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ABSTRACT: The ductility of an elastic structure with a growing crack may be defined as the ratio of the
additional load-point displacement that is caused by the crack at the moment of loss of stability under displace-
ment control to the elastic displacement at no crack at the moment of peak load. The stability loss at displacement
control is known to occur when the load-deflection curve of the whole structural system with the loading device
(characterized by a spring) reaches a snapback point. Based on the known stress intensity factor as a function
of crack length, the well-known method of linear elastic fracture mechanics is used to calculate the load-
deflection curve and determine the states of snapback and maximum loads. An example of a notched three-point
bend beam with a growing crack is analyzed numerically. The ductility is determined and its dependence of the
structure size, slenderness, and stiffness of the loading device is clarified. The family of the curves of ductility
versus structure size at various loading device stiffnesses is found to exhibit at a certain critical stiffness a
transition from bounded single-valued functions of D to unbounded two-valued functions of D. The method of
solution is general and is applicable to cracked structures of any shape. The flexibility (force) method can be
adapted to extend the ductility analysis to structural assemblages provided that the stress intensity factor of the
cracked structural part considered alone is known. This study leads to an improved understanding of ductility,
which should be useful mainly for design against dynamic loads.
INTRODUCTION

Ductility is an important characteristic of the energy ab-
sorption capability of a structure under impact, blast, and seis-
mic loads. Ductility of structural parts governs the degree to
which overloads can be resisted by redistribution of internal
forces.

The growth of a major crack in a structure reduces its duc-
tility. The size as well as the shape of a structure, particularly
its slenderness, have a great effect on ductility. Ductility gen-
erally decreases as the size of the slenderness increases. This
aspect is important for extrapolating to larger sizes the expe-
rience gained in laboratory testing or in building structures of
normal sizes.

For other than static loads (gravity loads), structures do not
fail at the maximum load. Rather, they fail at a certain moment
of their postpeak softening. The failure represents a loss of
stability, and so the determination of ductility requires stability
analysis of a softening structure (Bažant 1976; Bažant and
Cedolin 1991, Chapters 12 and 13).

Fracture in the inelastic hinging regions of beams or frames,
in the form of either a localized crack or distributed cracking,
causes the moment-curvature diagram to exhibit postpeak soft-
ening. This invalidates the application of plastic limit analysis,
reduces the capacity for energy absorption, and limits the de-
gree of inelastic moment redistribution. The effect of softening
in reinforced concrete beams has been analyzed from various
viewpoints by a number of investigators [e.g., Schnobrich
(1982), Hand et al. (1973), Lin and Scordelis (1975), Maier
(1967a,b, 1971a,b), Maier et al. (1973), Mróz (1985), Darvall
(1983, 1984), Darvall and Mendis (1985), Warner (1984), and
Wood (1968)]. The effect of softening in the inelastic hinging
regions of beams on the ductility of statically indeterminate
beams and frames on their ductility was studied by layered
finite-element analysis (Bažant et al. 1987). Diagrams of struc-
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ture ductility, defined by a loss of stability, were presented and
were shown to depend strongly on the size and shape of struc-
ture and, in the case of spring supports, on the stiffness of
these supports. In all of these investigations, however, the
analysis was limited to the bending theory with the assumption
of plane cross sections and with a uniaxial stress-strain rela-
tion. Crack propagation was not explicitly considered in those
investigations.

The objective of the present paper is use of linear elastic
fracture mechanics (LEFM) with an R-curve to analyze duc-
tility of simple elastic structures with a growing crack and thus
to obtain diagrams clarifying the dependence of ductility of a
cracked structure on its size and slenderness and on the stiff-
ness of the loading system or supports. The cohesive (or fic-
titious) crack model will not be considered. For that model,
an efficient method to calculate the maximum displacement
and ductility without having to solve the load-deflection curve
was presented by Bažant and Li (1995a,b) are summarized in
Bažant and Planas (1998, Section 7.5.5).

DEFLECTION COMPONENTS AND SOFT LOADING

The nonlinear fracture behavior of quasibrittle structures,
caused by the fact that the fracture process zone is not negli-
gible compared to specimen dimensions, may be analyzed by
means of the equivalent LEFM with an R-curve [e.g., Bažant
and Planas (1998, Chapter 5)]

The deflection of a structure with a crack may be expressed
as

u = u 1 C P (1)f 0

where P = applied load (or parameter of a system of loads);
u = associated displacement (defined so that P du represents
the work of load or loads); C0 = compliance of the structure
when there is no crack (K0 = 1/C0 = stiffness); C0P = elastic
(reversible) part of displacement; and uf = additional displace-
ment under load P caused by formation of the crack.

