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Abstract

1. Contact heterogeneity among hosts determines invasion and spreading dynamics 
of infectious disease, thus its characterization is essential for identifying effective 
disease control strategies. Yet, little is known about the factors shaping contact 
networks in many wildlife species and how wildlife management actions might af-
fect contact networks.

2. Wild pigs in North America are an invasive, socially structured species that pose a 
health concern for domestic swine given their ability to transmit numerous devas-
tating diseases such as African swine fever (ASF). Using proximity loggers and GPS 
data from 48 wild pigs in Florida and South Carolina, USA, we employed a proba-
bilistic framework to estimate weighted contact networks. We determined the 
effects of sex, social group and spatial distribution (monthly home-range overlap 
and distance) on wild pig contact. We also estimated the impacts of management-
induced perturbations on contact and inferred their effects on ASF establishment 
in wild pigs with simulation.

3. Social group membership was the primary factor influencing contacts. Between-
group contacts depended primarily on space use characteristics, with fewer con-
tacts among groups separated by >2 km and no contacts among groups >4 km 
apart within a month.

4. Modelling ASF dynamics on the contact network demonstrated that indirect 
contacts resulting from baiting (a typical method of attracting wild pigs or game 
species to a site to enhance recreational hunting) increased the risk of disease 
establishment by ~33% relative to direct contact. Low-intensity population reduc-
tion (<5.9% of the population) had no detectable impact on contact structure but 
reduced predicted ASF establishment risk relative to no population reduction.

5. We demonstrate an approach for understanding the relative role of spatial, social 
and individual-level characteristics in shaping contact networks and predicting 
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1  | INTRODUC TION

Contact among individuals plays a fundamental role in infectious 
disease transmission, affecting disease persistence, spread and 
outbreak severity (Craft, 2015). Thus, identifying how factors like 
social structure, space use and individual-level characteristics af-
fect host contact rates has been—and remains—a critical goal in 
disease ecology (Silk et al., 2017). The advent of proximity loggers 
in wildlife studies coupled with theoretical developments in epide-
miology have highlighted that population-level assumptions about 
contact often ignore individual-level heterogeneities that affect 
disease dynamics (Bansal et al., 2007). To address this challenge, 
contact networks, rather than mean contact rates, are often in-
ferred for host populations and the resulting estimates are used 
to parameterize transmission models that more realistically inform 
disease/wildlife management (Craft, 2015; Silk et al., 2017). While 
contact networks used in these types of studies are invariably 
a result of biological processes, rarely do studies elucidate the 
mechanisms underlying the pairwise contact that generated the 
observed network structure (White et al., 2017), which is import-
ant for targeting control strategies effectively. Instead, descriptive 
metrics including degree, betweenness and transitivity centrality, 
are often used, and statistical models are then applied to model the 
factors influencing those metrics (Boehm et al., 2009; Reynolds 
et al., 2015; Weber et al., 2013). However, descriptive metrics only 
represent contact features of the observed sample, and this ap-
proach may not detect the mechanisms underlying formation of 
a contact network. An alternative approach is to statistically infer 
contact networks using probabilistic inference from pairwise con-
tacts (Welch et al., 2011; Wilber et al., 2019). By probabilistically 
modelling pairwise contacts based on covariates, we can better 
understand the underlying mechanisms of contact processes and 
propagate their uncertainty more thoroughly when the network 
is scaled up to a larger population (Welch et al., 2011). Covariate-
based approaches for probabilistically inferring contact networks 
have rarely been applied to wildlife diseases (White et al., 2017), 
despite their utility for disentangling how biological factors shape 
contact networks.

Social structuring into family groups is common in wildlife pop-
ulations from small-group species such as raccoons Procyon lotor or 

wild pigs Sus scrofa, to large-group species like elk cervus canadensis 

(Sah et al., 2018). Such clustering introduces contact heterogene-
ity as individuals within groups contact each other more often than 
individuals in different groups (Drewe et al., 2011). How individu-
als interact can influence disease spread through a population, and 

individual heterogeneities of the contact network may affect an 
animal's risk of becoming infected (Silk et al., 2017). Contacts can 
also result from space sharing among individuals determined by their 
movement in response to resource availability (Best et al., 2014). 
Spatial distribution of the hosts, thus, has important implications for 
disease transmission given higher chance of contact among individ-
uals sharing more space (Craft, 2015).

