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Our study takes advantage of large changes in
habitat fragmentation and accurate maps and
samples over the same period, enabling us to
show the importance of habitat patches in
wild populations as avenues for dispersal.
The northern genes have leapfrogged through
hundreds of forest fragments in a period of 20
years, demonstrating the use of stepping
stone patches of forest by red squirrels. These
findings suggest that where a network of
stepping stones is available within a critical
dispersal distance, gene flow can be very
rapid through highly fragmented landscapes.
It also indicates that human-made changes
affecting the connectivity of a landscape can
result in changes in genetic structure, not
only in the area of habitat change but in
populations hundreds of kilometers from the
site of habitat change.
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Effects of Size and Temperature
on Metabolic Rate

James F. Gillooly,1* James H. Brown,1,2 Geoffrey B. West,2,3

Van M. Savage,2,3 Eric L. Charnov1

We derive a general model, based on principles of biochemical kinetics and
allometry, that characterizes the effects of temperature and body mass on
metabolic rate. The model fits metabolic rates of microbes, ectotherms, en-
dotherms (including those in hibernation), and plants in temperatures ranging
from 0° to 40°C. Mass- and temperature-compensated resting metabolic rates
of all organisms are similar: The lowest (for unicellular organisms and plants)
is separated from the highest (for endothermic vertebrates) by a factor of about
20. Temperature and body size are primary determinants of biological time and
ecological roles.

Metabolism sustains life. It is the process by
which energy and materials are transformed
within an organism and exchanged between
the organism and its environment. Whole

organism metabolic rate scales with the 3/4-
power of body mass and increases exponen-
tially with temperature (1, 2). The effect of
temperature on a biological process is tradi-

Fig. 3. Change in genetic composition and woodland coverage. (A) Woodland coverage in the
absence of Kielder Forest is represented in dark green, with the three basic red squirrel genetic
groups color coded. Red 5 northern group: Ford (1) (n 5 4 individuals), Harwood (2) (n 5 2),
Sidwood (3) (n 5 2), and Wauchope (4) (n 5 2), plus Foulshaw Moss (11) (n 5 5). Yellow 5 eastern
group: Rothbury (5) (n 5 10), Morpeth (6) (n 5 2), and Tyne Valley (7) (n 5 30). Blue 5 western
group: Cumbria (8) (n 5 31), Pooley Bridge (9) (n 5 2), and Rosthwaite (10) (n 5 2). The colored
areas include all woods within the linking distance of 1.5 km to woods where squirrels were
sampled. Black outlines indicate the area over which specimens in each population were collected.
(B) Woodland coverage including Kielder Forest. Again, the three main groups are color coded as
above. Cumbria (8) now forms part of the northern genetic group.
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tionally expressed as a Q10, which quantifies
temperature dependence across a limited tem-
perature range (i.e., 10°C).

Size and temperature primarily affect met-
abolic rate through different mechanisms.
Recently, a general model has been shown to
explain the scaling of whole organism meta-
bolic rate B with body mass M, where B }
M3/4 so that mass-specific metabolic rate
B/M } M21/4. This quarter-power scaling is
based on the fractal-like design of exchange
surfaces and distribution networks in plants
(3) and animals (4). Temperature governs
metabolism through its effects on rates of
biochemical reactions. Reaction kinetics vary
with temperature according to the Boltz-
mann’s factor e2Ei/kT, where T is the absolute
temperature (in degrees K), Ei is the activa-
tion energy, and k is Boltzmann’s constant.

