPAD readings explained 75% of the 

variation in SFW. SDW also had a significant positive linear rela-

tionship with SPAD readings in Millennium (P = 0.0071) but not 

in Mace (P = 0.0771), with SPAD readings explaining 73% of the 

variation in SDW in Millennium (Fig. 2B). 

Relationship between shoot weight and total nitrogen. There 

was a significant, positive linear relationship between SFW and 

total nitrogen in both Millennium (P = 0.0002) and Mace (P = 

0.0024) (Fig. 3A). Total nitrogen explained 91% of the variation in 

SFW in Millennium and 81% of the variation in SFW in Mace. 

Similarly, there was a significant, positive linear relationship be-

tween SDW and total nitrogen in both Millennium (P = 0.0002) 

and Mace (P = 0.0041), with total nitrogen explaining 77% of the 

variation in SDW in Mace and 91% of the variation in SDW in 

Millennium (Fig. 3B). 

Discussion 
This study demonstrated, under greenhouse conditions, a syner-

gistic, negative effect on yield determinants when a WSMV-resis-

tant cultivar (Mace) and a WSMV-susceptible cultivar (Millen-

nium) were co-infected with TriMV and WSMV. These effects 

were more pronounced in the susceptible cultivar compared with 

the resistant cultivar and were correlated with symptom severity, 

which was quantified as SPAD readings (decreasing SPAD read-

ings indicate increasing severity of disease symptoms on virus-

infected plants). SPAD readings in Mace in all virus inoculation 

treatments, as indicated by final SPAD values and AUSPC, were 

significantly higher than in Millennium. Even the TriMV+WSMV 

treatment, which caused severe symptoms in Millennium, elicited 

only mild symptoms in Mace, indicating that, under greenhouse 

conditions, Mace was resistant to both WSMV and TriMV, and that 

this resistance is not diminished by co-infection with the two vi-

ruses. Resistance to WSMV in Mace is conditioned by the Wsm-1 

gene (8). It is likely that this same gene conditions resistance to 

TriMV in Mace. 

Fig. 2. A, Relationship between shoot fresh weight and soil plant analysis
development (SPAD) readings in winter wheat ‘Mace’ and ‘Millennium’ and B, re-
lationship between shoot dry weight and SPAD readings in winter wheat Mace and
Millennium. Each cultivar was inoculated with Triticum mosaic virus (TriMV), Wheat 

streak mosaic virus (WSMV), TriMV+WSMV, or sterile water. Data points represent
treatment means from two replicate experiments (four treatments by two experi-
ments). 
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It is notable that, in both Mace and Millennium, TriMV caused 

milder symptoms (higher SPAD readings) than WSMV (Table 2). 

However, single infections by these viruses caused more severe 

symptoms in Millennium than in Mace. When both cultivars were 

co-infected with TriMV and WSMV, synergism in symptom ex-

pression was more pronounced in the WSMV-susceptible Millen-

nium. These results are consistent with the results of Tatineni et al. 

(33), who demonstrated that, at 20 to 26°C (conditions similar to 

those in the current study), co-infection of the WSMV-susceptible 

winter wheat ‘Arapahoe’ and Tomahawk with TriMV and WSMV 

caused severe symptoms (chlorosis, chlorotic stripes, leaf deforma-

tion, and bleaching) whereas the same treatment caused only mild 

to moderate symptoms in Mace. 

Tillering in wheat is one of the factors that contributes most to 

production of high spike numbers and grain yield (4). Infection of 

winter wheat by WSMV has been shown to significantly reduce 

tillering (14) and plant height (15). In this study, none of the virus 

inoculation treatments had an effect on TPP in Mace. However, in 

Millennium, the TriMV+WSMV treatment, and not the single virus 

treatments, significantly reduced TPP, indicating the potential for 

greater yield reduction when the WSMV-susceptible cultivar is co-

infected by both viruses. Under field conditions, Hunger et al. (14) 

similarly showed that, when winter wheat cultivars were inoculated 

with WSMV in the fall, reduction in tiller number was greater in 

susceptible cultivars than in a moderately resistant cultivar. In the 

current study, seed of Millennium and Mace was not vernalized. It 

is possible that the effect of virus infection on TPP would have 

differed from the current results if seed of both cultivars was 

vernalized. Vernalization has been shown to increase tillering in the 

early stages of growth in winter wheat, and the extent of the in-

creased tillering varies among cultivars (3). 