Wild pigs in North America are an invasive species, descended 
from domestic pigs and Eurasian wild boar and are also referred to as 
wild hogs, feral swine or feral hogs. Females occur in family groups 
with one to several adult females and offspring while adult males 
live independently. They often pose a health concern for domestic 
swine given their ability to transmit numerous devasting diseases 
like African swine fever (ASF; Miller et al., 2017). Previous studies 
suggested that social structure is one of the key factors determining 
contact heterogeneities in wild pigs (Podgórski et al., 2014, 2018). 
Wild pigs maintain matrilineal, multigenerational social groups of 
female adults with their offspring (Dardaillon, 1988; Podgórski 
et al., 2014). Group structure is dynamic with natal dispersal of 
males and some females at reproductive maturity and fission when 
groups become large or individuals temporarily join adjacent groups 
(Gabor et al., 1999; VerCauteren et al., 2020). Spatial overlap among 
groups is another important factor influencing wild pig contact 
(Pepin et al., 2016), and local and sub-population interactions are hy-
pothesized to influence contact structure and disease transmissions 
among wild pigs (Cowled & Garner, 2008). However, the interplay of 
social and spatial processes on contact networks which determine 
disease transmission remain poorly understood in wild pigs (Beasley 
et al., 2018), or in socially structured wildlife species in general (Sah 
et al., 2018).

Wildlife management tactics can also affect host movement and 
space use, which can in turn affect contact networks and disease 
spread (Donnelly et al., 2003). Culling of badgers Meles meles aimed 

at limiting bovine tuberculosis (bTB) transmission subsequently dis-
rupted badger social structure and thus increased badger movement 
and bTB transmission to cattle (Donnelly et al., 2003). Multiple man-
agement techniques, including baited trapping, toxicants and cull-
ing, are currently being developed and used to control wild pigs/
boars (Boadella et al., 2012; Snow et al., 2019), and these techniques 
have been found to affect their movement and space use (Bastille-
Rousseau et al., 2020; Fattebert et al., 2017). Baiting could affect 
direct and indirect contacts among wild pigs, particularly across 
social groups. Altering population density directly through manage-
ment (culling/hunting) can also affect disease spread in wild pigs due 
to changes in contact structure. While these pathways have been 

their effects on disease establishment risk, thus providing insight for optimizing 
disease control in spatially and socially structured wildlife species.

K E Y W O R D S

African swine fever, contact structure, management, network modelling, wild pig
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assumed to impact transmission probabilities, quantification of their 
impacts is lacking.

Here we use proximity loggers and Global Positioning System 
(GPS) data from wild pigs to: (a) develop and apply an approach 
that estimates a weighted contact network, (b) infer the relative 
role and interactions among factors that shape wild pig contact, 
especially social structure, spatial processes, and sex and (c) exam-
ine how management-induced perturbations, namely removal and 
baiting strategies, affect contact structure and ASF establishment 
risk (R0).

2  | MATERIAL S AND METHODS

2.1 | Study area

Our study area includes two sites: a ~245 km2 area within the US 
Department of Energy's Savannah River Site (SRS) in South Carolina 
and the northeastern section of Archbold Buck Island Ranch (ABIR) 
in Florida. SRS is a 780-km2 National Environmental Research Park 
with ~68% of habitat consisting of upland pine forest and 22% com-
prised of bottomland hardwood forest (Imm & McLeod, 2005). ABIR 
is a 42.3-km2 beef cow-calf operation ranch managed at commercial 
production levels supporting an onsite agroecology research centre. 
ABIR runs ~3,000 head of cattle and consists of a mosaic of natu-
ral and altered habitats including pastures, oak-palm hammock for-
ests and wetlands (Swain et al., 2013). Both sites support numerous 
and diverse wildlife species, including wild pigs. Wild pig density at 
SRS ranges ~0.91–2.60 adult pigs/km2 (Keiter et al., 2017) with the 
adult density of our focal areas as 1.39 per km2 (Bastille-Rousseau 
et al., 2020). Adult wild pig density at ABIR ranges ~1.90–2.95 per 
km2 (P. Schlichting, unpub. data).