Metabolic rate is the consequence of
many different biological reactions. So

B 5 O
i

Ri

where the Ri represents the rates of energy
production via the individual reactions (i) that
comprise metabolism. Each reaction rate de-
pends on three major variables: Ri } (concen-
tration of reactants) (fluxes of reactants) (ki-
netic energy of the system). The first two
terms, which are constrained by the rates of
supply of substrates and removal of products,
contain the majority of the body mass depen-
dence. Because of allometric constraints on
exchange surfaces and distribution networks
(3, 4), the product of these two terms scales
with body size as M3/4. The third term con-
tains the dominant temperature dependence,
which is governed by the Boltzmann factor,
e2Ei/kT. This is valid within the limited range
of “biologically relevant” temperatures be-
tween approximately 0° and 40°C. This is the
range that organisms commonly operate
within under natural conditions. Near 0°C,
metabolic reactions cease due to the phase
transition associated with freezing water, and
above approximately 40°C, metabolic reac-
tion rates are reduced by the increasing influ-
ence of catabolism. We do not consider hy-
perthermaphiles, specialized organisms that
live at temperatures substantially hotter than
40°C.

The combined effects of body size and
temperature on metabolic rate within the bi-
ologically relevant temperature range can
therefore be well approximated by

B , M 3/4e2Ei/kT (1)

Here Ei represents an average activation en-
ergy for the rate-limiting enzyme-catalyzed
biochemical reactions of metabolism. Be-
cause, for each taxon, B/M3/4 5 B0 is approx-
imately independent of M, almost all of the
temperature variation is contained in the nor-
malization term, B0

B0 , e2Ei/kT (2)

Because the biochemistry of metabolism is
common to aerobic organisms, we predict
that plotting mass-normalized metabolic rates
[ln(B0)] as a function of 1/T for different
taxonomic or functional groups should yield
similar straight lines with slopes, a 5 –Ei/k.
Furthermore, we predict that the values of Ei

obtained from these plots will fall within the
range of measured activation energies for
metabolic reactions. Because these activation
energies vary between 0.2 and 1.2 eV with an
average of approximately 0.6 eV (5, 6), the
slope of these lines should have a universal
value of approximately –7.40 K.

We evaluated these predictions using rest-
ing metabolic rates as a function of temper-
ature and body mass for a variety of organ-
isms: aerobic microbes, plants, multicellular
invertebrates, fishes, amphibians, reptiles,
birds, and mammals (Fig. 1) (7). Plots of
these data are well fit by straight lines, all
with similar slopes and intercepts. This sup-
ports the first prediction. Furthermore, the
average activation energies extracted from
the slopes give Ei 5 0.41 – 0.74 eV with a
mean for all groups of 0.62 eV. This supports
the second prediction. Figure 1 suggests that
as a first approximation the metabolic rates of
all organisms are a single, general function of
body size and temperature. An expression for
the dependence of metabolic rate on body
size and temperature can be derived from Eq.

2 by noting that the value of B0 at some
temperature T can be related to its value at
some other temperature T0 by

B0~T ! 5 B0~T0!e 2 Ei/k~1/T21/T0!

5 B0~T0!eEi~T2T0!/kTT0

Combined with Eq. 1 this leads to

B 5 B0~T !M 3/4 5 B0~T0!M
3/4eEiTc/kTT0

(3)

where Tc 5 T 2 T0. The term e EiTc/kTT0 5
e EiTc/{kT0

2(11Tc/T0)}, which describes the
“universal temperature dependence” (UTD)
of biological processes. Equation 3 allows
metabolic rates of different organisms to be
compared independently of body mass and
temperature by comparing their values of
B0(Tc) normalized with some standard tem-
perature, Tc (often 20°C).

Equation 3 also expresses the temperature
dependence in terms of degrees Celsius by
choosing T0 to be the freezing point of water
(;273 K), in which case Tc 5 T – T0 defines
temperature in degrees Celsius. Biologists
would be better served by quantifying tem-
perature-dependence in terms of the UTD
rather than the traditional Q10 factor, which is
defined by the equation

B0~T !

B0~T0!
5 @Q10#

~T2T0!/10 5 @Q10#
Tc/10

(4)

with Q10 considered a constant, which is
independent of temperature. From Eq. 3,
however, we see that Q10 must, in fact, have
a temperature dependence given by

Q10 5 e10Ei/kTT0 5 e10Ei/$kT02~11Tc/T0!%

(5)

In other words, biological processes do not
generally depend purely exponentially on

1Department of Biology, The University of New Mex-
ico, Albuquerque, NM 87131, USA. 2Santa Fe Insti-
tute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
3Theoretical Division, MS B285, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA.