In this study, SFW and SDW were not affected by all virus 

inoculation treatments in Mace. However, in Millennium, both 

SFW and SDW were significantly reduced by all virus inoculation 

treatments, with the greatest reductions occurring in the 

TriMV+WSMV treatment. Similar results were observed for RFW 

and RDW, except that the TriMV+WSMV treatment also signifi-

cantly reduced RDW in Mace. Previous studies have similarly 

demonstrated a significant, negative effect on biomass when winter 

wheat cultivars were infected with WSMV. Price et al. (24) showed 

that, under greenhouse conditions, when two winter wheat cultivars 

were inoculated with WSMV, reduction in root biomass was 

greater in the susceptible compared with the resistant cultivar. Lar-

sen et al. (17) demonstrated under laboratory conditions that two 

susceptible winter wheat cultivars had similar reductions in their 

shoot or root growth when inoculated with WSMV. They further 

observed that shoot growth was less affected by WSMV infection 

than root growth. This latter observation is in agreement with the 

finding in the current study, in which the WSMV treatment in Mil-

lennium resulted in a greater reduction in root biomass (27% 

reduction in RFW and 33% reduction in RDW) than in shoot bio-

mass (19% reduction SFW and 13% reduction in SDW). It is 

notable that, in the control treatment, SFW and SDW were signifi-

cantly higher in Millennium than in Mace, indicating a higher yield 

potential in Millennium compared with Mace in the absence of 

virus infection. In rainfed state trials, the 5-year yield average for 

2007 to 2011 was 4,371 kg/ha for Millennium compared with 

3,901 kg/ha for Mace in west-central Nebraska and 3,632 kg/ha for 

Millennium compared with 3,160 kg/ha for Mace in western Ne-

braska (7). 

All virus inoculation treatments significantly reduced total nitro-

gen in both Mace and Millennium. However, the reduction was 

greater in Millennium than in Mace and greatest in the 

TriMV+WSMV treatment in both cultivars. A common effect of 

viruses that cause mosaic and yellowing diseases is a reduction in 

the amount of the most abundant host protein, ribulose biphospate 

carboxylase-oxygenase (rubisco) (13). White and Brakke (38) 

found that, when wheat was infected with WSMV and barley was 

infected with Barley stripe mosaic virus (Hordeivirus, Virgaviri-

dae), the proteins that decreased in amount were similar in both 

hosts, and one of these proteins was rubisco. Many of the proteins 

were identified as chloroplast proteins. The authors (38) suggested 

that virus infection reduces chloroplast ribosomal proteins. Guo et 

al. (10) found that chlorophyll content in leaves of stem mustard 

(Brassica juncea var. tsatsai) was significantly reduced 2 weeks 

after infection by Turnip mosaic virus (Potyvirus, Potyviridae). In 

this study, the expression of more severe symptoms (as indicated 

by SPAD readings) in Millennium than in Mace when both culti-

vars were infected with TriMV, WSMV, or TriMV+WSMV is con-

sistent with the greater reduction in total nitrogen in Millennium 

than in Mace, because nitrogen is essential for protein synthesis 

(18). Kandhasamy et al. (16) similarly observed a significant 

reduction in nitrogen when finger millet plants were infected with 

Mottle streak virus (Rhabdovirus, Rhabdoviridae). 