2.2 | Data collection and processing

Wild pig capture and handling (Supporting Information 1) were con-
ducted under approved University of Georgia IACUC protocol A2015 
05-004 and A2015 12-017 at SRS and under University of Florida 
IACUC protocol 201808495 at ABIR. At SRS, we captured and de-
ployed both proximity loggers (Sirtrack©) and GPS collars (Telonics 
TGW4501 and TGW4600) on 22 adult wild pigs (13 female [F] and 9 
male [M]) from February 1 to November 15, 2017. The captured wild 
pigs covered most social groups in the focal study site, so at least one 
individual in those groups was sampled (given pre-collaring camera 
surveys). At ABIR, we captured and deployed both proximity loggers 
and GPS collars (Catlog GPS device and Lotek LMRT3 VHF Collars, 
Lotek©) on 26 wild pigs (20F and 6M) from April 8, 2017 to June 5. 
However, due to GPS collar damage and battery exhaustion, only 
38 animals (ABIR: 14F, 6M; SRS: 11F, 7M) had both proximity logger 
and GPS data available. We conducted baiting and removal tactics to 
manage wild pigs at SRS. We set up nine baiting stations with prox-
imity loggers from July to August 2017 and continuously removed 

wild pigs (see removal intensity in Table S1) from September 14 to 
November 15, 2017.

Proximity loggers from both sites were programmed with a sepa-
ration time of 255 s and began recording contacts at a 5-m distance. 
We did pre-field tests on proximity loggers to establish confidence in 
these threshold settings. GPS collars at SRS and ABIR recorded fixes 
at 1-hr and 30-min intervals respectively. Social group membership 
of wild pigs with GPS collars were assigned based on their spatial 
distributions (Figure S1). Wild pigs with home range (HR) overlap 
greater than 50% were classified in the same social group (calcula-
tion of HR detailed below; Gabor et al., 1999). Group membership of 
wild pigs with damaged GPS collars were assigned based on capture 
dates and pre-collaring camera surveys. Given different sampling 
schemes and data availability at two sites, we employed different 
subsets of data to address different research questions (Figure S2).

We combined proximity logger data between each unique pair 
of loggers that were recorded within a 2-min amalgamation win-
dow and then removed the remaining one-second contacts (Drewe 
et al., 2012). We considered a direct contact to occur if the logger of 
either individual in the unique wild pig pair recorded a contact. As 
wild pigs alter space use frequently due to shifts in resource avail-
ability and depletion and their reproductive phenology is less cyclic 
than wild boar (Keuling et al., 2009; Mayer & Brisbin, 2009), we ana-
lysed data on a monthly scale to understand how the ever-changing 
reproductive and foraging behaviours might affect contact struc-
ture. In the analyses to assess effects of management processes, 
we also aggregated data according to the time periods of the man-
agement processes (baiting or culling) being assessed (Table S1). An 
indirect contact occurred when two wild pigs contacted the same 
baiting site within 5 days. Thus, indirect contacts were only recorded 
during the baiting period (SRS only) and we ignored other potential 
locations of indirect contact. We chose this 5-day interval to reflect 
the potential time that virulent strains of ASF virus remain infectious 
in the environment (Davies et al., 2017).

2.3 | Modelling probabilistic weighted networks

A previous study developed a method for inferring contact struc-
ture across species that included direct and indirect contact mech-
anisms within a single network (Wilber et al., 2019). This approach 
estimated the probability that two individuals (nodes) make con-
tact (edges) within a given time frame. Her, we extended the previ-
ous framework to also estimate the number of contacts between 
nodes (edge weights) using a negative binomial (NB) hurdle model 
(McDowell, 2003). The NB hurdle model includes a hurdle compo-
nent to estimate the probability that the contact occurred between 
two individuals and a NB component to model the contact rates 
(number of contacts over time), given that the contact occurred. 
The hurdle component could be a binomial or multinomial process 
depending on the number of possible contact modes. Our ap-
proach is an extension of dyadic independent Exponential Random 
Graph Model (Welch et al., 2011), which captures probabilities of 
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edge formation and weight under the assumption that edges are 
independent after accounting for node- and edge-level covariates.

