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Summary 

Social animals exchange information during social interaction. The rate of interaction and, hence, the rate of 

information exchange, typically changes with density and density may be affected by the size of the social 

group. We investigate models in which each individual may be engaged in one of several tasks. For example, 

the different tasks could represent alternative foraging locations exploited by an ant colony. An individual's 

decision about which task to pursue depends both on environmental stimuli and on interactions among 

individuals. We examine how group size affects the allocation of individuals among the various tasks. 

Analysis of the models shows the following. (1) Simple interactions among individuals with limited ability to 

process information can lead to group behaviour that closely approximates the predictions of evolutionary 

optimality models, (2) Because per capita rates of social interaction may increase with group size, larger 

groups may be more efficient than smaller ones at tracking a changing environment, (3) Group behaviour is 

determined both by each individual's interaction with environmental stimuli and by social exchange of 

information. To keep these processes in balance across a range of group sizes, organisms are predicted to 

regulate per capita rates of social interaction and (4) Stochastic models show, at least in some cases, that the 

results described here occur even in small groups of approximately ten individuals. 
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Introduction 

One important feature of social groups is that individuals engage in a variety of tasks. The diversity 

of  tasks is as great as the diversity of  social taxa, but some broad categories of  tasks are common, 

such as foraging, vigilance for predators, territorial interactions with conspecifics and care of 

juveniles. Each individual pursues a single task at any one time, but an individual changes tasks, 

in response to interactions with its environment and in response to interactions with other 

individuals. 

Here we investigate some models of  social groups, to explore how the simple behaviour of  

individuals can allow groups to adjust the allocation of individuals into various tasks. We define the 

behavioural state of  a social group as the vector describing the distribution of a societies' members 

among tasks. The group's  behaviour is determined by the balance between two kinds of  forces: task 

switching caused by each individual's interaction with its environment and task switching caused 

by social interactions. Because the rate of  social interactions may change with group size, the 

balance between these two forces and, hence, the behaviour of  a society, may change as a function 

of group size. In this paper, we focus on the effects of  group size on group behaviour. When 

designing the models we used social insects as our primary biological reference. Nonetheless, the 

models are sufficiently general that they may be employed to study other kinds of  social groups 

(e.g. fish schools or ungulate herds) and other arrays of  behaviours or tasks. 
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Empirical studies of social insects show that colony size affects the allocation of workers to 

various tasks (Tschinkel, 1988; Nonacs and Dill, 1990; Wolf and Schmid-Hempel, 1990). In 

harvester ants, task allocation in larger colonies is more stable and consistent when environmental 

conditions change in comparison with smaller colonies (Gordon, 1987). In disputes with 

neighbours over foraging area, smaller, younger colonies are more persistent and combative than 

older, larger ones (Gordon, 1991, 1992). Territorial behaviour involves some assessment of the 

relative sizes of the colonies involved (Holldobler, 1981; Adams, 1990). 

Early models of social insect behaviour were concerned with societies made up of specialized 

individuals, i.e. individuals that consistently perform a single task (Oster and Wilson 1978). 

Subsequent work has shown that task switching is pervasive in social insects (Calabi, 1988; 

Gordon, 1989; Robinson, 1992). Other work has shown that activity levels vary greatly among 

individuals (Jaisson et  al., 1988; Schmid-Hempel, 1990) and among task groups (Gordon, 1986). 

Whether an individual changes tasks may depend on how successful it is at its current task (Cartar, 

1992). The general picture that has emerged from empirical work in social insects is that as 

conditions change, individuals decide whether or not to be active and which task to perform. All 

these individual decisions generate the dynamics of group behaviour, the numbers actively engaged 

in each task at any moment. 

Recent theoretical work on social insects has provided new insight on the dynamics of group- or 

colony-level behaviour. Most of this work explores how individuals are allocated to different 

components of a single task, including the allocation of foragers to food sources that differ in 

quality (Seeley et  al., 1991) or to food sources in different locations (Deneubourg et  al., 1986; 

Pasteels et  al., 1987; Deneubourg and Goss, 1989) or the allocation of workers to various aspects 

of nest construction (Jeanne, 1986). Other studies model how individuals are allocated to a variety 

of different tasks (Gordon et  aL, 1992). These models differ in many ways but share the basic 

features of those we present here: an individual's behaviour depends in part on some assessment it 

makes of its environment (e.g. assessment by a honeybee forager of the quality of its nectar source 

in Seeley et  al. 1991) and in part on its interactions with other individuals (e.g. following the trail 

pheromone laid by another individual in Deneubourg et  al. 1990). 

Theoretical studies of social insect behaviour have not yet addressed the question of colony size. 

More generally, it is well known that group size affects vigilance rates (Caraco, 1980) and foraging 

success (Packer et  al., 1990) and a large body of work explores how the benefits of large groups 

are balanced by the costs of sharing resources (Pulliam, 1973; Brown, 1982; Giraldeau and Gillis, 

1985; Kramer, 1985). A basic principle underlying this work is that interaction rates depend on 

densities and densities may change with group size (Waser, 1984). 

If interactions among individuals were a consequence of random collisions, like particles in 

Brownian motion, then the total number of encounters among n individuals enclosed within an 

arena of constant size would increase as n 2. However, empirical studies of social insects show that 

individuals can regulate their encounter rate (Gordon et  al. 1993). Encounter rates in ants were 

measured at a range of densities, by housing several different group sizes in arenas of varying size. 

Total numbers of encounters (measured by counting antennal contacts) did not increase as n 2. 

Instead, at low densities, individuals aggregated into a small portion of the arena. By elevating the 

local density about each ant, the ants increased the per capita rate of contact. In contrast, at high 

densities ants were evenly spaced and resisted contact with nearby individuals. As a result, the 

contact rate levelled off as the density increased (Fig. 1). Why do ants regulate the rate of social 

interaction? We present theoretical results that show how the capacity to regulate interaction rates 

may contribute to the efficiency with which l~ge colonies or groups adjust task allocation to 

changing conditions. 
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The remainder of this paper is divided into two sections. In the first, we introduce deterministic 

models that illustrate how extremely simple behaviours of individuals can permit a colony to 

operate efficiently. We compare the distribution of workers among tasks with the predictions of 

simple evolutionary optimality models. An analysis of the effects of colony size on this distribution 

shows (1) the efficiency with which a colony's behaviour tracks a changing environment may 

increase with colony size and (2) regulation of the per capita rate of social interactions (as in Fig. 

1) will permit efficient behaviour by a colony despite changes in colony size. 

In the second section, we examine Markovian models of the stochastic processes that under- 

pin the deterministic models, to determine how large a social group must be before the 

deterministic approximation is reasonable. We show that the deterministic models typically provide 

close approximations for social groups with more than 100 members. Interestingly, the 

deterministic approximation is sometimes useful with ten or fewer members and thus, simple 

deterministic models may be appropriate for social species that live in small groups. 

Deterministic model of task switching 

State variables 

Suppose that, at any one time, organisms can either be inactive or engage in one of Q tasks and let 

X i be the number of individuals engaged in task i. The models in this paper describe how 
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Figure 1. Per capita interaction rates for the ant species Lasius fuliginosus as a function of the number of 
ants per unit area from Gordon et aL (1993). The horizontal axis is labelled 'global density' to distinguish 
it from the local density within the arena which the ants controlled by aggregating at low densities and 
spacing evenly at high densities. 
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interactions among individuals, together with each individual's assessment of its local environment, 

control the allocation of individuals among tasks. The models thus focus on the dynamics of the 

vector X = {X 1, X 2 . . . . .  XQ}. There is abundant evidence that in social insects, worker allocation 

is rapidly adjusted to changes in food supply (Seeley, 1986, 1989), predation (Nonacs and Dill, 

1990, 1991) and nest structure (Gordon, 1986, 1987). 

For simplicity, we model interactions among individuals as simple collisions. The rate at which 

an individual engaged in task i encounters individuals engaged in task j, is simply proportional to 

Dij - the mean local population density of task j individuals about a task i individual. Also, for 

simplicity, we assume that each individual has only a very limited ability to assess the environment. 

An individual can be in one of only two behavioural states. Either it views the environment as 

profitable, in which case the individual is in the successful state, or it views the environment as 

unprofitable, in which case it is in the unsuccessful state. Let s i be the probability that an individual 

engaged in task i is in the successful state and let s be the vector {s 1, s 2 . . . . .  SQ}. We must specify 

the processes that govern the dynamics of s if we are to model how task allocation (X) responds 

to environmental changes. 

In what follows, we first review some evolutionary reasoning that helps in understanding the 

behavioural models. We then introduce the equations that govern X and finally discuss the 

dynamics of s. 

Evolut ionary rationale 

Let R i be the abundance of the resource that is the focus of task i. If task i were foraging, then R i 

might be either the abundance of prey in location i or the abundance of prey of type i. If task i were 

nest maintenance, then R i might be the amount of debris present on the nest. Also, let the function 

f(Ri) be the rate of resource capture by an individual engaged in task i, but scaled in units of fitness 

benefit. Finally, let ~a and ~i be, respectively, the cost of engaging in a task and the cost of 

inactivity (cost of being in the inactive class). We define the differential cost of activity as 

Ac -~- ~A -- ~l. 
The ESS distribution of individuals among tasks, assuming that evolution maximizes individual 

(as opposed to group) fitness, is given by the well-known ideal free distribution (Fretwell and 

Lucas, 1970). Individuals should distribute themselves among tasks such that no animal can 

increase its fitness by switching activities. The ESS is characterized by two classes of tasks. Tasks 

that are performed must yield equal fitness benefits, f/(Ri) = fj (R) if X i > 0, and Xj > 0, and these 

benefits must exceed or equal the cost of activity, f (Ri) >- A c if Xg > 0. Tasks that are not performed 

must yield lower benefits than those performed: f (Ri) >f j  (Rj) if Xi > 0 and Xj = 0. 