In contrast to the significant reduction in total nitrogen by virus 

inoculation treatments in both Mace and Millennium, total carbon 

was largely unaffected by virus infection in both cultivars. Only the 

TriMV+WSMV treatment in Millennium significantly reduced 

total carbon, and this reduction was very small. The effect of vi-

ruses on carbohydrates in leaves is variable, with some viruses 

having little effect and others altering the rate of carbohydrate syn-

thesis and translocation (13). In this study, the TriMV+WSMV 

treatment significantly reduced total carbon in the WSMV-

susceptible Millennium. Reduction in total carbon may be due to 

effects of virus infection on respiration or alterations in carbohy-

drate metabolism. Tecsi et al. (35) demonstrated that, when cotyle-

Fig. 3. A, Relationship between shoot fresh weight and total nitrogen (%) in winter 
wheat ‘Mace’ and ‘Millennium’ and B, relationship between shoot dry weight and 
nitrogen in winter wheat Mace and Millennium B. Each cultivar was inoculated with 
Triticum mosaic virus (TriMV), Wheat streak mosaic virus (WSMV), TriMV+WSMV, 
or sterile water. Data points represent treatment means from two replicate 
experiments (four treatments by two experiments). 
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dons of marrow (Cucurbita pepo) were infected with Cucumber 

mosaic virus (Cucumovirus, Bromoviridae), respiration increased 

dramatically and starch declined in the later stages of infection, 

and the decline in starch was correlated with a reduced capacity for 

starch synthesis and a rise in the capacity for starch degradation. 

Reduction in total carbon may also be due to reduced photosynthe-

sis caused by chlorophyll depletion. 

The relationship between SPAD readings and shoot weight was 

linear, positive, and significant in Millennium but not in Mace. 

This was expected because, in Millennium, the effect of virus 

infection on biomass and symptom severity was greater, resulting 

in a wider range of SPAD readings and corresponding shoot 

weights. In contrast, the relationship between total nitrogen and 

shoot weight was linear, positive, and significant in both Mace and 

Millennium. This was because the effect of virus infection on total 

nitrogen was significant and similar in both cultivars, although it 

was more pronounced in Millennium than in Mace. 

This study demonstrated that both single and double infections 

of winter wheat by TriMV and WSMV have a negative effect on 

yield determinants (biomass, tillers, total nitrogen, and total car-

bon). This effect was more pronounced in a WSMV-susceptible 

cultivar (Millennium) than in a WSMV-resistant cultivar (Mace), 

and most pronounced in a double infection of the susceptible culti-

var. The results indicate that Mace is also resistant to TriMV and 

that double infection of a susceptible winter wheat cultivar by both 

viruses exacerbates symptom expression and loss of biomass. 

Acknowledgments 
Funding for this work was provided by the Agriculture and Food Research 

Initiative Competitive Grants Program Grant Number 2010-85605-20546 from 
the National Institute of Food and Agriculture. 

Literature Cited 
1. AOAC. 2005. Official Methods of Analysis of AOAC International, 18th ed. 

Assoc. Office Anal. Chem., Arlington, VA. 

2. Baenziger, P. S., Moreno-Sevilla, B., Peterson, C. J., Shelton, D. R., El-

more, R. W., Nordquiest, P. T, Klein, R. N., Baltensperger, D. D., Nelson, L. 
A., McVey, D. V., Watkins, J. E., Hein, G., and Hatchett, H. J. 2001. Regis-

tration of ‘Millennium’ wheat. Crop Sci. 41:1367-1369. 

3. Bell, G. D. H. 1936. Experiments on vernalisation. J. Agric. Sci. 26:155-
171. 

4. Bulman, P., and Hunt, L.A. 1988. Relationships among tillering, spike num-

ber and grain yield in winter wheat (Triticum aestivum L.) in Ontario. Can. 
J. Plant Sci. 68:583-596. 

5. Burrows, M., Franc, G., Rush, C., Blunt, T., Ito, D., Kinzer, K., Olson, J., 

O’Mara, J., Price, J., and Tande, C. 2009. Occurrence of viruses in wheat in 
the Great Plains region, 2008. Plant Health Progress. Online publication. 

doi:10.1094/PHP-2009-0706-01-RS. 