Consider a contact network of wild pig population that includes 
c modes of contact (e.g. direct and indirect contact) and a no contact 
state (nc), meaning any given wild pig pair could experience c + 1 pos-
sible contact states. The kth observation of the hurdle component was 
defined by a dummy vector �k (zero and one represents the absence 
and occurrence of a type of contact, respectively) with c + 1 possible 
contact states that a unique dyad composed of individual m and n from 
social group i and j, respectively, could experience during the time in-
terval of interest. If any modes of contact occurred between two pigs, 
a NB model was applied to capture the contact rates (W).

Hurdle component:

NB component:

Priors:

Parameter Nk represents the number of different contact modes 
that the kth pair of animals experienced over the time interval 
(1 ≤ Nk ≤ c). g is the contact mode type. X and X′ are the matrices 
of covariates that affect the contact probability and rates respec-
tively. Parameters β and β′ are the coefficients of these covariates. 
Parameters � and �

′ are the social group-level random effects (with 
variation �2

i
) in the NB and hurdle components of the model, respec-

tively, which allows individuals m and n belonging to the same group 
(i = j) to have more similar contact patterns than two individuals from 
other groups (i.e. we assume the behaviour of individuals in the same 
group is correlated; Podgórski et al., 2014). We set regularizing nor-
mal priors on all β and β′ coefficients of all variables, a uniform prior 
for q (dispersion parameter in the NB distribution) and a half-normal 
prior for the variance of the social group-level random effects (�2

i
).

2.4 | Social effect on contact networks

We used the wild pig data at SRS before management (Feb–Jun; 12F, 
7M) and ABIR (Apr–Jun; 20F, 6M) to address the effects of social 

group and sex on wild pig direct contact. The covariates we included 
in these models were group_pair, sex_pair, month, overlap_time, site 

and number_of_pairs. The variable group_pair is a factor with two 
levels indicating whether the pair is from the same family groups 
(within- or between-group). The variable sex_pair is a three-level 
factor where levels represent the sex of each pig in contact pair m 

and n; efor example, an ‘F_M’ level represents female encountering 
male. We considered the number of days within each predefined 
time window (Table S1) that the pair of proximity loggers was active 
concurrently as a covariate, overlap_time, in the hurdle component 
and as an offset in the NB component adjusting for counts of con-
tact over variable time periods. The number_of_pairs gives a vector of 
the number of unique wild pig pairs with proximity loggers available 
during each time window. The covariate month is a factor with levels 
representing the month in which contacts occurred. The variable site 

is a factor with two levels representing the study sites. All variables 
were screened for multicollinearity (Pearson's correlation coeffi-
cient |r|  ≥  0.7; Vatcheva et al., 2016; Figure S3). The most informa-
tive variable was included when a strong correlation was detected 
among a set of variables.

2.5 | Spatial effects on contact networks

We used wild pigs from both sites (SRS: 8F, 6M; ABIR: 15F, 4M) with 
more than 1-month of GPS data available before baiting and removal 
to address the effects of spatial proximity on direct contacts. We 
considered two measurements to describe the spatial distribution 
of each wild pig pair: HR distance and overlap. To match the time 
window over which we aggregated the proximity data and given 
that contact events are time-specific (i.e. transmission window is 
not indefinite), we focused on monthly HR and employed the a-
method Local Convex Hull (LoCoH) analysis (Getz et al., 2007) to es-
timate the 95% HRs for each pig using the tlocoh R-package (Lyons 
et al., 2013). The HR overlap (HRover) of two individual pigs was es-
timated using the intersection of the two HRs divided by the union 
of them (Lyons, 2014). HR distance (HRdist) was measured as the 
distance between medians of the locations of two wild pigs. Since 
we observed that some animals changed group membership during 
the study, we assigned social group membership monthly to each 
individual using the changes in monthly HR overlap (Figure S1). We 
incorporated the above spatial metrics as two additional covariates 
in the NB hurdle model to estimate the effects of spatial proximity 
on contact (Table S3).