Laboratory specimens are normally loaded by a testing ma-
chine (or frame) that is never perfectly rigid but has a certain
finite stiffness Km. Thus the actual loading is equivalent to a
loading through a spring (Fig. 1) that has some finite stiffness
Km and compliance Cs = 1/Km. Loading for which Cs > 0 may
be called ‘‘soft’’ loading.

Isolating a cracked part from an elastic structure, we may
regard it as a cracked substructure elastically restrained by
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FIG. 1. (a,b) Fracture Specimens Loaded through Spring; (c)
Structure with Cracked Part

several springs replacing the action of the remaining crack-
free part of the structure. For example, to allow the use of
known fracture solutions for beams, the cracked column of the
portal frame in Fig. 1(c) may be isolated from the rest of the
frame. The restraint by the rest of the frame produces a sort
of soft loading. As long as the isolated substructure is statically
determinate, the problem is equivalent to our case of loading
through a spring. But if a statically indeterminate structure
[e.g., the frame in Fig. 1(c)] is analyzed as an assemblage of
parts, the problem becomes more complicated because of re-
distribution of internal forces among structural parts as the
crack grows during loading. However, if the energy release
function is obtained for the structure as a whole [e.g., the en-
tire portal frame in Fig. 1(c)], the problem becomes identical
to the present one.

Structures often contain many cracks. When two or more
cracks grow simultaneously, the interaction among the cracks
must be analyzed (Bažant and Cedolin 1991), making the
problem more complicated than the present one. However, a
simultaneous growth of two or more cracks is usually unstable,
which causes only one crack to grow while the others unload.
Then the problem is again equivalent to the present one.

When a structure is loaded through a spring of nonzero
compliance Cs, the total deflection of the structure with the
spring is

21D = u 1 C P = u 1 (C 1 C )P = u 1 C (1 1 k )P (2)s f 0 s f 0

where k = Km/K0 = C0/Cs = ratio of the stiffnesses of the spring
(i.e., the testing machine) and the structure.

The dimension of compliance is length/force. The compli-
ance is inversely proportional to Eb where E = Young’s elastic
modulus. Because the dimension of Eb is force/length, the
compliance must generally have the form

f (L /D, L /D, . . .)C 1 2C = (3)0 Eb

where fC = dimensionless function and L1/D, L 2/D, . . . = ratios
of various dimensions of the structure to the characteristic di-
mension D, which characterize the structure shape (geometry)
and are constant for geometrically similar structures. Thus C0

is size independent in the case of two-dimensional similarity
(thickness b = constant).

As an example, for the three-point bend beam or the ten-
sioned rectangular strip specimen shown in Figs. 1(a and b)

31 L 3(1 1 n)L 1 L
C = 1 or C = (4)0 0S D3Eb 4D 5D Eb D

where n = Poisson ratio. In the first expression, the first and
second terms represent the contributions of bending and shear
of the beam. From (3) and (4) it is clear that the compliance
of similar crack-free structures is size independent. The ratio
L/D characterizes the slenderness of the structure. Obviously,
C0 increases with the slenderness, but this must not be con-
fused with the size effect.

TYPES OF LOAD-DEFLECTION DIAGRAMS
AND SNAPBACK

Consider first the diagrams of P versus uf when the energy
release rate is constant, R(c) = Gf = fracture energy of the
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FIG. 2. Two Types of LEFM Fracture Response—without and
with Snapback

material. For a zero crack length (a = 0), they begin at infinity
(P → `, Fig. 2), which means that a crack cannot start from
a smooth surface according to LEFM. These responses can be
of the following two types:

• Type I, for which the P(uf)-curve always has a negative
slope [Fig. 2(a)].

• Type II, for which the slope of the P(uf)-curve reverts at
a certain point (called the snapback point) to positive [Fig.
2(b)].