In contrast, if evolution maximizes colony-level fitness, then a different ESS is obtained. The 

social group's fitness (W) is given simply by its total net rate of resource capture: 

W= E Xi~ii(Ri)- ~A)- Xi 61 
i=1 i= 

where N is the number of individuals in the colony and the term in the square brackets is the 

number of inactive individuals. The optimal distribution of individuals from the point of view of 

the colony is obtained by differentiating W with respect to each X r The  ESS is again characterized 

by two classes of tasks. Tasks that are performed must yield equal marginal benefits, d[X~ (R~)]/ 

dX i = d[X.~ (R)]/dXj if X/> 0, and Xj > 0, and these marginal benefits must exceed or equal the cost 

of activity, d[X.f/(Ri)]/dX i >-- A c. Tasks that are not performed must yield lower marginal benefits 

than those performed: d[X~ (R~)]/dXi > d[X.~ (Rj)]]dX i if  X~ > 0 and Xj = 0. 

An intuitive understanding of this result can be obtained by ignoring temporarily the cost of 

activity. Imagine a colony directing workers to a sequence of tasks beginning with the most 
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profitable (task 1 with less profitable tasks ranked 2, 3 . . . . .  Q). If there is no density dependence 

in the capture rates of individuals engaged on the best task (i.e. R 1 is a constant that does not 

depend on X1), then colony fitness is maximized by allocating all workers to this task. However, if 

there is density dependence then colony returns from task 1 may be sufficiently depressed that dW/ 

dX2lxz=0 :> d W / d X  1 and the colony is selected to switch some workers to task 2 until d W / d X  1 = dW/ 

dX 2. If at this stage dW/dX31x3= o >- dW/dX 1 = d W l d X  2, then allocation to the third task is favoured. 

This process goes on until dW/dXilx,=o = 0 <- dW/dX~ = dW/dX 2 . .  = dW/dXi- 1 tasks 1 to i-1 are 

now all performed with an equal marginal return and all less profitable tasks are not performed. We 

are not, of course, suggesting that the optimum task allocation is arrived at sequentially, just that 

this is a means of visualizing the ESS. 

One difficulty with behavioural optimization models is that proximal behavioural mechanisms 

that lead to an optimum may be difficult to imagine. The mechanistic equations governing X and 

s, which are described in the following sections, were designed to produce patterns of task 

allocation that approximate ESSs. The system governing X is constructed from simple rules 

controlling individual behaviour. Although no single individual is able to compute much of 

anything, in a social group the simple rules both equalize the success probabilities (the si) of all 

tasks performed and ensure that only those tasks yielding the highest success probabilities are 

performed. Similarly, the equations governing s embody simple behavioural rules that cause the 

success probabilities to mirror either individual returns (e.g. s i 'measures' f (Ri)  ) or marginal returns 

(e.g. S i 'measures' d[Xif i(Ri)]/dXi) .  

Dynamics o f  task switching 

To define the model of task allocation, we specify the rules that govern how individuals switch 

from one task to another and switch between activity and inactivity. Consider a collision between 

two active individuals. We make the simple assumption that an interaction between two successful 

or two unsuccessful individuals results in no net change in behaviour. In contrast, an interaction 

between a successful and an unsuccessful individual causes the latter to engage in the former's task. 

Because of our assumption that interactions occur like random collisions, the rate at which 

interactions occur between successful task i individuals and unsuccessful task j individuals is 

proportional to Xy/Dij (1-sj) (or equivalently Xj (1-sy) Djisi). Similarly, the rate at which interactions 

occur between unsuccessful task i individuals and successful taskj  individuals is proportional to X~ 

( l - s / )  DO,~ j. To keep the notation as simple as possible, in what follows we subsume the constant of 

proportionality within the symbol for local density (within D~j). 

Now consider the behavioural transitions from active to inactive and vice versa. We assume that 

an unsuccessful individual will become inactive in a small time interval At, with probability qAt 

and that an inactive individual is recruited to perform task i if it interacts with a successful 

individual engaged in task i. Thus, the rate of loss of task i individuals to the inactive pool is qX i 

(1-si) and the rate of gain of task i individuals from the inactive pool is (N - ~Yj)  DliS i, where Dti 

is the mean local density of task i individuals about an inactive individual. 

With these specifications, the model is 

d--7 = xi(1-si)  q+ xisiDij(1-sj)-  xjsjDji ( ] - s i ) + ( N -  E xj) DliS i 
j=l j= j= l  

(1) 

i = (1,2 . . . . .  Q). Equation 1 gives change (the left-hand side) as a function of four terms on the 

right-hand side: (1) individuals who cease task i and become inactive because they are 

unsuccessful, (2) individuals from other tasks who are actively recruited to task i, (3) individuals 
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who are recruited from task i to other tasks and (4) inactive individuals who are recruited to task 

i. 

To complete the model of task dynamics, we must define the relationship between the numbers 

of individuals (the X i' s) and the local densities (the Dij' s). This is complex because local densities 

may depend on the host of factors determining spatial distributions and patterns of movement 

(Adler and Gordon, 1992). However, a variety of simple mechanisms would cause Dij to be 

proportional simply to X/N. For example, random collisions among nest workers might occur 

throughout a nest whose volume is proportional to the number of individuals in the colony or 

among foragers moving randomly throughout a foraging territory whose size is proportional to N. 

This scenario is the extreme of perfect regulation, because, in it, densities and per capita rates of 

social interaction remain constant despite changes in group size (providing that the fractions of 

individuals engaged in each task remain constant). Note that interaction rates would also be 

independent of group size if each individual were to regulate its own encounter rate at a constant 

value. Both of these mechanisms - regulation of densities and regulation of contact rates 

independent of densities - are responsible for the constant per capita interaction rates of Lasius 
fuliginosus (Fig. 1, abundances > 50). 

A variety of simple mechanisms could also produce the opposite extreme of no regulation of 

contact rates. In this extreme, Dij is simply proportional to Xj and interaction rates increase linearly 

with group size (see the interaction rates in Fig. 1 for abundances < 50). For example, interactions 

among foragers might occur in some subset of the habitat (e.g. in the vicinity of a nest entrance for 

social insects) that does not expand in size as a group grows, or the physical space corresponding 

to some tasks might be constrained by factors such as the availability of food or the presence of 

competitors that prevent territorial expansion. 

To permit a range of possible dependencies of interaction rates on group size, we assume that 

each D o is equal to Xj[I(N)/N] where I(N) is formally the per capita rate of  social interaction as a 
function of group size. Note that, for simplicity, we assume a single I(N) function common to all 

pairs of tasks (rather than considering the intractable general case of separate functions for each 

pair of tasks). We expect that in most cases I(N) will fall between the extremes of no regulation and 

perfect regulation. Suppose, for example, that I(N) is proportional to N ~. Then, the extreme of no 

regulation of per capita interaction rates corresponds to z = 1 and the extreme of perfect regulation 

of per capita interaction rates corresponds to z = 0. 

For algebraic reasons, it is useful to express Equation 1 in terms of the fractions of individuals 

in each task (signified by the lower case x i rather than the number Xi). After replacing Dij by 

Xj[I(N)/bO, Dz~ by Xt[I(N)/N] and Dli by (N-~)[I(N)IN],  dividing both sides by N and algebraic 

rearrangement we have 

dt -xi q (1 - si) + x i I(N) S i -- Z Xj Sj (2) 
j=l 

i = (1,2 . . . . .  Q). 

The system in Equation 2 shows that the dynamics are influenced by two forces, each described 

by a separate term on the right-hand side. The first describes the experience of each individual with 

its environment. An individual is more likely to cease its task and become inactive if it is 

unsuccessful. The second describes the information transfer and resultant task switching caused by 

social interaction. Observe that interactions among individuals will cause a net inflow into task i if 

s i is greater than the mean success rate (the sum on the right-hand side assuming a success rate of 

zero for inactive individuals), and a net outflow from task i if s i is less than the mean success rate. 

Observe also that direct effects of colony size occur only in the second term. Because I(N) is likely 
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to be a non-decreasing function of group size (i.e. proportional to N ~ with O ~< z ~< 1), the effects 

of social interaction relative to individual experience will typically increase with colony size. 

D y n a m i c s  o f  success  

Suppose that an individual captures and processes a unit of resource (R i) during the small time 

interval At, with probability k(Ri /%)At ,  where tx i is the area over which the task is performed (Ri/ct i 

is the resource density) and k is the slope of the linear functional response. We assume that resource 

capture causes an unsuccessful individual to switch its behavioural state to successful. This type of 

behavioural transition causes the number of successful individuals to increase during At by 

(1 -s~)x ik (Ri /~)At  and thus the fraction of task i individuals in the successful state to increase by 

(1-si)k(R/ot~)At. We also assume that an individual in the successful state will switch to the 

unsuccessful state with probability ,rAt, if it does not capture any resource during At. This causes 

the fraction of successful individuals to decrease by [1-k(RJoti)At]('rAt)s ~ = ,rsiAt plus a tenrL of 

order (At) 2. Putting these two rates together and passing to the fimit of infinitesimal At, we 

have 

dsi k Ri (1 - si) (3) 
dt  - "rsi + oL i 

The equilibrium of Equation 3 is s~i =fi(Ri) /~i(Ri)  + "r), where fi(Ri) is the per capita rate of 

resource capture, k R/ot~. Note that sEi is a monotonically increasing function of an individual' s rate 

of resource capture. Thus, if the dynamics of Equation 3 are sufficiently fast, then s~ will provide 

an accurate mirror of the f i tness  benefi t  o f  task i to the individual  (see 'Evolutionary rationale' 

above). 