2.6 | Management effects on contact network and 
disease establishment

We used data from SRS (Feb–Nov; 13F, 9M) to estimate the ef-
fects of management on wild pig contacts. Given indirect con-
tacts were introduced via bait piles, we considered two contact 
types, direct and bait-mediated (indirect) contact and fitted a 

�k ∼ Multinomial
(

Nk, p1, p2,…, pc, pnc
) (

or�k ∼ Binomial
(

1, p1, pnc
))

,

log

(

pg

pnc

)

k

= Xg�g + �
g

m,j
+ �

g

n,i
; 1 ≤ g ≤ c.

Wg

(

�k [g ] = 1
)

∼ NegativeBinomial (�g, qg ) ; 1 ≤ g ≤ c,

log
(

�g
)

= log (offset) + Xg� �g� + �
g

m,i

� + �
g

n,j

� ,

�
g

m,i
, �

g

m,i

�
∼ N

(

0, �2
i

)

,

�i ∼ HalfNormal (0, 4 ) ,

�g, �g� ∼ N (0, 4 ) ,

qg ∼ uniform (0, 50 ) .
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similar NB hurdle model with a multinomial hurdle component 
to the data. We tested the effects of removal with four differ-
ent covariates: monthly number of pigs removed from the whole 
population (removed_pigs; Table S1), monthly number of collared 
pigs removed (removed_sample; Table S1), monthly cumulative 
proportion of wild pigs removed (cumulative_proportion; 5.9% in 
Sep, 7.8% in Oct, 8.6% in Nov) and monthly cumulative propor-
tion of all pigs removed that were collared pigs (cumulative_sam-

ple_proportion; 5.2% in Sep, 11.1% in Oct, 23.5% in Nov). We 
used a binary variable (bait) to estimate if contacts occurred 
within the baiting period or not. Additionally, we included group_

pair, sex_pair, overlap_time and number_of_pairs to capture other 
factors and added another random effect of month to consider 
seasonal variation.

We fitted all NB hurdle models via Bayesian Markov chain Monte 
Carlo (MCMC) methods using JAGS v4.3.0 (Plummer, 2003) and jag-
sUI R-package (Kellner, 2015). We ran 3 MCMC chains for 50,000 
iterations, with thinning rate of 40 and burn-in of 10,000 itera-
tions. We ensured convergence of the model and sufficient burn-in 
using Gelman–Rubin statistic (where�R < 1.05 forconvergence ) for 
all coefficients and visual inspection of the trace plots (Gelman & 
Rubin, 1992). We generated all additive combinations of covariates 
and compared the fitted model performance using widely applicable 
information criteria (WAIC; Gelman et al., 2014). To assess predictive 
accuracy, we simulated our best fit network models and compared 
the predicted network statistics (node-level degree and strength 
centrality) to observed and random network statistics (Supporting 
Information 2). We focused on degree (number of different individu-
als an animal connects to) and strength (number of contacts the an-
imal makes with others over time), instead of other relevant metrics, 
because those two have strong impacts on disease dynamics, can be 
applied widely in different types of disease transmission frameworks 
(not only network models), and are most commonly examined (i.e. for 
comparison of results to other work). Also, they directly reflect the 
performance of the two common components of disease transmis-
sion models: contact probability (binomial component) and rates (NB 
component). We, hereafter, use ‘contact occurrence/probability’ 
and ‘contact rates’ to describe the features of a pairwise contact and 
network terminology ‘degree’ and ‘strength’ to describe a contact 
network predicted from the hurdle models. We followed the criteria 
and methods above for model selection and evaluation in all sets of 
analyses.