*To whom correspondence should be addressed. E-
mail: gillooly@unm.edu

Fig. 1. Effect of temperature (1000/degrees K) on mass-
normalized resting metabolic rate (B0, in W/g3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).

R E P O R T S

www.sciencemag.org SCIENCE VOL 293 21 SEPTEMBER 2001 2249



temperature (in degrees Celsius). Calculating
temperature dependence using Eq. 4 with a
constant value of Q10 introduces an error that
can be as much as 15% over the “biologically
relevant” temperature range. Using the UTD
not only avoids this error, but also expresses
temperature dependence in terms of the acti-
vation energy Ei and Boltzmann’s constant k,
thereby linking whole-organism metabolism
directly to the kinetics of the underlying bio-
chemical reactions.

Because biological times are the recipro-
cals of biological rates per unit mass, Eq. 1
can be rewritten to give a general expression
for biological time (tb) in terms of body size
and temperature

tb } M1/4 eEi/kT (6)

Eq. 6 should apply to all biological times,
from times of biochemical reactions and
cell cycles to developmental times and life-
spans. Thus, we predict that plots of ln (tb
M 21/4) as a function of 1000/T should yield
straight lines with slopes identical in magni-
tude but opposite in sign to the plots of ln(B0)
as a function of 1000/T for each group (Fig.
1). Plots of life-spans (LS) of fish and aquatic
invertebrates of varying body sizes measured
at different constant temperatures support this
prediction (Fig. 2) (7). The slopes for life-
span are 6.37 and 6.50 for fish and aquatic
invertebrates, respectively, compared with
slopes of –5.02 and –9.15 for metabolic rate.
The approximately opposite slopes mean
that over the lifetime of these animals a unit
of mass uses approximately the same quan-
tity of energy, regardless of body size and
temperature.

This is not meant to imply that Eq. 1 can
account for all variation in biological rates
and times. There is residual variation about
the lines in Fig. 1 that reflects differences
among species. Moreover, the data that we
compiled are for resting metabolic rates.
Rates of metabolism for endotherms during
maximal aerobic activity can be as much as
8- to 10-fold greater than those at rest (8).

Furthermore, in response to stressful environ-
mental conditions, some organisms have met-
abolic rates below normal resting levels (e.g.,
diapause, anhydrobiosis) (9). We regard Eq.
1 as the zeroeth-order model that describes
the effects of size and temperature as prima-
ry. Other, secondary factors are required to
explain the remaining variation within and
between groups.

The general application of Eq. 1 is dem-
onstrated by the diversity of organisms de-
picted in Fig. 1. The unicells include protists,
algae, and bacteria. The data for plants in-
clude not only whole plants, but also fruits,
storage organs (tubers, bulbs), and hydrated
seeds. Botanists rarely measure rates of
whole-plant photosynthesis or respiration as a
function of “body” size and temperature [but
see (10)]. These results suggest that metabol-
ic rates of plants are similar to those of
unicellular organisms and invertebrate ani-
mals. The data for birds and mammals in-
clude not only resting individuals of many
species at normal body temperatures, but also
individuals in hibernation or torpor at lower
body temperatures. These last data imply that
the lower metabolic rates of torpid endo-
therms can be attributed to temperature, as

long as body temperatures approximate am-
bient temperatures; there is no need to invoke
other mechanisms to reduce metabolic rate
during torpor (11).

The primary effects of size and tempera-
ture and the residual variation due to other
factors can be shown by comparing metabolic
rates as a function of temperature and body
mass (Fig. 3). Three results are apparent.
First, the slopes are similar (Fig. 3A) for all
groups except fish and amphibians, which
appear to have slopes which are slightly less
negative, and consequently also have lower
intercepts. Second, the average relations for
the different groups are offset somewhat (Fig.
3A). The maximum difference separating any
of the groups, unicells and plants from birds
and mammals, is approximately e3 or 20-fold.
Third, these differences are small compared
with variation in measured values within the
groups (Fig. 3B). The data points for each
group in Fig. 1 overlap broadly across
groups, calling attention to the similarity in
metabolic rates of all organisms.