In some circumstances, we expect that the abundance of the resource will be largely unaffected 

by the activities of the social species. For example, seed abundance may be determined primarily 

by plant yield, the dynamics of seed burial and germination and seed predation by rodents, fungi, 

weevils and birds, and so be largely unaffected by the activities of a granivorous ant species. 

However, in other circumstances, the profitability of a task will be affected by the activities of the 

social species. For example, suppose that R i is deposited at rate F~ and removed by agents other 

than our social species at rate Ix. Then, the dynamics of R~ is governed by 

dR  R. 
---_____ji = I, i _ IxRi _ k 22 X i 
dt % 

(4) 

and, at equilibrium, R~ is a decreasing function of X~: 

r i 
R i  E m _ _  

+ l 
In this paper, we consider three different classes of functions for the s i. 

(1) Class I - s i is a monotonically increasing function of the per capita returns from task i and 

per capita returns are independent of X/(e.g. capture rates are unaffected by foraging). The example 

yielding this class is Equation 3 with fast dynamics (s is always in equilibrium relative to X 

because the dynamics of s are faster than the dynamics of X) and Equation 4 with k < < F i and 

k < < Ix. s; measures the fitness benefit of task i to the individual as well as the marginal fitness 

benefit to the group, because f i ( R i ) =  d[Xifi(Ri)]/dXi i f f i (Ri )  is independent of X i. 
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(2) Class II - s; is again a monotonically increasing function of the per capita returns available 

from task i, but s~ is now also a monotonically decreasing function of X~ (e.g. capture rates are 

affected by foraging). The example yielding this class is equations 3 and 4 with fast dynamics (the 

dynamics of s i and R i are faster than the dynamics of X i. Thus, s i is given approximately by the 

equilibrium of Equation 3 (si~), with fi(R~) evaluated at the equilibrium of Equation 4 (RiE). s i 

measures the fitness benefit of task i to the individual. 

To motivate class III, we add within-task avoidance of crowding to equation 3 by introducing a 

single new term. Suppose that individuals engaged in the same task interact at random (following 

random collisions) and that each interaction causes an individual in the successful state to switch 

to the unsuccessful state with some probability. Because random collisions increase proportionately 

with population density, we have 

~t = - "CSi Ri ff~i + k - - ( 1 - s i )  - O  s i 
Ot i 

(5) 

where 0 is the constant of proportionality. 

At the equilibrium of Equations 4 and 5 

a--i R i "  

S i : 
k ~ F  1 

1 ' [w+O~,, + -£K~ I------~ 

In the special case in which the parameter 0 is set equal to k'rlix, the  above expression 

becomes 

dxy (gT) ] 

e _ dXi 

si [ dX~ <R,~ (6) 
T + l 

w h e r e f i ( R i  ~) = kRi~&i). Note that s~ ~ is a monotonically increasing function of the marg ina l  benef i t  

o f  task  i to the soc ia l  group  (the derivative in square brackets). 

(3) Class I I I -  s~ is a monotonically increasing function of marginal rate of return from task i and 

a monotonically decreasing function of X~. The example yielding this class is Equations 4 and 5 

with fast dynamics (the dynamics of s i and Ri are faster than the dynamics of Xi) and with 0 tuned 

(presumably by evolution) to be equal to k'r/l~. In this class, si measures the marginal fitness benefit 

of task i to the group. 

The assumption of fast dynamics underpinning classes I-III allows us to dispense with dynamical 

equations for the s i and R i and to focus exclusively on the dynamics of task allocation (Equation 

2). This greatly simplifies the presentation. However, with a single exception (which is noted below 

in the text), all results obtained using classes I-III, can also be obtained without the assumption of 

fast dynamics, by repeating the analyses for the system composed of Equations 2, 3 and 4 or the 

system composed of Equations 2, 4 and 5. 
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Analysis of  the model of  task allocation - equilibria 

By inspection of Equation 2, the equilibrium fraction x~* must either equal zero or satisfy 

Q 
q ( 1 - s i * ) _  ~ x j , s ,  

si* I(N) j=l 
(7) 

where Si* signifies s i evaluated at the equilibrium xi* and sj* signifies sj evaluated at xi*. Now 

assume that the equilibrium fraction is non-zero for two tasks, task a and task b and consider 

Equation 3 for each task (Equation 3 with i = a and j  = b). Because these equations have the same 

right-hand side, we may set the left-hand sides equal to one another and simplify the result to 

produce Sa* = Sb*. Thus, at equilibrium, all tasks that are performed must have equal success rates: 
s;* = sj* if X/* > 0 and Xj* > 0. Clearly, this result accords with the predictions of the ESS models. 

In what follows, s* designates the success rate common to all tasks that are performed at 

equilibrium and si ° designates the success rate for the ith task when no individuals pursue it (when 

x i = 0). Note that si ° is also the maximum success rate for the ith task, because s; is a non-increasing 

function of x~ (see the definitions of classes I-HI). 

Let xl* be the fraction of individuals that are inactive at equilibrium. We use the fact that 

~cj*sj* = s*,~;cj* to re-express Equation 7 as 

0 q[ ] 
xi*= 1 -  ~ x j * = i ( N )  1 _ 1  (8) 

j=l 

Figure 2 shows the relationship between success rate and the fraction of inactive individuals 

predicted by Equation 8. Recall that our ESS models also make a prediction about this relationship 

(because of the interchangability of success rates with fitness benefits or marginal fitness benefits). 

To simplify the discussion, it is best to scale the differential cost of activity, A c, in units of success 

rate. The ESS models predict a step function xl* = 1 if s* < A c and Xl* = 0 if s* > A C. 

The curves in Fig, 2 show that the dynamical model of task allocation predicts a reasonable 

approximation of a step function. For each curve, xi* = 1 if s* < q/(q + I(N)) and x1* declines to 

values near zero as s* increases beyond q/(q + I(N)). Thus, if evolution were to tune the value of 

q/(q + I(N)) to equal A c (or a value slightly less than Ac), then the dynamical model and ESS 

models would have quantitatively similar predictions about levels of inactivity. Note that the 

correspondence between the ESS and dynamical models would be best in the likely case of small 

A c (the bottom curve is closest to a step function). 

The three curves shown were produced using the assumption of zero regulation of the per capita 

interaction rate (I(N) increases proportionately to N), to demonstrate the necessity of regulation. If 

I(N) were not regulated, then evolution could not tune q/(q + I(N)) to be approximately equal to A c. 

Instead, the threshold success rate at which a group becomes active would change markedly with 

group size, as shown in Fig. 2. This is clearly suboptimal because A does not change with group 

size. The obvious way around this problem is to regulate I(N) at a constant value (e.g. Fig. 1, 

abundances -> 50). 

Analysis of  the model of  task allocation - stability 

We first examine the stability of the trivial equilibrium xi* = 0 for all i. By inspection of equation 

2, the trivial equilibrium is stable if and only if  si ° < q/[q + I(N)] for all i. An inactive group will 

become active if at least one task is sufficiently profitable. Inspection of Fig. 2 and Equation 8 

shows also that the existence of a non-trivial equilibrium implies the instability of the trivial 

equilibrium. 
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Tuming now to equilibria in which at least some individuals are active, we find that the 

eigenvalues governing the stability of a non-trivial equilibrium can be divided into two groups. 

First, for each unperformed task i (xi* = 0) in an equilibrium (x* = (x 1, x:* . . . . .  xQ*)) ,  there exists 

a corresponding eigenvalue: 

h i = [q + I(N)] [ S i  ° - -  S :g] (9) 

Thus, an equilibrium is unstable if the success rate for any unperformed task (si °) is greater than the 

success rate common to all performed tasks (s*). A necessary condition for stability is that only the 

most profitable tasks are performed. Also, it is easy to show with Equation 9, that there is at most 

a single stable non-trivial equilibrium (use the fact that s i is a non-increasing function of xi). 

These results are sufficient to demonstrate the tight correspondence between the ESSs described 

in the 'Evolutionary rationale' section and a stable equilibrium of the task allocation model. At a 

stable equilibrium: (1) tasks that are performed must yield equal success probabilities, (2) tasks that 

are not performed must yield lower success probabilities than those performed and (3) success 

probabilities of tasks that are performed must exceed the threshold value of q/(q + I(N)) .  With q~ 
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Figure 2. Equation 8 - the fraction of inactive individuals at equilibrium in the model in Equations 1 and 

2 as a function of the success rate of the most profitable task (s*) and colony size (N). Parameters: a = 0.01, 
(I(N) = aN) and q = 0.1. For each colony size (N) shown, the fraction of inactive individuals is 
approximately a step function - the fraction equals 1 until the appropriate (for the colony size) asterisk at 

the top of the figure and then follows the curve descending from the asterisk. 
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(q + I(AD) tuned by evolution to equal A c and success probabilities in classes I or II, a stable 

equilibrium of Equation 2 is almost identical to the ESS that maximizes individual fitness. If 

success probabilities are in classes I or III, then a stable equilibrium of Equation 2 is equally similar 

to the ESS maximizing group fitness. In either ease, the sole discrepancy between the predictions 

of the evolutionary and behavioural models is in the fraction of inactive individuals. This 

discrepancy is the difference between the step function predicted by the ESS and the approximation 

to a step function predicted by Equation 8. 