Examples of such curves were given by Bažant (1987) [see
also Bažant and Cedolin (1991, Fig. 12.17)]. It can be shown
that the type of response is decided by the following criterion:

ND
for lim = 0 (Type I) (5)

Ma a→ 1

ND
for lim > 0 (Type II) (6)

Ma a→ 1

where a1 = crack length at the end of the ligament (i.e., when
there is a full break); and M and N = bending moment and
normal force transmitted across the ligament, respectively.

When the structure has a notch, of length a0 (or a preexist-
ing traction-free crack), the response first follows a straight
line emanating from the origin (lines 01 in Fig. 2), and when
the P(uf)-curve for a propagating crack is reached, there is an
abrupt slope change. If R(c) varies according to a smooth R-
curve, the slope change is not abrupt but rounded (the dashed
curves in Fig. 2), and when the R-curve begins with a zero
value, a curved diagram begins at the origin and a crack can
start even from a smooth surface.

The elastic deflection of the crack-free structure, the addi-
tional deflection caused by the crack, and the deflection of the
spring are additive. The loads causing these three deflections
are the same. Thus, the coupling of the corresponding parts
may be imagined as a series coupling (see Fig. 3 where adding
the segments a, b, and c on any horizontal line yields the
horizontal coordinate a 1 b 1 c of the load-deflection curve
of the whole system). The inverse slopes (compliances) at the
points with the same P (lying on a horizontal line) are also
added.

As clarified by Fig. 3, a sufficiently soft spring or a suffi-
ciently soft crack-free structure (i.e., a large enough Cs or C0)
will necessarily cause the total load-deflection diagram to ex-
hibit a snapback (i.e., a point at which the descending response
ceases to have a negative slope). If the curve is smooth, it is
a point with a vertical tangent (dD/dP = 0). This point can
represent a point of (locally) maximum deflection, inflexion,
or minimum deflection (Fig. 4). The first two cases are known
to represent the stability limit under displacement control (Ba-
žant and Cedolin 1991).

For Type I fracture, no vertical tangent nor snapback will
occur if the spring and the crack-free specimen are sufficiently
stiff (i.e., if Cs and C0 are small enough). Because an increase



FIG. 3. Superposition of Deflections due to Elasticity of Structure with No Crack (a) and of Spring (c), and Deflection due to Crack (c)

FIG. 4. Various Kinds of Load-Deflection Curves for Crack Growth Characterized by R-Curve for Monotonic Loading and Reloading
of slenderness L/D can cause C0 to exceed any given value, a
snapback occurs if (and only if) the structure is sufficiently
slender. But this is different for Type II structures, for which
a snapback occurs for any slenderness.

From the geometrical construction in Fig. 3, it now tran-
spires that, on the curve of P versus the crack-produced de-
flection uf, the point of snapback instability occurs at the point
at which the tangent to the curve has the slope 1/Ccr = 21/(C0

1 Cs) (shown in Fig. 3). From this observation one can readily
deduce various Type I or Type II combinations of the P(uf)-
curve with the combined elastic deflection characterized by the
combined compliance Cf 1 C0 (the additional effect of the R-
curve behavior, which is not shown in Fig. 4, is to ‘‘round
off’’ the sharp corners on these curves in the manner shown
in Fig. 2). These combinations lead to seven different kinds
(Ia, . . . , IId) of the overall load-deflection curves P(D), illus-
trated in Fig. 4. For the types possessing more than one point
at which the line of slope 1/Ccr is tangent, the failure under
static displacement-controlled loading will occur at the first
such point. However, the shape of the entire P(D)-curve is
important for dynamic loading. The area enclosed by the P(D)-
curve, which is the same as the area enclosed by the P(uf)-
curve, represents the energy absorption capability of the struc-
ture. Maximizing this capability is crucial for the design
against seismic, blast, and impact loadings.

If the structure is precracked or notched, the initial loading
follows an inclined straight line until the tip of the existing
crack or notch becomes critical (& = R); see the line segments
01, 02, 03, . . . in Fig. 4. Thus the load-deflection diagrams
can follow any of the paths 019, 029, 039, . . . , 0190, 0290,
0390, . . . identified in Fig. 4. Thus, as seen in Fig. 4, an
enormous variety of responses can be encountered in an elastic
structure with one growing crack.