6. Edwards, M. C., and McMullen, M. P. 1988. Variation in tolerance to wheat 
streak mosaic virus among cultivars of hard red spring wheat. Plant Dis. 

72:705-707. 

7. Fall Seed Guide 2011. University of Nebraska-Lincoln Extension. Online 
publication. http://www.ianrpubs.unl.edu/epublic/live/ec103/build/ec103.

pdf. 

8. Graybosch, R., Peterson, C., Baenziger, P., Baltensperger, D., Nelson, L., 
Jin, Y., Kolmer, J., Seabourn, B., French, R., and Hein, G. 2009. Registra-

tion of 'Mace' hard red winter wheat. J. Plant Reg. 3:51-56. 

9. Guinta F., Motzo R., and Deidda, M. 2002. SPAD readings and associated leaf 
traits in durum wheat, barley and triticale cultivars. Euphytica 125:197-205. 

10. Guo, D. P., Guo, Y. P., Zhao, J. P., Liu, H., Peng, Y., Wang, Q. M., Chen, J. 

S., and Rao, G. Z. 2005. Photosynthetic rate and chlorophyll fluorescence in 
leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic vi-

rus infection. Plant Sci. 168:57-63. 

11. Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Heaton, E. E., 
Seifert, S. A., Kottke, R. A., Rudolf, J. B., Martin, T. J., Bai, G., Chen, X., 

Bowden, R. L., Jin, Y., Kolmer, J. A., Seifers, D. L., Chen, M-S., and 

Seabourn, B. W. 2011. Registration of ‘Snowmass’ wheat. J. Plant Reg. 
5:87-90. 

12. Howell, A. T. 1990. Grain, dry matter yield relationship for winter wheat 

and grain sorghum—southern high plains. Agron. J. 82:914-918. 
13. Hull R. 2002. Matthews’ Plant Virology. Elsevier Academic Press, San 

Diego, CA. 

14. Hunger, R. M., Sherwood, J. L., Evans, C. K., and Montana, J. R. 1992. 

Effects of planting date and inoculation date on severity of wheat streak 

mosaic in hard red winter wheat cultivars. Plant Dis. 76:1056-1060. 
15. Jimenez-Martinez, S. E., and Bosques-Perez, N. A. 2009. Life history of the 

bird cherry-oat aphid, Rhopalosiphum padi, on transgenic and non-trans-

formed wheat challenged with Wheat streak mosaic virus. Entomol. Exp. 
Appl. 133:19-26. 

16. Kandhasamy, S., Ambalavanan, S., and Palanisamy, M. 2010. Changes in 

physiology and biochemistry of mottle streak virus infected finger millet 
plants. Arch. Phytopathol. Plant Prot. 43:1273-1285. 

17. Larsen, J.H., Brakke, M. K., and Langernberg, W. G. 1985. Relationship 

between wheat streak mosaic virus and soilborne wheat virus infection, dis-
ease resistance, and early growth of winter wheat. Plant Dis. 69:857-862. 

18. Lawlor, W. D. 2002. Carbon and nitrogen assimilation in relation to yield: 

Mechanisms are the key to understanding production systems. J. Exp. Biol. 
773-787. 

19. Lommel, S. A., Willis, W. G., and Kendall, T. L. 1986. Identification of 

wheat spindle streak mosaic virus and its role in a new disease of winter 
wheat in Kansas. Plant Dis. 70:964-968. 

20. Lu, H., Price, J., Devkota, R., Rush C., and Rudd, J. 2011. A dominant gene 

for resistance to Wheat streak mosaic virus in winter wheat line CO960293-
2. Crop Sci. 51:5-12. 