We used the predicted contact networks to evaluate the effects 
of contact degree and management on the relative likelihood of ASF 
establishment using the basic reproduction number, R0, as a met-
ric (Supporting Information 3). R0 measures the expected number 
of secondary cases caused by an infectious host in a completely 
susceptible population (Dietz, 1993), with absolute values above 1 
indicating that a pathogen can deterministically invade a popula-
tion. Our estimate of ASF-specific, population-level R0 was derived 

from an epidemiological model following ASF epidemiological pro-
cesses and parameterized using the ASF-related parameters (e.g. 
transmission/death rate) and the predicted average degree (average 

number of other animals they connect to) across different time 
frames (Supporting Information 3). We also estimated the individ-
ual-level R0 using node-level metrics to capture contact network 
heterogeneity, since disease spread depends on the hierarchy that 
infectious individuals arise in the network. We considered removal 
as an additional death rate other than natural and ASF-related death. 
Because our derivation of R0 required specifying some unknown pa-
rameters (e.g. transmission probability given contact), we did not 
estimate absolute values of R0. Rather, we rescaled the R0 values 

to a baseline value based on different objectives (here a maximum 
individual-level R0 over the study period was used as a baseline, so 
relative R0 ranged from 0 to 1) to show how different management 
strategies change R0 values relative to values from unweighted net-
works over the study period. Thus, our results cannot be used to 
identify disease invasion thresholds, rather they are relevant to de-
termining the magnitude of effects of different conditions on dis-
ease invasion rates. We also calculated the sex-specific contribution 
to relative R0 over the study period using the top-selected NB hurdle 
(multinomial) model.

To estimate the effects of management-induced pertur-
bations on ASF transmission, we estimated the relationships 
between R0 changes and the number of effective bait sites or 
removal rates. Although nine bait sites were placed at SRS, only 
two of them were located in the HRs of collared pigs during 
the study period. Thus, we only focused on effects of two bait 
sites on indirect contact. We randomly dropped indirect con-
tacts introduced by each of the two bait sites and fitted the NB 
hurdle model with two contact modes and covariates including 
group_pair, sex_pair, overlap_time, bai, and number_of_pairs. We 
computed R0 relative to non-baiting direct contacts as described 
above for scenarios with zero, one or two bait sites. Given the 
low removal intensity during the experimental removal treat-
ment (~5.9% of pigs removed), we examined possible effects of 
additional removal intensities by randomly dropping individuals 
from the collared population with a rate ranging from 10% to 
80% (2–20 removed individuals; 8 scenarios), which we ignored 
the unknown behavioural responses to different removal inten-
sities. As wild pig contact varies across seasons given their re-
sponse to resource availability, we also simulated the scenarios 
on removing wild pigs in different seasons with different con-
tact degrees. We divided the observed data into a high-degree 
scenario (Feb–Apr), low-degree scenario (May–Jun) and with 
indirect contacts included (Jul–Aug; total of 3 × 8 scenarios). 
For each data-dropping scenario, we conducted 100 replicate 
simulations, fitted the NB hurdle model with group_pair, sex_

pair, overlap_time and number_of_pairs, and controlled monthly 
variations (month excluded). We then calculated average de-
gree for each scenario and used them to compute R0 relative 

to non-removal. We focused on the impact of removal intensity 
on average degree, using both the data we had and by extrapo-
lation beyond it to predict the removal intensity that would be 
required to drastically impact average degree. All analyses were 
implemented in R v3.5.3 (R Core Team, 2019).
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3  | RESULTS

3.1 | Social effect on contacts

We selected the more parsimonious (Model 1.1 in Table S2) of two 
models with similar performance (other model: Model 1.2; Figure 1a,b) 

to estimate social effects on contact structure. This model predicted 
the observed node-level degree and strength distributions better than 
random networks (Figure S4; Figure 2). Figure 3 shows the observed 
contact networks in different time windows at two study sites.

Social group membership and sex affected wild pig contacts in 
both sites (Table S2; Figures 1a,b and 2). As expected, in the contact 

F I G U R E  1   Coefficient estimates and 95% credible interval from the negative binomial (NB) hurdle models identifying the effect of social 
structure and sex (a, b), spatial proximity (c, d), and management (e–h) on contact structure. For the month factor, February is the baseline. 
For group pair factor, within-group is the baseline. For the sex pairs, female encountering female (F_F) is the baseline. In each set of panels, 
models in black are top-selected, while models in grey are the competing models



826  |    Journal of Animal Ecology YANG et Al.

network, within-group strength centrality was 10 times higher than 
between-group strength at SRS, and it was doubled relative to be-
tween-group strength at ABIR. Female adults tended to contact 
more individuals (higher degree) and have higher strength, while 
male adults contacted fewer unique individuals but with large varia-
tion in degree distributions.