DUCTILITY DEFINED BY STABILITY LOSS AT
DISPLACEMENT CONTROL

A distinction must be made between material ductility, char-
acterizing the strain at which a plastically yielding material
will fail due to a microcrack, and structure ductility. We con-
sider only the latter concept of ductility, which has often been
hazy in practice. A rational definition should be based on the
stability loss of the structure, as proposed for fracturing or
damaging structures in Bažant (1976), and studied in more
detail by Bažant et al. (1987). For load control conditions (i.e.,
for gravity loads), the stability loss occurs when the maximum
load is reached.

Ductility is a different concept from the maximum load or
strength of the structure. It characterizes the deformation ca-
pability under the most stable type of loading, which is the
loading under displacement control. In that case, stability is
lost at the snapback point (the first point of vertical tangent)
of the overall load-deflection curve of the structural system.

Therefore, we define ductility [Fig. 5(a)] as (Bažant 1976)

D P (C 1 C 1 C )max snap 0 s f
l = = (7)

D P (C 1 C )el max 0 s

where umax = total deflection of the system (cracked structure
with the spring) at the first point of vertical tangent (snap-
back); Psnap = the corresponding load; Pmax = maximum load;
and Del = elastic (reversible) part of the total deflection at max-
imum load Pmax [Fig. 5(a)]. We can say that the ductility is
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FIG. 5. (a) Definition of Ductility; (b) Two Types of R-Curve
Considered: R(c) = (Upper Curve) and Geometry-G c/(c 1 c)f 0Ï
Dependent R-Curve (Lower Curve)

infinite (or unbounded, l = `) when no point of vertical tan-
gent exists (as shown in Fig. 4, Case Ia).

Would it make sense to define ductility by some postpeak
point with a certain finite-softening slope? It would not. Sta-
bility loss does not occur at such a point. If such a finite slope
is considered on the load-deflection curve of the structure
without the spring, stability loss may of course take place, but
such a point must then correspond to a point of vertical tangent
on the total load-deflection curve of the system.

Likewise, would it make sense to define ductility by stabil-
ity loss for the case of soft loading (i.e., real loading for which
a perfect displacement control is impossible)? Not at all. A
soft loading is equivalent to loading through a spring of a
certain nonzero compliance. Even if such a loading is pro-
duced electronically, it still is equivalent to a loading through
a spring, and such a spring must be considered to be included
in the structural system. Moreover, some characteristic value
of the loading compliance would have to be chosen completely
arbitrarily to define ductility uniquely.

The loss of stability under displacement control, the ductil-
ity limit, corresponds in Figs. 2 and 3 to the first point of
vertical tangent. For Type Ia in Fig. 4 there is no stability loss
under displacement control, which means the ductility is un-
bounded.

REVIEW OF FRACTURE ANALYSIS OF
LOAD-DEFLECTION CURVE

The stress intensity factor KI and the energy release rate of
a crack may be expressed as [e.g., Bažant and Planas (1998)]

2 2P K PI
K = k(a); & = = g(a) (8a,b)I 2E9 E9b Db DÏ

where D = characteristic dimension (size) of the structure; b
= thickness of the structure (treated as two-dimensional); E9 =
E in the case of plane stress (thin structure); E9 = E/(1 2 n2)
in the case of plane strain (thick structure); g(a) = [k(a)]2;
k(a) = dimensionless LEFM function that is given for the basic
geometries in handbooks (Tada et al. 1985; Murakami 1987)
and can be easily determined by elastic finite-element analysis;
and

a a c0
a = = a 1 Da; a = ; Da = ; c = a 2 a (9a–d )0 0 0

D D D

where a0 = length of notch or the traction-free portion of the
crack; a = length of the equivalent LEFM crack (up to the tip
that lies roughly in the middle of the fracture process zone);
and c = length from the notch tip to the tip of the equivalent
LEFM crack (which lies roughly in the middle of the fracture
process zone).

For notched geometrically similar specimens of different
sizes D, a0 is constant. However, even for notch-free geomet-
rically similar structures, the failure modes are often charac-
terized by approximately constant a0, within a certain limited
size range of practical interest (Bažant and Planas 1998).