The one remaining chore of the stability analysis is to consider the eigenvalues not given by 

Equation 9 (those associated with the tasks that are performed at equilibrium). If any of these 

eigenvalues had a positive real part, then task allocation would oscillate perpetually. We can prove 

that these eigenvalues have negative real parts only if we place an additional restriction on the 

functional forms of the s i. This is the sole portion of the analysis that we cannot complete if we 

relax the assumption(s) of fast dynamics used to motivate classes I-III, and analyse directly 

Equations 2, 3 and 4 or Equations 2, 4 and 5. 

We now assume that d(Xis~)*/dX i -- 0 for all i, where the asterisk indicates that the derivative is 

to be evaluated at equilibrium. It is important to understand that this new restriction does not affect 

cases in which the si are constant and still permits cases in which individual success probabilities 

are negatively density dependent. The restriction is met by the equilibrium of Equations 3 and 4 

used to motivate class II. It is also met by the equilibrium of Equations 5 and 4 used to motivate 

class III, if "r is sufficiently small. With this assumption, all remaining eigenvalues are real and 

negative (see Appendix 1). A non-trivial equilibrium in which only the most profitable tasks are 

performed is locally stable. Moreover, numerical solutions of cases that violate the restriction (e.g. 

with s~ given by the equilibrium of Equations 4 and 5 with large "r) invariably also exhibited stable 

dynamics. This confirms that d(X~sg)/dX i >-0 is sufficient, but not necessary, to ensure that the 

remaining eigenvalues (those not given by Equation 9) have negative real parts. 

Responses to environmental changes 

Suppose now that environmental change alters the success rate of a task (i.e. by changing F~ in 

Equation 4). The above results imply that the distribution of individuals in different tasks will 

readjust, eventually reaching a new equilibrium corresponding to the altered conditions. What 

effect does colony size have on the efficiency of this environmental tracking? To answer this 

question, we perform a perturbation experiment. Suppose that a colony is close to a stable non- 

trivial equilibrium when a single success rate, si*, suddenly changes to the new value, si* + As. We 

Taylor-expand the fight-hand side of Equation 2 about the equilibrium and retain the first non-zero 

term: 

Case 1 - x  i ~> 0 

,ix__, = Asxi * [q + I(N) (1 -xi*)] 
dt 

%~ = -Asxj*xi*I(N); if xj* > 0 

%dr "~ - AM(N) xi*x j + kj xfi if xj* = 0 

Case I I -  Xi :~ = 0 

d~_~ ~. As [q + I(N)] x i + h~x i at 

~J~, - AM(N) xj*x i + Tfi if xj* > 0 

% Axjkj; if = 0 d--; = x j* 

(10) 
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where h i and kj are given by Equation 9 and Tj is the right-hand side that would result for task j 

from a first-order Taylor expansion with As ---- 0 (see Appendix 1 for this Taylor expansion). 

Because As in Equation 10 is invariably multiplied by the per capita rate of social interaction 

(I(N)), the rapidity of response to environmental changes increases with I(N). Large social groups 

should respond more quickly than small groups whenever I(N) is an increasing function of N (as 

it will be in most cases, see above). If I(N) increases with N, then large groups will track an ESS 

more efficiently than will small groups. 

The generality of this conclusion is clouded somewhat in cases where success rates are functions 

of the X i (rather than constant), because then, the s i may also depend on colony size. This 

complication does not affect the first or second equation in Equation 10 because the s i do not appear 

in these. Also, it is easy to show that dependence of s on N can only further speed the dynamics 

of large colonies in the fourth equation and the third and fifth equations are obviously unaffected 

at least for sufficiently large As. Finally, the effects of group size will be smaller in the sixth 

equation than in the other equations if As is sufficiently large, because there is no effect (to first 

order) of the environmental change on the sixth equation. 

The effects of group size on the rate at which a colony can track a changing environment are 

illustrated in Fig. 3. To produce this figure we assumed that I (N)=  a N ,  where a is a constant 

(corresponding to the extreme of no regulation) and that s i was given by the equilibrium of Equations 

3 and 4. To simplify the notation, we define m i as kF/(c t i ' rP~ + k F i )  and c i as "rldot i, yielding s i = m . /  

(1 + c i N x i ) ,  where m i is the success rate for task i when it is unexploited (when x; -- 0) and c i is a 

constant governing how fast s; decreases as the number of individuals engaged in the task increases. 

The numerical simulations involved a colony whose workers were engaged in up to three tasks. At 

the beginning of the simulations, 10% of the individuals were occupied at each task and 70% were 

inactive. We set the initial unexploited success rates to m 1 = 0.3, m 2 = 0.4 and m 3 = 0.01, but at time 

= 4, the value of m 3 was changed to 0.6. We explored the response of three sizes of colony: 

N = 1000 (Figs. 3a and b), N = 100 (Figs. 3c and d) and N = 50 (Figs. 3e and f). 

As predicted by the behavioural model, the colony in Fig. 3a equilibrated so that only the two 

most profitable tasks were performed before time = 4, while all three were performed thereafter. 

Moreover, the allocation of labour converged to the ideal free distribution, yielding equal success 

rates for all tasks performed (Fig. 3b). The two remaining numerical solutions exhibited 

qualitatively similar behaviour (Figs. 3c-f). However, the rate of convergence was an increasing 

function of  colony size (slower in Figs. 3c and d than in Figs. 3a and b and slower still in Figs. 3e 

and f). Note that task 3 was adopted by the largest colony very soon after the value of m 3 increased 

(by time = 5 in Fig. 3a). In contrast, the adoption of task 3 took considerably more time in the 

smaller colonies (approximately time = 7 in Fig. 3d and time = 9 in Fig. 3f). As predicted by 

Equation 10, a colony's ability to track a changing environment increased with its size. 

The success probabilities used to produce Fig. 3 are in class II and thus correspond to per capita 

rates of  resource capture and the ESS in which individual fitness is maximized. Figure 4 contains 

Figure 3. Effects of colony size on resource tracking in a changing environment in the model in Equations 

1 and 2. In each of the three cases shown the profitability of task 3 jumped suddenly at time 4 (from 

m 3 = 0.01 to m 3 = 0.6). Colony sizes (a) and (b) were N = 1000, (c) and (d) N = 100, and (e) and (f) 
N = 50. Figs. 3(a), (c) and (e) show the fractions of the colonies engaged in each of the three tasks, while 

(b), (d) and (f) show the success rates (the si). Note that (a), (c) and (e) illustrate the fact that only the most 
profitable tasks are pursued at equilibrium and (b), (d) and (f) the ideal free distribution (equal success rates 
for tasks pursued at equilibrium). Also, observe that the rate of adjustment to environmental change 

increases with colony size. The remaining parameters were a = 0.1, q = 0.1, c I = c 2 --- c 3 = 0.02, mt = 0.3 

and m 2 = 0.4. 
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an example using success probabilities in class III and thus corresponding to marginal rates of  

return and the ESS in which group fitness is maximized.  To produce the figure, we  assumed that 

s i was given by the equilibrium o f  Equations 4 and 5. Three tasks were included and the initial 

condition was the same as in Fig. 3 (10% in each task and 70% inactive). At the beginning of  the 

run, F 1 = 0.3, F 4 = 0.4 and 1" 3 = 0.01, but at time = 10, the value o f  1" 3 was changed to 0.6. Also,  

Ix = 1.0, k = 0.02, a- = 0.02 and ct 1 = a 2 = ct 3 = 1.0. The results show that the colony devoted most  

o f  its effort to the most  profitable tasks (Fig. 4a) and did not equalize the resource capture rates o f  

individuals in tasks 1-3  (Fig. 4b), but did equalize the marginal rates o f  return from the three tasks 

(Fig. 4c). 

Summary of results from the model of task allocation 

We have demonstrated the fol lowing four results about the model  (Equation 2). 

(1) Result 1. The simple behavioural rules that underpin Equation 2 cause an equilibrium pattern 

of  task allocation that is remarkably close to the evolutionary optimum, With success probabilities 
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Figure 4. Interactions that equalize marginal rates of return: a numerical solution of the model in Equations 

1 and 2 with class III success rates given by the equilibrium of Equations 4 and 5. Three tasks were 

included and the initial condition was 10% of the group engaged in each task (with 70% inactive). At the 

beginning of the run F 1 = 0.3, F 2 = 0.4 and F 3 = 0.01 but at time 10, the value of F 3 was changed to 0.6. 

Also, I(N) = 0.1N, N = 100, k = 0.02, q = 0.1, I a = 1.0, "c = 0.02 and o~ l = th = % = 1.0. (a) The colony 

devoted must of its effort to the most profitable tasks, (b) did not equalize the prey capture rates of 

individuals in tasks 1-3, (c) but did equalize the marginal rates of return from the three tasks. 
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in classes I or II, the task allocation approximately maximizes individual fitness and with success 

probabilities in classes I or III, the task allocation approximately maximizes group fitness. 

(2) Result 2. If the per capita rate of social interaction increases with colony size, then large 

colonies generally will track a changing environment more efficiently than will small colonies. This 

is because increased interaction provides faster dissemination of information about new 

environmental conditions. 

(3) Result 3. If per capita rates of social interaction increase with group size, then individuals in 

large groups will remain active in less profitable environments than will individuals in small 

groups. This dependence of activity threshold on group size is maladaptive. 