This similarity is perhaps best depicted
by plotting whole-organism metabolic
rates, corrected to a common temperature
of 20°C, as a function of body mass (12).

Fig. 2. Effects of body mass (M, in g) and
temperature (1000/K) on life-span (LS, in days)
for aquatic invertebrates and fish held at dif-
ferent constant temperatures in the laboratory.
Data sources listed at Science Online (7).

Fig. 3. A summary of the effect of temperature (1000/K) on mass-normalized resting metabolic
rate (B0, in W/g3/4) for organisms from Fig. 1. (A) The regression lines are fit to the data in Fig. 1.
Dashed and solid lines represent those groups listed on the right and left sides of the figure,
respectively. (B) The envelopes are drawn around the data points for groups in Fig. 1.
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Fig. 4. A comparison of
the temperature-stan-
dardized relation for
whole-organism meta-
bolic rate (W) as a
function of body mass
(kg) obtained in this
study with the depic-
tion of Hemmingsen
(1). Data points repre-
sent unicells, plants, ec-
totherms, and endo-
therms from Fig. 1, all
standardized to 20°C.
The three lines repre-
sent the relations ob-
tained by Hemmingsen
for unicells, ectotherms
(“poikilotherms”), and
endotherms (“homeotherms”).
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This allows a comparison of temperature-
standardized resting metabolic rates with
Hemmingsen’s classical study (1) (Fig. 4).
Hemmingsen’s work implies that ecto-
therms, endotherms, and unicells have dis-
tinctively different, nonoverlapping meta-
bolic allometries. He argues that this sug-
gests three major steps in the evolution of
animal metabolism. The data in Fig. 4 show
that this is an oversimplification. Temper-
ature-standardized metabolic rates do not
differ among unicells, invertebrates, and
plants, but the rates for ectothermic verte-
brates (fishes, amphibians, and reptiles) are
slightly higher, and the rates for endother-
mic birds and mammals are slightly higher
still. So instead of these groups having no
overlap and differing by a factor of approx-
imately 225 as suggested by Hemmingsen,
there is extensive overlap with the average
metabolic rates of unicells and plants sep-
arated from those of birds and mammals by
about 20-fold.

Thus, metabolic rate—the rate at which or-
ganisms transform energy and materials—is
governed largely by two interacting processes:
the Boltzmann factor, which describes the tem-
perature dependence of biochemical processes,
and the quarter-power allometric relation,
which describes how biological rate processes
scale with body size. Here we show that using
Q10 can introduce substantial error and that the
temperature dependence of metabolic rate is
relatively constant across a range of tempera-
tures from 0 to 40°C. Application of the UTD to
data on biological rate processes should reveal
when the observed variation in response to
temperature can be explained parsimoniously
by Eq. 1, and when some additional biological
mechanism is required. Emphasis on how met-
abolic rates depend primarily on body size and
temperature promises to contribute to under-
standing how microbes, plants, and animals
control the fluxes and storage of energy and
materials on scales from local ecosystems to the
biosphere (13, 14).
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A Circadian Output in
Drosophila Mediated by

Neurofibromatosis-1 and
Ras/MAPK

Julie A. Williams,1,2 Henry S. Su,1,2 Andre Bernards,4

Jeffrey Field,3 Amita Sehgal1,2*

Output from the circadian clock controls rhythmic behavior through poorly
understood mechanisms. In Drosophila, null mutations of the neurofibroma-
tosis-1 (Nf1) gene produce abnormalities of circadian rhythms in locomotor
activity. Mutant flies show normal oscillations of the clock genes period ( per)
and timeless (tim) and of their corresponding proteins, but altered oscillations
and levels of a clock-controlled reporter. Mitogen-activated protein kinase
(MAPK) activity is increased in Nf1 mutants, and the circadian phenotype is
rescued by loss-of-function mutations in the Ras/MAPK pathway. Thus, Nf1
signals through Ras/MAPK in Drosophila. Immunohistochemical staining re-
vealed a circadian oscillation of phospho-MAPK in the vicinity of nerve terminals
containing pigment-dispersing factor (PDF), a secreted output from clock cells,
suggesting a coupling of PDF to Ras/MAPK signaling.