For the reader’s convenience we now briefly review the
well-known calculation of deflection of cracked structure. The
energy release rate may also be expressed as
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2 21 ­P* 1 ­ P P dC(a)
& = = C(a) = (10)F G F Gb ­a b ­a 2 2b daP P

Substituting (8b), one gets dC(a)/da = 2g(a)/bDE9. Integration
(with initial condition C = C0 1 Cs at a = 0) then provides
C(a), and the deflection is obtained as D = C(a)P. This gives
a well-known result [e.g., Bažant and Cedolin (1991) and Ba-
žant and Planas (1998, p. 67)], which may be written as D =
C̄(a)P/b, from which

bD
P = (11)

C̄(a)

where
a

2
C̄(a) = f(a) 1 b(C 1 C ); f(a) = g(a9) da9 (12a,b)0 s EE9 0

At increasing deflection, the crack grows. As it grows, the
energy release rate must be equal to its critical value R(c),
called the fracture resistance, which may be considered to be
a function of the crack extension c = a 2 a0

& = R(c) (13)

In LEFM, R(c) is assumed to be constant, R(c) = Gf . For a
quasi-brittle fracture, R must be considered variable, to reflect
the gradual development of the fracture process zone. To ob-
tain for notch-free structures realistic load-deflection curves
starting from zero (Fig. 2), the R-curve must start from zero.
Then it grows at a decreasing rate until, at c = cf, it reaches a
certain final value, taken equal to Gf. The R-curve may be
considered independent of the structure size D, but it depends
on structure geometry (including a0). Exploiting the known
approximate form of the size effect law, one can, for example,
determine R(c), including its dependence on the structure ge-
ometry, by the size effect method [e.g., Bažant and Planas
(1998)].

According to (13) and (8b),

R(c)2 2P = E9b D; c = DDa (14a,b)
g(a)

CALCULATION OF DUCTILITY FROM
LOAD-DEFLECTION DIAGRAM

For computer programming, it is easier to calculate ductility
through numerical evaluation of many points on the load-de-
flection curve. First we select many closely spaced points c =
c1, c2, . . . covering the length of the ligament. We choose, or
are given, the values of D, L, k, and a0. For each ci (i = 1, 2,
. . .), we evaluate P from (14) and then D from (11). Searching
among the calculated points (Di, Pi), we determine the point
with the first local maximum of D and the point with the max-
imum of P. Refining the subdivision of ci in the vicinity of
these maxima, we can determine the locations of these two
maxima with any desired accuracy. The ductility for the given
values of D, L, k, and a0 is then evaluated from (7).

This approach works even if the peak or the snapback is
pointed.

DUCTILITY BY MEANS OF DIRECT CALCULATION OF
MAXIMUM POINTS

Maximum Load

In this case, the energy balance condition & = R(c) must
remain satisfied after an infinitesimal crack length increment
at constant P. Therefore, as long as the load-deflection curve
is smooth (i.e., cases such as vertex 2 in Fig. 2 or vertex 4 in
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Fig. 4 are excluded), the maximum load (peak) is characterized
by the condition

­&
= R9(c) (15)F G

­a P

Substituting (8b) into (13) and (15), we obtain two conditions

2 2 2E9b D E9b D2 2P = R(c); P = R9(c) (16a,b)
g(a) g9(a)

where the primes denote the derivatives of the functions. Di-
viding now the second of the last two equations by the first,
we get the maximum load condition

R(c)g9(a) c
D = ; a = a 1 (17a,b)0

R9(c)g(a) D

Maximum Displacement

First we must express & in terms of the total displacement.
To this end, we substitute (12) into (8b) getting

E9 2& = D c(a) (18)
D

in which we denoted

g(a)
c(a) = (19)2[2f(a) 1 E9b(C 1 C )]0 s

Assuming again a smooth curve, the energy balance condition
& = R(c) at maximum displacement must remain satisfied after
an infinitesimal crack length increment at constant u. There-
fore, the point of maximum displacement (snapback) is char-
acterized by the condition

­&
= R9(c) (20)F G

­a D

This condition means that, at maximum displacement, the
&(a)-curve is tangent to the R-curve. Substituting (18) into
(13) and into (20), we obtain two conditions

2D R(c) D R9(c)2 2D = ; D = (21a,b)
E9 c(a) E9 c9(a)

Dividing now the second of these two equations by the first,
we get the maximum load condition