(4) Result 4. The regulation of per capita rates of social interaction shown in Fig. 1 confers the 

advantages of large groups while diminishing the costs. The function will allow rapid response to 

a changing environment in colonies of even moderate size because its slope is large at small values 

of N. Also, because it reaches an asymptote at relatively small colony sizes, the function will permit 

all but the smallest colonies to cease activity at approximately the same minimum success rate, 

despite developmental or environmentally induced changes in colony size. 

Alternative models 

The model (Equation 1) is general in the sense that it may be interpreted also as a model of many 

different kinds of activity. Still, it is only one of an infinite number of similar models. How robust 

are the conclusions that we have drawn from it? In Appendix 2, we briefly outline three of the 

alternatives that we have investigated. The first is a model of foraging that is designed to be as 

applicable to some social vertebrates (i.e. colonially nesting swallows) as it is to eusocial insects. 

The second two are models of ants interacting via pheromonally marked foraging trails. The 

findings from two of the alternatives in Appendix 2 illustrate that our conclusions are robust to 

some changes in mathematical structure and biological mechanism. The findings from the third 

alternative illustrate the bounds on this claim. 

Stochastic models 

Many social insect colonies contain thousands of workers and it is easy to believe that deterministic 

models are appropriate for such large groups. How small does a group have to be before 

deterministic models aye wildly inaccurate? Are models such as Equations 1 and 2 and the models 

in Appendix 2 restricted to very large groups or might they sometimes apply to groups of 100 or 

even ten? 

To answer these questions, we examine the stochastic processes that govern groups of finite size 

and lead, in the limit of large colony size, to simple deterministic models like those studied above. 

The stochastic models are continuous-time Markov processes that describe the temporal dynamics 

of P(X), the probability at time t of observing the distribution of activity X. 

For simplicity, assume first that X has a single element, X, describing, say, the number of active 

as opposed to dormant individuals. Then 

d P ( X ) - 5  = d t  = P (X-l) F (X-l) + P(X+ 1)B(X+ 1) - P(X) IF(X) +B(X)]; 
dt 

X = (0, 1, 2 . . . . .  N) (11) 

Here, AtF(X) and AtB(X) are, respectively, the probabilities that, within the time interval At, a 

colony with X active individuals moves forward into the X + 1 class or backward into the X - 1 

class. 

Generalizing to Q different tasks requires some additional notation. F(X v) refers to the 

probability of moving forward from X = (X 1, X 2 . . . .  X v . . . . .  XQ) to X = (X I, X 2 . . . . .  Xv + 1 . . . . .  
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XO). B(Xv) refers to the probability of moving backward from X = (X 1, X 2 . . . . .  X v . . . . .  XQ) to X 

= (X a, X 2 . . . . .  X v - 1 . . . . .  XQ). Finally, S(Xv, Xw) refers to the probability of switching from 

X = ( X  1, X 2, . . . ,  X v . . . . .  X w . . . . .  Xo), to X = (Xl, X 2 . . . . .  X v - 1, . . . ,  X W + 1 . . . . .  XQ). 

The Q task model consists of a separate equation for each behavioural state of the group (each 

way to place N individuals, regardless of order, into Q + 1 categories (Q tasks and one dormant 

state)). Each of these equations has the form 

Q 

dP (X___~) _ ~ [_ F(Xv ) P(X) - B(Xv) P(X)] 
dt v= 1 

Q 

E F ( X v - 1 )  P ( X  1 ,X  2 ..... X v - 1  ..... ,XQ) 
v = l  

Q 

B ( X  v + I )  P ( X  1,X 2 ..... X v + l  . . . . . .  XQ) (12) 
v = l  

Q Q 

E E S ( X ~ , X w ) P ( X )  
v = l  w = l  

• Q 

E E S(X~ + 1, X w - 1) P (x~, x2,...OCv + 1 ..... X w - 1 ..... XQ 
v = l  w = l  

Clearly, the general model (Equation 12) is intractable unless either Q or N is small. In this 

section we focus exclusively on two simple stochastic counterparts of model (Equations 1 and 2). 

The first includes one active and one dormant state and the second includes two active and no 

dormant states. We caution that the results which follow must be interpreted in this limited context. 

Nonetheless, our analysis does show that deterministic models of the kind considered in the 

previous sections are appropriate, at least in some cases, for colonies as small as ten 

individuals. 

Stochastic model 1 

As in Equations 1 and 2, we assume that an active individual will abandon its task in time interval 

At with probability Atq(1-s) and that an inactive individual will be recruited with probability 

AtXsl(N)/N. In the examples that follow, I(N)/N equals a constant, a, as is appropriate for purely 

random interactions in an arena of  fixed size (the extreme of  no regulation). We also introduce one 

new feature: an inactive individual may find the stimulus to do a task, such as forage at a new food 

source, on its own with probability A#  This new feature is essential in a stochastic model because 

colony-wide inactivity is otherwise an absorbing state that would trap colonies in perpetual 

inactivity. 

With these specifications, the forward and backward probabilities in Equation 11 are 

F (X) = f ( N - X ) + s X  ( N - X )  a (X = 0,1,2,. . . ,N- 1) 

F ( N )  = 0  

B (X) = q (1 - s) X (X = 1,2,3 ...... N)  (13)  

B (0)  = 0 

and the corresponding deterministic model is 

dX 
- ~  = - q  ( l - s )  X + f ( N - X ) + s X  ( N - X )  a (14) 
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Stochastic model 2 

Suppose now that there are two active classes and no inactive class and let X measure the number 

engaged in task 1. Also, let A(1 be the probability that an unsuccessful task 2 individual 

independently finds (without being recruited) the task 1 stimulus, such as a new food source and 

switches to task 1 and let A0~2 be the corresponding probability for a task 1 individual finding the 

task 2 stimulus. Task switching caused by recruitment works exactly as in Equations 1 and 2 

(unsuccessful individuals are recruited by successful individuals). Then, the forward and backward 

probabilities in Equation 11 are 

F(X) = f l  (1-s2)  ( N - X ) + a s l X  (1-sz)  ( N - X )  (X = 0,1,2 ...... N - 1 )  
F(N) = 0  

B (X) = fz (1 - Sl) X+ a (1 - Sa) Xs 2 ( N - X )  ( X  = 1,2,3 ..... N) (15) 

B (0) = 0 

and the deterministic model is 

dX 
d--7 = f l  (1 - s2) ( N -  X) - f 2  (1 - Sl) X 

+ aSlX(1--$2) ( N - X ) - a  ( 1 - s l )  Xs 2 ( N - X )  (16) 

Analysis 

If M is the mean number of active workers in the first stochastic model, then by the definition of 

the mean 

N 
dM dP(X) 

= ~] X - -  (17) 
x= 0 dt 

Substituting Equation 11 into Equation 17, some straightforward, but tedious, algebra leads to 

dM 
dt = - q (1 - s) M + f ( N - M )  + sM ( N - M )  a - a s 0 -  2 (18) 

where 0 -2 is the variance in the number of active workers. Note that Equation 18 is identical to 

Equation 14 if we make the substitution X = M, except for the presence of a variance term. One 

arrives at precisely this same result if one repeats these steps for the second stochastic model. The 

question of the accuracy of the deterministic models, Equations 14 and 16, is thus a question of the 

magnitude of the effect of the variance terms. 

We have examined this problem numerically and have discovered that these terms have 

surprisingly little effect in either model, even when colony size is small. This finding is illustrated 

by the numerical results in Figs 5-7. 

Figure 5(a) shows typically close correspondence between the dynamics exhibited by the first 

stochastic model (Equations 11 and 13, solid line) and corresponding deterministic model 

(Equation 14, dashed line). In this example, the colony size is 100. Although the variance predicted 

by the stochastic model (dotted line -- standard deviation of number of active individuals) is 

initially high because P(X) was initialized with a uniform distribution, the variance collapses over 

time and apparently has little effect on the mean, even initially. The distribution of X in the 

stochastic model at equilibrium is the black histogram in Fig. 5b. 
The equilibrium or stationary distribution of Equation 11 is found by setting dP(X)ldt = 0 for all 

X and rearranging to show that 
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F (0) p ,  
P*(1) - B (1) (0) 

P*(X+ 1) = 1 [P* (X) [F (X)+B (X)] -P*  (X-1)  F(X-1)]  (19) 
B (X+ 1) 

X =  (1,2 ..... N - l )  

The stationary distribution is calculated by assuming arbitrary P(0), using the recursion in Equation 

19 to calculate P*(1) through to P*(N) and then normalizing so that 5~P*(X) = 1. It is important to 

understand that the stationary distribution is both the temporal distribution of a single colony 

followed for a long time and the instantaneous distribution, after a long period of time, of a large 

ensemble of colonies. 

Figure 5(c) shows how the equilibrium mean fraction of foragers changes as a function of colony 

size, using the parameter values corresponding to the dark histogram in Fig. 5b. The equilibria 

predicted by the first stochastic (solid line) and deterministic (dotted line) models are similar, even 

for a colony size of ten, despite the high equilibrium variance (dashed line = coefficient of 

variation (CV)). Figure 5(d) provides a similar set of relationships corresponding to the white 

histogram in Fig. 5b. 

Finally, Figs 6 and 7 show results analogous to those in Fig. 5, but for the second stochastic 

model (Equations 11 and 15) and corresponding deterministic model (Equation 16). These results 

generally support the patterns in Fig. 5 and also illustrate one new phenomenon. 