3.2 | Spatial effect on contacts

Similarly, Model 2.1 was selected to describe the effects of spa-
tial proximity (Table S3; Figure 1c,d), predictive accuracy of which 
also performed better than random networks (Figure S5). Monthly 
HR overlap increased contact probability and contact rates, as ex-
pected (a proxy for group membership). Contact probability de-
creased when monthly HR distance increased; most direct contacts 
occurred when monthly HR distances were <2 km, and no con-
tacts occurred when monthly HR distances were >4 km (Figure 4). 
Individuals with monthly HR distances within 1 km often contacted 
more than once per day.

3.3 | Management effects on contacts and ASF 
establishment

We selected Model 3.1, the more parsimonious model without re-
moval-related covariates to evaluate management effects, com-
pared to a competing model with similar performance (i.e. Model 
3.2; Table S4), suggesting that low-intensity removal (<5.9% of 
total population) did not impact the contact networks. Model 
predictions of degree and strength across different contact types 
performed better than random networks (Figures S6 and S7). The 
addition of baiting sites increased overall contact rates and aver-
age degree by introducing a mechanism for indirect contact, but 
baiting showed no impact on direct contact (Figures 1e–h and 5).

Before baiting and removal (Feb–Jun), relative R0 for ASF natu-
rally (without perturbations) decreased as average degree decreased 
(Figure 6a). When baiting began (Jul–Aug), the relative R0 increased due 

to the addition of indirect contact and remained high during the first 
2 weeks in Sep after baiting had ceased. Relative R0 then decreased 
from 0.08 immediately before the removal period to 0.03 in Sep, when 
the number of removed pigs reached ~5.9% of the total population 

F I G U R E  2   Predicted and observed (a) 
degree and (b) strength centrality across 
females, males and group memberships 
depict high within-group direct contact 
rates and sex-specific contact variation. 
The error bars show the median and 
95% quantile of the node-level degree or 
strength in a subpopulation
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in the study site. Thus, although low-intensity removal did not alter 
the contact structure, it reduced the relative R0 by ~42%–78% in mid 
Sep–Nov due to the additional reduction of host density (death rates 
underpin R0 but not contact degree). The contributions of females and 

males to the relative R0 of ASF followed the trend of their contributions 
to average contact degree, with females contributing more (Figure 6b).

R0 increased by ~27% with one bait site and by ~33% with two 
bait sites relative to before-baiting direct contact (Figure 6c). In the 

F I G U R E  3   Observed unweighted 
contact network in different time 
windows at Savannah River Site (SRS) and 
Archbold Buck Island Ranch (ABIR)
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simulated scenarios, removing 10% of the sampled population re-
duced the R0 relative to zero-removal by ~50%–70% (similar to the 
experimental treatment) depending on the contact degree in a pop-
ulation (Figure 6d). R0 of the low-degree population was more sensi-
tive to removal than that of the population with high-degree contact 
or indirect contacts included.

4  | DISCUSSION

Disease emergence and transmission in widespread, invasive species 
is of critical concern globally given its potential to disrupt ecologi-
cal processes, threaten food production systems and impact human 

health (Crowl et al., 2008). Fundamental to developing management 
approaches to contain and remove disease threats is characterizing 
the processes that underlie the transmission of disease. Here we 
implemented a probabilistic approach to define weighted contact 
networks across two wild pig populations with two main features 
(contact probability and rate) to understand the effects of manage-
ment processes on transmission of ASF, a disease of global concern.