R(c)c9(a) c
D = ; a = a 1 (22a,b)0

R9(c)c(a) D

The relationship of the &(a) and R(c) may be clarified by
the same kind of argument as for the case of controlled load
P [e.g., Bažant and Planas (1998) and Bažant et al. (1986)].
Fig. 6(a) shows the curves of &(a) for a given size D and an
increasing succession of constant displacement values D = D1,
D = D2, . . .). The fracture equilibrium states are the intersec-
tions of these curves with the R-curve. The first intersection
point on each curve is a stable state [because R9(c) > &9(a)],
and the second one is an unstable state. From this picture, it
is clear that the limit of stability (i.e., failure) occurs for the
D = Dmax, for which &9(a) = R9(c), as already stated in (20).
When different sizes D = D1, D2, D3, . . . are considered, a
different value Dmax,i (i = 1, 2, 3. . .) corresponds to each size.
The curves of &(a) at D = Dmax,i for various Di must all be
tangent to the R-curve, as shown in Fig. 6(b). In other words,
the R-curve is an envelope of the &(a) curves at D = constant
for various sizes (and could in fact be determined in that man-
FIG. 6. (a) Graphic Determination of Maximum Displacement
from Tangent Point to R-Curve and Energy Release Curve; (b) R-
Curve as Envelope of Energy Release Rates at Maximum Dis-
placement for Various Characteristic Sizes (Displacement Con-
trol)

ner). The envelope property is the same as for the &(a) at
constant load P for different sizes (Bažant et al. 1986).

Computation Procedure

With the foregoing formulation, which is feasible only if the
snapback and the peak are smooth, it is not necessary to cal-
culate the entire load-deflection curve. But it is convenient to
obtain the ductility values simultaneously for the whole range
of D-values (or, in a similar manner, for the whole range of
values of L/D, k, and a0). We choose a series of discrete values
csnap = c1, c2, . . . covering the length of the ligament. For each
of them we evaluate D from (22), and then we evaluate D =
Dmax for the snapback point from one of the equations [(21)].
Then, for each calculated value of D we solve c = cmax from
the nonlinear equation (17) (e.g., by Newton iterative method).
Finally we evaluate Del = (C0 1 Cel)Pmax and the ductility from
(7). Obviously, the solution of a nonlinear equation cannot be
avoided in this approach.



FIG. 7. Ductility of Concrete versus Specimen Size in Double
Logarithmic Plot, Obtained for Two Types of R-Curve Consid-
ered: (a) R(c) = (b) Geometry-Dependent R-G c/(c 1 c);f 0Ï
Curve

NUMERICAL STUDY AND SHAPE OF
DUCTILITY DIAGRAMS

The main purpose of this study is to determine the shape of
the diagrams describing how ductility depends on the structure
size, spring stiffness, and slenderness. To this end, numerical
calculations are carried out for the case of a notched three-
point bent beam shown in Fig. 1(a), for which the P(D)-curve
is known to be of Type I (Fig. 2).

The fracture properties are considered the same as previ-
ously determined in the testing of concrete and limestone (Ba-
žant and Pfeiffer 1987; Bažant et al. 1991). The notch depth
is a0 = D/6 in the case of concrete, and a0 = 0.4D in the case
of limestone. For the diagrams of ductility versus beam size,
the span-to-depth ratio is taken as 2.5 for concrete and 4 for
limestone. The material is assumed to follow an R-curve be-
ginning with a zero value of energy release rate. Two different
types of R-curve are considered: (1) An R-curve given by

c
R(c) = G (23)f Îc 1 c0
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FIG. 8. Ductility of Limestone versus Specimen Size in Dou-
ble Logarithmic Plot, Obtained for Two Types of R-Curve Con-
sidered: (a) R(c) = (b) Geometry-Dependent R-G c/(c 1 c);f 0Ï
Curve

which starts with a vertical tangent [Fig. 5(b), lower diagram]
[c0 = material constant taken equal to 25.4 mm (1 in.)]; and
(2) the size effect R-curve [Fig. 5(b), upper diagram] proposed
by Bažant and Kazemi (1990) [see also Bažant and Cedolin
(1991), Eqs. 12.3.7–12.3.8], which starts from zero with an
inclined tangent. This R-curve does not have a closed-form
expression but is given parametrically by two explicit equa-
tions, which involve two material parameters, Gf and cf. The
former R-curve gives similar behavior as an R-curve starting
with an inclined tangent from a finite initial value.