The dashed line in Fig. 6a shows that the decay of the variance in the stochastic model is slow 

(it eventually equilibrates at the adjacent dark square). The reason for this is that a small fraction 

of colonies become 'fixed' on the less profitable task. In time, individuals that are unsuccessful at 

this task will encounter the more profitable task and then, via social interactions, the whole colony 

will quickly flip to the alternative source. Note that if the two tasks are taken to represent two food 

sources, then this mechanism will produce the same pattern of foraging as the simultaneous 

stability of boundary equilibria in deterministic models such as altemative model 3 in Appendix 2 

(see Fig. 9). The difference is that the pattern is temporary if caused by the stochastic 

mechanism. 

The decay of the variance is virtually halted in the example in Fig. 7a, because the two food 

sources are almost equally profitable (s I = 0.9 and s 2 = 0.89) and the richer source is 60 times more 

difficult to find (fl = 0.01 and f2 = 0.6). The bimodal stationary distribution (Fig. 7b) demonstrates 

that temporary fixation on the less profitable food source persists indefinitely at a relatively high 

frequency. Even in this extreme example, however, there is close correspondence between the 

predictions of the stochastic and deterministic models for colony sizes -> 100 (Fig. 7a and c). 

A casual inspection of Equation 18 might lead one to predict a substantial effect of variance, 

especially at small colony sizes where stochastic effects should be strong. Nonetheless, the 

examples that we have examined show that simple deterministic models sometimes remain useful 

at group sizes on the order of ten individuals. This suggests that future studies of simple 

deterministic dynamical models of group behaviour might profitably be applied to social animals 

that, unlike most eusocial insects, live in small groups. 

Discussion 

Models of task allocation and models of interaction rates are widespread in behavioural ecology. 

Here we combine the two, showing how interaction rates can determine task allocation. Such 

models have been put to diverse uses, from studies of interspecific competition (Waser, 1984) to 
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Figure 5. Dynamics of the first stochastic model (Equations 11 and 13) and corresponding deterministic 

model (Equation 14). In all cases s = 0.3, q = 0.1 and f =  0.005. (a) Solid line, stochastic model mean; 

dotted line, stochastic model standard deviation; dashed line, deterministic model; top solid square, 

equilibrium mean for both models; bottom solid square, equilibrium SD for stochastic model; N = 100; 

a =  0.1; stochastic models; bottom solid square, equilibrium sD for stochastic model; N =  100; a = 0.1; 

stochastic model initialized at a uniform distribution over [0, N]. (b) Task allocation at equilibrium (the 

stationary distributions given by Equation 19) for two values of a and N = 100. (c) Equilibria of the models 

as a function of colony size: solid line, stochastic model; a = 0.1. (d) Same as in (c) except a = 0.001. In 

all cases, note the close correspondence between the deterministic model and the mean of the stochastic 

model 
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studies of detailed time budgets of foragers (Caraco, 1979). Because of this diversity, it may not be 

generally realized how much such models have in common. Recognizing this can broaden our 

understanding of the dynamics of any system in which individual decisions depend in a simple way 

both on environmental stimuli and on interaction among individuals. 

Within the literature on social insects, various models of task allocation are still viewed as 

unrelated because they are used to describe different behaviour. Here we show, for example, that 
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existing models of foraging on different food sources (Seeley et al., 1991) or trail-following in an 

ant colony exposed to multiple food sources (Deneubourg et al., 1990), are analogous to the simple 

model presented in the first section. 

Many recent studies of social insect behaviour draw on models that involve interaction rates, 

though again, this common theme may not be generally recognized. Seeley's (1989) study shows 

that a honey bee forager' s decision whether to leave the nest in search of nectar is based on the time 

elapsed between its arrival back at the hive from a foraging trip and its first contact with a nectar 

storer. Schneider's (1986) studies show that bees circulate around the hive, performing a vibration 

dance with other individuals they encounter and such encounters stimulate higher activity levels. In 

army ants, when the interaction between mature adults and young, callow workers reaches a 

threshold, the younger workers join in emigration (Topoff and Mirenda, 1978). Jeanne's (1987) 

studies of nest building in wasps show that rates of interaction among workers affect an 

individual's decision whether to continue building. The existence of activity cycles in the ant 

Leptothorax suggests that waves of brief interaction spread across entire colonies (Franks et al., 

1990; Cole, 1992), and that interactions among ants are temporally patterned, leading to 25 min 

cycles of movement. Robinson's studies of age polyethism (e.g. Huang and Robinson, 1992) 

suggest that interactions between old and young honey bees determine which tasks a worker 

performs. 
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Figure 6. Dynamics of the second stochastic model (Equations 11 and 15) and corresponding deterministic 

model (Equation 16). In all cases a = 0.5, s 1 = 0.9, s 2 = 0.8 and fl =f2 = 0.005. (a) Solid line, stochastic 
model mean; dotted line, stochastic model standard deviation; dashed line, deterministic model; top solid 

square, equilibrium mean for both models; bottom solid square, equilibrium so for stochastic model; 

N = 100; stochastic model initialized at a uniform distribution over [0, N]. (b) Task allocation at equilibrium 

(the stationary distribution given by Equation 19; N = 100. (c) Equilibria of the models as a function of 
colony size: solid line, stochastic model mean; dotted line, deterministic model; dashed line, coefficient of 
variation of stochastic model. In all cases, note the close correspondence between the deterministic model 

and the mean of the stochastic model. 
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Social behaviour that depends on interaction rates can be divided into two categories: (l) an 

interaction leads to information transfer, affecting the decisions of individuals involved in the 

interaction and (2) an interaction has some inevitable, physiological effect on the participants. Of 

course, it is possible to find examples of behaviour at the boundary of the two types, but there are 

many obvious cases of the extremes. When a female worker termite interacts with a reproductive 

(b) 

(c) 

0.8 

~0 .6  

tZP 

0.4 

0.2 

0.98 

i 
0.96 

t~ 

O 

o 0.94 

~ 0.92 

0.9 

I I I I I I I I I I I I I I I I f I I 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

.Z ......... 

Number of  Task-1 Individuals 

"'-.. CV 

[ . . . . . .  . . . . . .  [ . . . . . . . . . . . . . . . . .  [ . . . . .  

1 . 5  2 2.5 

Log of colony size 

100 

0.1 

0.08 

O 

e~ 

0.06 "~ 

O 

0.~u "~ 

~2 
0 
r.,) 

0.02 

Figure 6 (continued) 



152 Pacala et al. 

female, her own reproductive system is inhibited, due to the transfer of a primer pheromone; there 

is an inevitable, physiological effect. In models of  social behaviour that depend on interaction rates, 

this distinction is often built in. For example, recent models of foraging and patrolling behaviour 

refer to information transfer during interactions (Seeley et al., 1991; Adler and Gordon, 1992); 

others on age polyethism suggest there may be physiological effects of substances transmitted 

during interaction (Huang and Robinson, 1992). 

The work presented here suggests this distinction may be irrelevant to the dynamics of  the 

group's behaviour. We may describe an exchange of information or of a physiologically active 

substance, Encounters may affect participants through a huge variety of perceptual, hormonal or 

cognitive events. We do not wish to deny the importance of understanding these events. However, 

the dynamics they produce will depend only on the rate of  interaction and the relation of response 

to interaction and response to other environmental stimuli. 

A general feature of  a social system in which group behaviour depends on interaction rates and 

environmental stimuli, is that its dynamics depend on density, which in turn depends on group size. 

Group size has been shown to determine allocation of  individuals to different tasks, such as 

foraging and vigilance, but this work has been concerned with finding the optimal group size to 
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Figure 7. Dynamics of the second stochastic model (Equations 11 and 15) and corresponding deterministic 

model (Equation 16). In all cases a = 0.5, s = 0.9, s 2 = 0.89, f~ = 0.01 and f2 = 0.6. (a) Solid fine, stochastic 

model mean; dotted line, stochastic model standard deviation; dashed line, deterministic model; top solid 
square, equilibrium of deterministic model; middle solid square, equilibrium mean for stochastic model; 

bottom solid square, equilibrium sD for stochastic model; N = 100; stochastic model initialized at a uniform 

distribution over [0, iV]. (b) Task allocation at equilibrium (the stationary distribution given by Equation 19; 
N = 100. (c) Equilibria of the models as a function of colony size: solid fine, stochastic model mean; dotted 

fine, deterministic model; dashed line, coefficient of variation of stochastic model. Note the considerable 
difference between the deterministic model and the mean of the stochastic model for small colony sizes and 

the large coefficients of variation. 



Effects of social group size 

0.06 [ 

0.05 

153 

0.04 

¢,9 

0.03 

0.02 

0.01 

Co) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 I00 

Number of Task-I Individuals 

(c) 

1 5 

.~ 0.8 "", ..."'" .... 4 

c v ' - , .  ..... ...... 

0.6 > 

y .  " ,,,,, ~e 

g 0.4 "~ 

~ .."" 1 

0 0 
1 1.5 2 2.5 3 

Log of colony size 

Figure 7 (continued) 

maximize the intake of food by individual foragers. Here we consider how group size and density 

affects a group's ability to track a changing environment by changing task allocation. 

Our first result about group size (result 2) is that larger groups can be more efficient than smaller 

ones at tracking a changing environment. If interaction rates increase with group size, then 
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information about new environmental conditions will be disseminated more readily in large than in 

small groups (see Fig. 2). In addition, as a group gets larger, the probability increases that when 

there is a new event, some individual will encounter it soon after it occurs (as in the first and second 

stochastic models). It follows that the larger the group, the more quickly it will respond to a 

changing environment. Assuming that the time scale of environmental change is somewhat slower 

than that of the group's adjustment, a larger group will more quickly tend to reach an equilibrium 

state in which individuals are distributed into tasks exactly as the environment requires. 