The endogenous circadian pacemaker con-
trols the daily oscillations of both cellular and
behavioral processes and can be entrained to
environmental cues such as light and main-
tain daily cycling in the absence of such cues.
The molecular components of the circadian
clock form a perpetually oscillating 24-hour
feedback loop (1). The signaling mechanism
that mediates output from these clock pro-
teins to behavior is not known, although a
secreted neuropeptide, PDF, may be a crucial
output element in Drosophila (2).

We sought to identify other output signaling
components by testing candidate molecules.
One of these, the neurofibromatosis-1 (Nf1)
gene product neurofibromin, is highly con-
served between humans and flies, with se-
quence similarity throughout the length of the
protein (3). In humans, Nf1 is a tumor suppres-
sor. Neurofibromin inactivates the Ras onco-

gene through hydrolysis of guanosine triphos-
phate (GTP) (4) and lack of neurofibromin
expression in humans causes neurofibromatosis
type 1 (NF-1). Nf1-deficient flies share some
phenotypes with the human counterpart: Mu-
tant flies are small (3), and short stature is a
feature of some NF-1 patients (5). Nf1 humans,
flies, and mice all show learning deficits (5–7).
The Drosophila neurofibromin can act as a
Ras-GTPase activating protein in vitro (3), but
no links to Ras have been demonstrated in vivo.
Instead, all defects associated with mutations of
the Nf1 gene in flies are rescued by up-regula-
tion of cyclic adenosine 39,59-monophosphate
(cAMP)–dependent signaling. Because other
defects in cAMP signaling have resulted in
circadian phenotypes (8–10), we hypothesized
that Nf1 mutants would also exhibit abnormal
circadian behavior.

To determine the effect of Nf1 on circa-
dian rhythms, locomotor activity in constant
darkness (DD) was monitored in adult flies
carrying a null mutation in the Nf1 gene
either by deletion (Nf1P1) or by P-element
insertion (Nf1P2) (3). None of the Nf1P1 flies
were rhythmic [see (11)], and only 10% of
Nf1P2 flies displayed weak rhythms (Table
1). The parental strain, K33, which contains a

1Howard Hughes Medical Institute, 2Center for Sleep
and Respiratory Neurobiology, 3Department of Phar-
macology, University of Pennsylvania School of Med-
icine, Philadelphia, PA 19104, USA. 4Massachusetts
General Hospital Cancer Center, Charlestown, MA
02129, USA.

*To whom correspondence should be addressed. E-
mail: amita@mail.med.upenn.edu
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ERRATUM

C O R R E C T I O N S A N D C L A R I F I C A T I O N S

RREEPPOORRTTSS::  “Effects of size and temperature on metabolic rate” by J. F.

Gillooly, J. H. Brown, G. B. West, V. M. Savage, E. L. Charnov (21 Sept.

2001, p. 2248). In Figs. 1, 3, and 4, a systematic error was made in the

units of metabolic rate: Instead of watts (joules per second) as was

shown, the units should have been joules per minute. Thus, the value

of metabolic rate shown on the published figures is a factor of 60 too

large; to obtain the correct value in watts, the number shown in each

figure must be divided by 60. Consequently, in Fig. 4, where the au-

thors compared their temperature-normalized plot with that of A. M.

Hemmingsen, his data are correctly expressed in watts, whereas the

authors’ are in joules per minute and should therefore be reduced by

a factor of 60. The corrected version of Fig. 4, in which both sets of

data are expressed in the same units (watts), is shown here. In addi-

tion, there was a mislabeling in Fig. 2: The ordinate should have read

ln [LS/(M1/4)] rather than ln [LS (M1/4)] so that the unit of the quanti-

ty in square brackets is days per gram1/4 and not simply days. These

corrections do not affect the conclusions nor the nature of the re-

sults of the paper.
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