Figs. 7(a and b) and 8(a and b) show, in doubly logarithmic
scales, the calculated diagrams of ductility of geometrically
similar beams as a function of the beam size D, for concrete
and limestone, respectively. To present the numerical results
in the greatest possible generality, we need to express them in
a dimensionless form. The ductility l is dimensionless, and
the size D is nondimensionalized by using as a parameter
the relative size D/D0, where D0 = cfg(a0)/g9(a0) represents
the transitional size of Bažant’s size effect law sN =

where sN is the nominal strength of theBf9/ (1 1 D/D ),t 0Ï



FIG. 9. Ductility of Concrete versus Slenderness in Semilog-
arithmic Plot, Obtained for Geometry-Dependent R-Curve: (a) k
= 0.15; (b) k = 0.25

structure, B is an empirical coefficient, and fu is a measure of
tensile strength.

If R-curves are used, the solution depends only on three
material characteristics: Gf, cf, and E, whose metric dimensions
are N/m, m, and N/m2. According to Buckingham’s theorem
of dimensional analysis, the number of governing parameters
equals the number of all parameters minus those of indepen-
dent dimensions. Because N/m2 = (N/m)/m, we have only two
independent dimensions, N/m and m, and so we know there
is only one independent dimensionless material parameter. We
choose it as u = Ecf /Gf. The diagrams are plotted for various
values of the relative spring stiffness, characterized by the ratio
k = Ks/K0 = C0/Cs.

From Figs. 7 and 8, we see that the diagrams of ductility
versus relative beam size D/D0 cover the entire range of sizes
D/D0 only if the relative spring stiffness is sufficiently small.
The reason is that, for a high enough spring stiffness, the load-
deflection diagram exhibits no snapback. That this can happen
is clear by comparing the geometrical constructions in Figs.
3(a and b). As a consequence, the family of the ductility curves
for various spring stiffnesses exhibits a transition from
FIG. 10. Ductility of Limestone versus Slenderness in Semi-
logarithmic Plot, Obtained for Geometry-Dependent R-Curve:
(a) k = 0.1; (b) k = 0.15

bounded single-valued functions of D/D0 to unbounded func-
tions of D/D0. The critical size (D/D0)cr below which there is
no snapback is a characteristic property of the beam. Note that,
in the case of concrete, the entire range of spring stiffness is
covered for high beam sizes, whereas, in the case of limestone,
ductility is not defined for a spring parameter exceeding 2. In
the latter case, the load-deflection diagram does not exhibit
snapback beyond a certain value of the spring stiffness.

For some of the curves in Figs. 7 and 8 that have a point
of vertical tangent, one has two ductility values for the same
D/D0-value. [This is particularly obvious in the case of lime-
stone for R(c) = Gf They correspond to the firstc/(c 1 c ).]0Ï
and second point of vertical tangent on the curve P(D) in Fig.
3(a). Because stability is lost at the first such point (snapback
point), only that point is relevant to failure. Therefore, ductility
is indicated by the lower branch of the curve of l versus D/
D0, lying below the point of vertical tangent in Figs. 7 and 8.
The upper branch represents the states of stability restoration
rather than stability loss.

Figs. 9(a and b) and 10(a and b) show, in semilogarithmic
plots, similar diagrams for various spans characterized by the
beam slenderness L/r and two relative spring stiffness values;
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L = span; r = = radius of gyration of a rectangularD/ 12Ï
cross section of the beam; L/r = The typical fracture12L/D.Ï
characteristics of concrete and limestone are considered. The
diagrams are calculated for a span-to-depth ratio varying from
2.5 to 250. Figs. 9 and 10 show that the ductility decreases
with increasing slenderness quite rapidly.

One can also observe that these diagrams depend on the
spring parameter. For instance, for the properties of concrete
and k = 0.15, there is a finite ductility for every beam size
[Fig. 9(a)], whereas for k = 0.25, the ductility is unbounded
for any beam size [Fig. 9(b)] (which means that the load-
deflection diagram cannot exhibit snapback). The same obser-
vation can be made in the case of limestone [compare Figs.
10(a and b)]. The ductility diagrams lie above the line l = 1
and are bounded from above by a certain limit curve, which
depends on the spring stiffness parameter k. This bounding
diagram is approached for very small beam sizes D → 0.

OTHER STRUCTURE TYPES AND THREE-
DIMENSIONAL SIMILARITY

Although a calculation example has been presented only for
the three-point bend beam, the method of analysis given by
(1)–(22) is completely general and is applicable to any type
of structures for which the dimensionless function k(a) char-
acterizing the stress intensity factor is known.