However, our second result about group size (result 3) shows that large groups may experience 

a disadvantage. High interaction rates and more rapid information transfer may cause a large group 

to maintain unprofitable activities more readily than a small one. In our models, an individual's 

tendency to perform a task depends in part on its encounters with other individuals engaged in the 

task. If an unsuccessful or inactive individual encounters a worker that is successfully performing 

a task, it will begin to perform the task. But its tendency to continue performing the task depends 

on its encounters with environmental stimuli (i.e. successful location of food or failure to locate 

food). If interaction rates increase with group size, then, as group size grows large, the probability 

of encountering successful individuals increases relative to the probability of encountering an 

environmental stimulus. That is, as group size increases, there will be a point at which social 
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Figure 8, Effects of colony size on resource tracking in a changing environment in the model in Equation 

A5 of Appendix 2 (alternative model 1). In each of the three cases shown the profitability of task 2 jumped 
suddenly at time 200 (from s: = 0.25 to s 2 = 0.35). There were two tasks and colony sizes were (a) 
N = 1000, (b) N = 100 and (c) N = 10. Observe that the rate of adjustment to environmental change is 

approximately independent of colony size. The remaining parameters were a = 0.1, q = 0.1 and s 1 = 0.3. 
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encounters overwhelm environmental stimuli. At this point, individuals may be rendered active, 

even when they should abandon their task. For this reason, we predict that individuals should 

regulate interaction rates (as in Fig. 1). 

An alternative to regulating interaction rates would be to develop compensating social 

interactions. For example, interactions with unsuccessful workers that increase one's tendency to 

abandon a task could balance interactions with successful workers that increase one's tendency to 

continue the task. A disadvantage of this system is that individuals in large groups with high 

interaction rates would either switch rapidly between activity and inactivity or would need to 

develop the ability to process information about the relative rates of different kinds of social 

interactions (e.g. relative rates of interaction with successful and unsuccessful individuals). In 

contrast, the regulation of interaction rates provides a simple and direct solution to the general 

problem of balancing environmental stimuli and information transfer. 

A third result on group size comes from stochastic models, analogous to the deterministic ones 

of the first section. It might be expected that stochastic variation in the sequence and timing of 

encounters would dominate the outcome in small groups. However, our numerical results show 

surprisingly small stochastic effects. It appears that the dynamics described here occur even in 

small groups in the order of ten individuals. A full explanation of this will require further analytical 

work. 

In a social insect colony, group size is a feature of ontogeny. As a colony grows older, it contains 

more workers. Thus, if group size affects the efficiency with which the colony responds to its 

environment, this efficiency will change during the life history of the colony. In temporary social 

groups, such as winter-feeding flocks of passerine birds, group size may depend on ephemeral 

conditions, such as the distribution of food. Here the effect of changing group size on task 

distribution will operate on a much shorter time scale. Social insect colonies and feeding flocks of 

birds may represent extremes; there is enormous diversity in the biological context of group size 

and density and in the ways that group sizes change in time and space. But many social groups may 

have in common similar constraints of group size on task allocation. Further investigation may 

show that a relatively simple principle of the dynamics of group behaviour is ecologically 

important: large groups can track a changing environment efficiently, but may need to regulate 

interaction rates. 

Conclusion 

The models presented here illustrate how group size affects the allocation of individuals into 

different tasks, when individual decisions depend both on environmental stimuli and interaction 

among individuals. Tasks and social interactions include (but are not restricted to) foraging on 

multiple food sources, nest maintenance, direct exchange of information among individuals that 

encounter one another, simple following of individuals by one another and trail following in ant 

colonies. 

Figure 9. Suboptimal behaviour indicated by Equation A9 for the model of foraging trails in ant colonies 
(alternative model 3 of Appendix 2). There were two tasks with success rates s~ = 0.3 and s 2 = 0.4. Initial 
abundances for tasks 1 and 2 were, respectively, 0.8 and 0.2 in (a) and (c) and 0.2 and 0.8 in (b) and (d). 
The colony sizes were larger in (a) and (b) (N = 250) than in (c) and (d) (N = 100). Note that the more 
profitable task is abandoned in (a) and (c) and that abandonment proceeds more quickly in the larger 

colony. Remaining parameters: b = 0.1, q = 0.1, v = 1.0, • = 1.0 and w = 2. 
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Analysis of the dynamics of these models shows the following. 

(1) Simple interactions among individuals with limited capacity to process information can lead 

to group behaviour that closely approximates the ideal free distribution or the equivalent 

distribution that maximizes colony fitness. 

(2) Larger groups can be more efficient than smaller ones at tracking a changing environment:, 

if per capita rates of social interaction increase with group size (i.e. Figs 3 and 8). 

(3) Group behaviour is determined both by each individual's interaction with environmental 

stimuli and by social exchange of information. To keep these processes in balance across a range 

of group sizes, organisms are predicted to regulate per capita rates of social interaction as in Fig. 

1. Failure to do so can cause unprofitable behaviour. For example, without such regulation, high 

interaction rates could cause a large group to pursue unprofitable tasks more readily than a small 

one (i.e. Figs 2 and 9). 

(4) Stochastic models show that, at least in some cases, the dynamics described here occur even 

in small groups on the order of ten individuals (i.e. Figs 5-7). 

(5) Our results suggest that very simple mechanistic interactions between individuals are 

sufficient to allow the colony to maximize food intake and other quantities related to fitness. In a 

sense, our model colonies achieve this end by parallel processing, but it is parallel processing of a 

very simple kind, without the need to invoke abstract principles of the self-organization of complex 

dynamical systems. 
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Appendix 1 

In this appendix, we examine the local stability of the equilibria of Equation 2. In what follows, the 

subscript T refers to a task that is not performed at equilibrium (xi* = 0) and 'j' refers to a task that 

is performed at equilibrium (xj* > 0). We suppose that there are Z tasks in the former category and 

Y tasks in the latter category (Y + Z = Q). Moreover, we label the tasks so tha t j  = (1,2 . . . . .  Y) and 

i =  (Y+ l, Y+ 2 . . . . .  Q). 

Because the quantity ~(dx/dt)l~xj is invariably zero when evaluated at equilibrium, the Q by Q 

Jacobian matrix governing the stability of the boundary decomposes into two blocks: a Y by Y btlock 

in the upper left-hand corner governing the tasks that are performed at equilibrium and a Z by Z 

diagonal matrix in the lower left-hand corner governing the tasks that are not performed at 

equilibrium. Thus, Z of the eigenvalues are simply given by the Z elements of the diagonal matrix 

(Equation 4 in the text). 

The remaining Y eigenvalues are found as roots of the characteristic equation for the matrix in 

the upper left-hand corner: 

I J l = O =  

A~ + B1C 1 B1C 1 B1C r 

B2C1 A2 + B2C 2 B2Cy 

Bv C1 Br C2 Ar + B r Cr 

(A1) 

where 

, dsk* 
A k = x k ~ [ q + I ( N ) ] - k  

B k = -xk* ( o,) 
G - - I ( N )  sk* + x~ axk 

and )t signifies an eigenvalue. 

We now indulge in two algebraic tricks. We first subtract BJBy times the last row in J from each 

kth row (k = 1,2 . . . . .  Y-l). We then reverse the order of the subscripts so that the subscript Y 

becomes 1,1 becomes ¥, ¥-1 becomes 2 and so on. The result is the characteristic equation 
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= 

AIB___Zv 
Ay 0 0 0 - 

B~ 

A IB3 
0 0 A 3 0 - 

Bt 

AtB___2 
0 0 0 A 2 - 

BI 

b lCr BiCy_I B1C3 B1C2 Ax + B1C 1 

(A2) 

Now, let D i be the determinant of the i by i sub-matrix in the lower left-hand comer of Equation 

A2. Thus, D 1 = A 1 + B1C 1, D 2 = A2D 1 + A1B2C e, D 3 = A3D 2 + A1A2B3C 3 and 

o ,=  ' A I ",  
. =  
t 1 

After expanding the above expression, we may use it to write Equation A2 as 

0 = A1A 2 ... A r + BIC1A2A 3 ... Ay + 

AIB2C2A 3 ... A r + ..... + A1A 2 ... Ar_1B r Cr 

We now divide both sides of Equation A3 by A1A 2 . . .  Ay and rearrange: 

Y 

l = g  
j=l a j + h  

(A3) 

(A4) 

where aj = - Aj -hand bj = BFj .  Note that aj and bj are independent of h. 

Note that ay > 0 unless the success rate, sj, is independent of xy (in which case prey availability 

is not affected by foraging and aj = 0). Also, the bj are non-negative unless increased numbers of 

individuals engaged in the jth task results in a decreased amount of the task being accomplished. 

This kind of over-exploitation is unlikely because it typically occurs on a time scale longer than 

that considered here (see the text). Thus, in most cases we expect b -< 0 because d(sjxj)/dxy 

- 0 .  

Case 1: bj <- 0 for all j. By inspection of Equation A3, for each by -= 0, there is a corresponding 

eigenvalue equal to - aj. Each such eigenvalue is strictly negative (see the definitions of A k, B i and 

C k above). Now consider the remaining qt eigenvalues. Let us label the • remaining tasks in 

Equation A4 (for which the by are non-zero) in increasing order of the values of the ai's, so that a 1 

is the smallest and a,~ is the largest. Note that in all genetic cases, there is at most one aj equal to 

zero; all others are strictly positive. Two such values would imply constant and equal success rates. 