21. Madden, L., Hughes, G., and van den Bosch, F. 2007. The Study of Plant 

Disease Epidemics. American Phytopathological Society, St. Paul, MN. 
22. Martin, T. J., Fritz, A. K., Seifers, D., and Shroyer, J. P. 2007. RonL hard 

white wheat. L-926, Kansas State University Agricultural Experiment Sta-

tion and Cooperative Extension Service. Online publication. http://www.
ksre.ksu.edu/library/crpsl2/l926.pdf. 

23. Miller, J. R., Jr. 1986. Beyond Anova, Basics of Applied Statistics. Wiley & 

Sons, New York. 
24. Price, J., Workneh, F., Evett, S., Jones, D., Arthur, J., and Rush, C. 2010. 

Effects of Wheat streak mosaic virus on root development and water-use 

efficiency of hard red winter wheat. Plant Dis. 94 :766-770. 
25. Richardson, A. D., Duigan, S. P., and Berlyn, G. P. 2002. An evaluation of 

noninvasive methods to estimate foliar chlorophyll content. New Phytol. 

153:185-194. 
26. Seifers, D. L., Martin, T., and Fellers, J. 2010. An experimental host range 

for Triticum mosaic virus. Plant Dis. 94:1125-1131. 

27. Seifers, D. L., Martin, T., and Fellers, J. P. 2011. Occurrence and yield 
effects of wheat infected with Triticum mosaic virus in Kansas. Plant Dis. 

95:183-188. 

28. Seifers, D. L., Martin, T., Harvey, T. L., Fellers, J. P., and Michaud, J. 2009. 
Identification of the wheat curl mite as the vector of Triticum mosaic virus. 

Plant Dis. 93:25-29. 

29. Seifers, D. L., Martin, T., Harvey, T. L., Fellers, J. P., Stack, J. P., Ryba-
White, M., Haber, S., Krokhin, O., Spicer, V., and Lovat, N. 2008. Triticum 

mosaic virus: A new virus isolated from wheat in Kansas. Plant Dis. 

92:808-817. 
30. Seifers, D. L., Martin, T. J., Harvey, T. L., and Haber, S. 2007. Temperature 

sensitive Wheat streak mosaic virus resistance identified in KS03HW12 

wheat. Plant Dis. 91:1029–1033. 
31. Shahwan, I. M., and Hill, J. P. 1984. Identification and occurrence of Wheat 

streak mosaic virus in winter wheat in Colorado and its effects on several 

wheat cultivars. Plant Dis. 68:579-581. 
32. Stenger, D. C., Young, B. A., Qu, F., Morris, T. J., and French, R. 2007. 

Wheat streak mosaic virus lacking helper component-proteinase is compe-

tent to produce disease synergism in double infections with Maize chlorotic 

mottle virus. Phytopathology 97:1213-221. 

33. Tatineni, S., Graybosch, R. A., Hein, G. L., Wegulo, S. N., and French, R. 

2010. Wheat cultivar-specific disease synergism and alteration of virus 
accumulation during co-infection with Wheat streak mosaic virus and Triti-

cum mosaic virus. Phytopathology 100:230-238. 

34. Tatineni, S., Ziems, A. D., Wegulo, S. N., and French, R. 2009. Triticum 

mosaic virus: A distinct member of the family Potyviridae with an unusu-

ally long leader sequence. Phytopathology 99:943-950. 

35. Tecsi, L. I., Maule, A. J., Smith, A. M., and Leegood, R. C. 1994. Metabolic 
alterations in cotyledons of Cucurbita pepo infected by cucumber mosaic 

virus. J. Exp. Bot. 45:1541-1551. 

36. United States Department of Agriculture. 2010. Nebraska Wheat Varieties. 
Online publication. http://www.nass.usda.gov/Statistics_by_State/Nebraska/

Publications/Crop_Variety_Reports/whet2010.pdf. 

37. Velandia, M., Rejesus, R. M., Jones, D. C., Price, J. A., Workneh, F., and 
Rush, C. M. 2010. Economic impact of Wheat streak mosaic virus in the 

Texas High Plains. Crop Prot. 29:699-703. 