The case of cracked structures similar in three dimensions,
such as axisymmetric specimens with a radially growing cir-
cular crack, can be analyzed similarly, and the results are qual-
itatively the same. In that case, the uncracked compliance C0

} 1/D, but the size dependence of C0 is compensated by the
fact that the length of the fracture front is proportional to D.

In the case of one-dimensional similarity, such as the ease
of a tensioned bar with a cohesional crack or damage zone
opening simultaneously over the entire cross section [which
has been analyzed in Bažant (1976)], the size effect becomes
the same as the slenderness effect, and the behavior is quali-
tatively the same as the slenderness effect described here.

GENERALIZATION TO COMPLEX STRUCTURES
WITH CRACKED PARTS

Consider now structures of various sizes representing an
assemblage of parts, for example, beams, one of which con-
tains a large growing crack. One way to calculate the ductility
of such a structure is to obtain function k(a) or &(a) for the
entire structure, by the brute force approach of finite elements.
But in such an approach the entire fracture analysis needs to
be repeated for each structure size or slenderness and does not
explicitly reveal the effect of size, slenderness, or other shape
changes in the elastic structure adjoining the structural part.

A simpler, more instructive, and more general way, which
makes the effects of size, slenderness, and shape conspicuous
and does not require repeating fracture analysis for each case,
is to apply the flexibility (or force) method for structural as-
semblages, which are, in general, statically indeterminate. The
calculation may proceed in a similar manner as that illustrated
for the simple assemblage of cracked beam and spring.

Let Fi (i = 1, 2, . . . , n) be the generalized internal forces
(such as bending moments, normal forces, and shear forces)
by which the isolated cracked structural part (e.g., the cracked
beam in Fig. 11) interacts with the rest of the structure. The
structure obtained by severing the connections that transmit Fi

will be called the primary structure. Further let Di be the as-
sociated generalized displacements (e.g., relative rotations, rel-
ative normal, or shear displacement) of the whole primary
structure, such that FidDi be the correct expressions for work,
and D be the displacement associated with P. Denote elC ,ij
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FIG. 11. Cracked Structural Part Isolated from Complex Struc-
ture

and C el,PP = elastic compliances representing deflectionsel,PC ,i

in the sense of Di due to Fj = 1 and to load P = 1 for the
whole primary structure when the isolated structural part has
no crack. Further denote and C fr,PP(a) = addi-fr fr,PC (a), C (a) ,ij i i

tional compliances of the isolated cracked structural part alone,
caused by a crack of length a (these need to be determined by
the fracture mechanics method of the type already described).
Then, in a matrix form, the total generalized displacements
are

P P T PP{D } = [C ]{F } 1 {C }P; D = {C } {F } 1 C P (24a,b)i ij j i i i

where

el fr P el,P fr,PC = C 1 C (a); C = C 1 C (a) (25a,b)ij ij ij i i i

PP el,PP fr,PPC = C 1 C (a) (25c)

represent the total compliances of the whole primary structure
due to both elasticity and fracture.

Compatibility requires that Di = 0. Then, solving the first
matrix equation in (24) for Fj and substituting it into the sec-
ond, we obtain

PP P T 21 PD = (C 1 {C } [C ] {C })P (26)i ij j

The advantage gained by this formulation is that, if the rest
of the structure is changed arbitrarily while the cracked part
is only scaled in size but does not change its shape, one can
dispense with repeating the fracture mechanics analysis of the
cracked part. A whole range of solutions for structures with
different slendernesses or shapes of the crack-free parts can be
readily obtained.

SUMMARY AND CONCLUSIONS

1. The ductility, conceived in the sense of stability limit,
may be defined as the ratio of the fracturing displacement
at the limit of stability under displacement control to the
elastic part of displacement at maximum load. An ex-
ample of a notched three-point bend beam with a grow-
ing crack has been analyzed numerically. The ductility
has been determined, and its dependence on the structure
size, slenderness, and stiffness of the loading device has
been clarified.

2. The family of the curves of ductility versus relative
structure size at various loading device stiffnesses or var-
ious slendernesses is found to exhibit, at a certain critical
size, a transition from bounded single-valued functions
of size to unbounded two-valued functions of size.

3. The flexibility (force) method can be adapted to analyze
the ductility of structural assemblages. To this end, it
is necessary and sufficient to know the stress intensity
factor of the cracked structural part considered sepa-
rately.
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