By inspection of the denominators in Equation A4, the right-hand side of this equation will 

decrease monotonically from positive to negative infinity as h decreases from - aj to - aj +1 (J = 

1,2 . . . . .  • - 1). Also, the right-hand side will decrease from positive infinity to zero as h decreases 

from - a~ to negative infinity. Thus, the remaining • roots of Equation A4 are real and negative 

and the largest is between - ai and - a> In the important special case in which all success rates 

are constant, the single eigenvalue given by Equation A4 is simply equal to bj (note that bj < 0 if 

aj = 0). 

Case 2: bj > 0 for at least one j. Following an argument identical to the one above leads to the 

conclusion that roots may be complex depending on the functional forms of the sj. Further 

analytical progress is impossible (at least for us) without specifying functional forms. 
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Appendix 2 

In this appendix, we present three alternatives to the model (Equations 1 and 2). 

Alternative 1: following without direct information exchange 

Suppose that, at any one time, an individual can either be inactive or can forage in one of Q places 

or on one of Q kinds of prey. After capturing prey, an individual returns temporarily to a central 

nest or colony. Let the success rate s i be the fraction of individuals foraging on the ith food source 

who have recently captured prey. Also, suppose that individuals periodically cease foraging if 

unsuccessful, return to the nest and then follow a forager chosen at random. Note that this simple 

scenario may be applicable to some social birds or mammals (e.g. colonially nesting swallows). 

A model of this scenario is 

dt q ( 1 - S l )  X i+ 1 -  ~, xj I ( N ) x  is i (A5) 
]=1 

The first term on the right-hand side is identical to the 'ceasing' term in Equation 1, and the second 

describes the influx of new recruits into food type i. This influx is simply proportional to the 

fraction of potential recruits in the nest (the term in brackets) and the number of individuals 

returning to the nest from source i with captured prey (see Seeley et al. (1991) for a model of a 

similar scenario). 

Following the same steps used to analyse Equations 1 and 2 above, it is straightforward to show 

that Equation A5 has exactly the same equilibria as Equations 1 and 2, each with precisely the same 

qualitative local stability. Thus, a very simple process of ceasing and following with no ovei~ 

exchange of information about foraging success can lead to exploitation corresponding to the 

predictions of evolutionary optimality models. Of course, this process works because there is 

indirect exchange of information. Individuals in the nest are more likely to have left food sources 

with low rather than high success rates. Individuals that are followed are more likely to be 

exploiting food sources with high rather than low success rates because individuals with high 

success rates return frequently to the nest with captured prey. 

Despite the identical equilibria of Equations 1, 2 and A5, the indirect exchange of information 

in Equation A5 is a poor substitute for the direct exchange in Equations 1 and 2. To see this, 

observe that I(N) is not the per capita rate of social interaction in Equation A5, because active 

individuals do not interact with one another. Instead, at equilibrium, each individual engages in 

q(1-s*) - q2 (1 - s*)21[s*I(N)] interactions (following) per unit time, where s* is the success rate 

common to all food sources pursued at equilibrium (xi* > 0). This function climbs with increasing 

I(N) from zero at I(N) = q(l/s* - 1) to the asymptote q(1 - s*). Thus, the interaction rate is capped 

at a value less than q(1 - s*), no matter what the value of I(N). The cap effectively prevents the 

rapid exchange of information that is possible in the model in Equations 1 and 2 for large groups 

with unregulated I(N) or for any group in which I(N) is regulated at a high value. The cap on 

information exchange occurs in Equation A5 because ceasing rates alone determine interaction 

rates whenever there are sufficient numbers of foragers to ensure that ceasers do not wait long in 

the nest before finding a successful forager to follow. Because, over a broad range of N, interaction 

rates are approximately independent of colony size (e.g. capped at the asymptote q(1 - s* ) ) ,  we 

expect little direct effect of colony size on the rate at which a colony can track a changing 

environment. 

An analysis of the dynamics of Equation A5 following a sudden, environmentally induced 

change in the success rate si* confirms that this is true. For example, the equations corresponding 

to the first and fourth equations in Equation 10 are 
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dxi = As ~ [1 
dt 

q (1 - s*) 
-sTI "(~) ] Yi*; if Xi* > 0 

dt (A6) 

where Yi* is the fraction of active foragers pursuing the ith food source  (yi • = xi*]~_~f g) and, as 

before, s* is the success rate common to all food sources such that x j*>  O. Equations 

corresponding to the second, third, fifth and sixth equations in Equations 10 are independent of the 

environmental perturbation. In contrast to Equations 10, Equations A6 shows little effect of colony 

size. Note that the first equation in Equations A6 reaches an asymptote as I(N) increases, while the 

second equation does not contain I(N). 

Figure 8a-c illustrates three numerical solutions of Equation A5 with different colony sizes 

(N = 1000 in Fig. 8a, N = 100 in Fig. 8(b), and N = 10 Fig. in 8(c)) and I(N) = aN. There were two 

food sources present with s i = 0.3 and s 2 = 0.25 prior to time 200, and s i = 0.3 and s 2 = 0.35 

thereafter. Although each colony was able to track the most profitable food source, there was no 

apparent effect of colony size on the rate of tracking. Note also the dynamics in Fig. 8 are two 

orders of magnitude slower than the dynamics in Fig. 3. 

Alternative 2: foraging trails 

Many species of ants recruit new foragers to a food source using pheromonally marked trails 

(Wilson, 1971). Typically, ants mark a trail when returning to the nest from a food source. The 

more heavily marked a trail is, the more recruits are stimulated to follow (Wilson, 1962). 

Let s~ be the rate of prey capture in location i and suppose that s i is constant (s i is in class I). Also, 

let the concentration of the marking pheromone (P) on the trail to the ith food source (task) be 

governed by 

dP 
- M (X/, s i )  - v P  ( A 7 )  

dt 

where M(Xi, Si) is the rate at which the pheromone is deposited by returning foragers and v is the 

rate at which the pheromone volatilizes. The deposition rate is a function of s; and X i simply 

because the pheromone is deposited by successful foragers on their way back to the nest. 

For simplicity, assume that the time scale of pheromonal deposition and volatilization is faster 

than the time scale at which the X t change. Then, the pheromonal concentration is simply given by 

the equilibrium of Equation A7: P(X i, si)* = M (X i, si)/v. Further suppose that a fraction U(si) of 

ants are unsuccessful and become inactive at rate qU(st) and that inactive and unsuccessful ants 

periodically test trails at random and follow a trail (adopt a new foraging task) with a probability 

proportional to its pheromonal concentration. Then the model is 

dXi = X t qU (s t ) + bP (X~ , s t )* xj U (sj ) + N -  ~ Xj - X~ bU (s t )  ~ P (Xj, sj)* 
dt j - j =1 j =1 ( A S )  

where b is a constant. 

To see how similar this model is to Equations 1 and 2, note that the two are identical if we make 

the substitutions U(si) = 1 - s  i and M(X i, si) -- ~ X  i s i, where • is a constant and I (N)= ¢bbNIv. 
Thus, the model Equations 1 and 2 and all results derived from it, also apply to at least some 

models of recruitment to foraging trails. 
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Alternative 3: foraging trails with non-linear recruitment 

In an extensive series of papers, Deneubourg, Goss and co-workers (e.g. Deneubourg et al., 1986, 

1990; Deneubourg and Goss, 1989) have investigated models similar to Equation A8 but that have 

unstable internal equilibria and simultaneously stable boundary equilibria. In these models, a trail's 

attractiveness to potential recruits increases faster than linearly with the pheromonal concentration 

on the trail. Once a food source is connected to the nest by a heavily marked trail, it will continue 

to be exploited because the trail itself is attractive, even if richer food sources become available. 

The richer sources, in turn, will remain unexploited. Pasteels et al. (1988) have empirical evidence 

that this kind of what appears to be suboptimal behaviour can occur in at least some species. 

For example, consider the special case of the model in Equation A8 mentioned at the end of the 

previous section (with U ( S i )  = 1 - -  Si, M ( X  i, si) = f ~ X i s  i and I(N) = ~bN/v). We now replace the 

assumption that a potential recruit follows a trail with a probability proportional to the pheromonal 

concentration, P(X~, si)*, with the assumption that this probability is proportional to [P(X i, s~)*] w, 

where w is > 1. Thus, the attractiveness of a trail increases super-linearly with the concentration 

of pheromone. 

Now consider the eigenvalue, analogous to Equation 9, that governs the adoption or 

abandonment of a task that is nearly unexploited in the vicinity of a boundary equilibrium (e.g. task 

i with Xi* = 0). This eigenvalue is 
Q 

k i = - q (1 - s~ ) - bs~ ~ (xj*sj)w [N qb / v ]w (A9) 
j = l  

Because the above eigenvalue is negative, the ith food source will never be exploited no matter 

how rich it is, if a colony has first become fixed on an alternative food source. Moreover, because 

the eigenvalue in Equation A9 decreases as colony size increases, this clearly suboptimal tendency 

will often proceed at a greater rate in large rather than in small colonies. 

Figure 9(a)-(d) illustrates the behaviour of Equation A9 for the case of two food sources with 

success rates s z = 0.3 and s 2 = 0.4 and colony sizes N = 250 (Fig. 9a and b) and N = 100 (Fig. 9c 

and d). Initial abundances on food sources 1 and 2 were, respectively, 0.8 and 0.2 in Fig. 9(a) and 

(c) and 0.2 and 0.8 in Fig. 9(b) and (d). Note that the richer food source is abandoned in Fig. 9(a) 

and 9(c) and that the rate of abandonment is greater for the larger colony. 