38. White, J. L., and Brakke, M. K. 1983. Protein changes in wheat infected 
with wheat streak mosaic virus and in barley infected with barley stripe mo-

saic virus. Physiol. Plant Pathol. 22:87-100. 

39. Workneh, F., Price, J., Jones, D., and Rush, C. 2010. Wheat streak mosaic: 
A classic case of plant disease impact on soil water content and crop water-

use efficiency. Plant Dis. 94:771. 

 

http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-91-8-1029&isi=000248198100016
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1111%2Fj.1570-7458.2009.00905.x&isi=000269701100003
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-99-8-0943&isi=000267899100006
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPD-70-964&isi=A1986E452200019
http://apsjournals.apsnet.org/action/showLinks?crossref=10.2134%2Fagronj1990.00021962008200050014x&isi=A1990EC39000014
http://apsjournals.apsnet.org/action/showLinks?isi=A1983QG49400010
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-03-10-0222&isi=000286368700013
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1023%2FA%3A1015878719389&isi=000176184000008&csa=issn%3D0014-2336%26vol%3D125%26firstpage%3D197
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPD-69-579&isi=A1984SX11200011&csa=issn%3D0191-2917%26vol%3D68%26firstpage%3D579
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1080%2F03235400802404833
http://apsjournals.apsnet.org/action/showLinks?crossref=10.2135%2Fcropsci2010.01.0038&isi=000285411100002
http://apsjournals.apsnet.org/action/showLinks?crossref=10.2135%2Fcropsci2001.4141367x&isi=000170881200065
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1093%2Fjxb%2F45.11.1541&isi=A1994PW34900005
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-94-6-0766&isi=000277844300016
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPD-72-0705&isi=A1988P821800016&csa=issn%3D0191-2917%26vol%3D72%26firstpage%3D705
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-94-6-0771&isi=000277844300017
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-93-1-0025&isi=000264186900005
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-97-10-1213&isi=000249634800003
http://apsjournals.apsnet.org/action/showLinks?isi=A1985ARE9800011&csa=issn%3D0191-2917%26vol%3D69%26firstpage%3D857
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1017%2FS0021859600021869
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2Fj.plantsci.2004.07.019&isi=000225575100007
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1046%2Fj.0028-646X.2001.00289.x&isi=000172980200024&csa=issn%3D0028-646X%26vol%3D153%26firstpage%3D185
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1094%2FPD-76-1056&isi=A1992JP10800022&csa=issn%3D0191-2917%26vol%3D76%26firstpage%3D1056
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-92-5-0808&isi=000255143200022
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPHYTO-100-3-0230&isi=000274244800004
http://apsjournals.apsnet.org/action/showLinks?isi=000174853500002
http://apsjournals.apsnet.org/action/showLinks?crossref=10.4141%2Fcjps88-071&isi=A1988P578000001
http://apsjournals.apsnet.org/action/showLinks?crossref=10.3198%2Fjpr2010.03.0175crc&isi=000285855500016
http://apsjournals.apsnet.org/action/showLinks?crossref=10.1016%2Fj.cropro.2010.02.005&isi=000279365500009
http://apsjournals.apsnet.org/action/showLinks?system=10.1094%2FPDIS-94-9-1125&isi=000281110300008
http://apsjournals.apsnet.org/action/showLinks?crossref=10.3198%2Fjpr2008.06.0345crc&isi=000268932700010

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	6-2012

	Effects of Single and Double Infections of Winter Wheat by Triticum mosaic virus and Wheat streak mosaic virus on Yield Determinants
	E. Byamukama
	S. Tatineni
	G. L. Hein
	R. A. Graybosch
	P. Stephen Baenziger
	See next page for additional authors
	Authors


	Effects of Single and Double Infections of Winter Wheat by Triticum mosaic virus and Wheat streak mosaic virus on Yield Determinants