4.1 | Factors influencing direct contact

As found in related systems (Podgórski et al., 2018), within-
group strength centrality of the wild pig contact network was 

F I G U R E  4   Predicted and observed 
(a) degree and (b) strength centrality 
(log scaled) in different categories 
of home-range distances. Error bars 
show the median and 95% quantile of 
the node-level degree or strength in a 
subpopulation. Contacts are rare >2 km 
and non-existent >4 km

F I G U R E  5   Predictions of graph-level 
(a) degree and (b) strength centrality for 
within-group direct contacts, between-
group direct contacts, within-group 
indirect contacts and between-group 
indirect contacts before baiting and 
removal, and during the baiting and 
removal periods. Triangles are the 
observations. Error bars show the median 
and 95% quantile of the graph-level 
predicted degree or strength in each time 
frame. Indirect contacts were introduced 
by baiting effects but did not alter direct 
contact degree and strength
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much higher than between-group contacts likely due to the high 
group cohesion and the philopatry of females. Since the spatial 
extent of disease spread is driven by contacts between groups, 
this social structuring might introduce a constraint on disease 
transmission (Hirsch et al., 2013). Considering the low between-
group strength in the contact networks, we might expect limited 
spread of highly virulent pathogens such as ASF virus. However, 
wild pigs at both sites had relatively large variances in between-
group contact degree, suggesting pathogens have the potential 
to be transmitted broadly throughout the population. The high 
within-group contact rates could enable persistence by leading to 
enough new cases to sustain transmission of ASF in the rarer be-
tween-group contacts. There is similar evidence of social struc-
ture effect in other wildlife disease systems. For example, studies 
in wild meerkats Suricata suricatta (Drewe et al., 2011), primates 
(Ryan et al., 2013) and badgers (Weber et al., 2013) suggested 
that clustered contact networks due to social and demographical 
factors limited disease transmission across population. These re-
sults could be explained by network modularity, a metric describ-
ing the strength of division of a network into different clusters, 
which is often negatively correlated with disease spread (Girvan 
& Newman, 2002). Although modularity was not evaluated here, 
by examining the effect of group membership on network met-
rics, we were able to quantify group effects on contact probabil-
ity and rate, providing a mechanistic understanding of modularity 
effects on the network.

Most contacts occurred among individuals within a 2-km monthly 
HR distance with high contact rates, and there were no contacts with 
monthly HR distances >4 km (maximum observation), which is similar 
to previous studies in wild pigs/boars (Pepin et al., 2016; Podgórski 
et al., 2018) and other ungulates (Grear et al., 2010). Additionally, con-
tact strength decreased gradually as HR distance among individuals 
increased. These results indicated that spatial constraints on animal 
movement and contact network have the potential to limit the spatial 
spread of diseases in this system (Cowled & Garner, 2008). The spa-
tially constrained contact pattern may interact with social constraints 

to slow disease spread and establishment as most of the high-rate 
contacts within a 2-km monthly HR distance are within-group con-
tacts. Thus, our findings suggest a 2-km culling radius around a disease 
detection might be sufficient to capture most ongoing transmission 
as long as the detection is rapid relative to the onset of infectious-
ness. However, these thresholds for monthly HR distance might vary 
in other study sites based on population density, landscape features 
and resource availability; for example, ASF virus may spread farther 
and faster in a denser population or in populations with larger home 
ranges, thus requiring a larger culling radius.

4.2 | Factors influencing indirect contact

Food contamination can be a major source of infectious disease 
transmission by facilitating indirect contact, as shown for bru-
cellosis, ASF and foot-mouth disease (Bates et al., 2003; Cross 
et al., 2007; Sánchez-Vizcaíno et al., 2013). To spatially constrain 
hosts, supplemental feeding is provided to wildlife populations 
to administer vaccines or create spatial separation between spe-
cies of concern and susceptible hosts (Cross et al., 2007; Sokolow 
et al., 2019). However, bait piles or feed can increase contacts (di-
rectly and indirectly) among individuals, potentially increasing dis-
ease prevalence in wildlife populations (Cross et al., 2007). Despite 
only two bait piles being used by wild pigs here, the overall con-
tact degree and the ASF establishment risk were increased sub-
stantially by increasing indirect contact between individuals from 
different social groups. Besides artificial feeding for wildlife, other 
food sources including livestock supplements and shared natural 
forage/water locations (not considered here) could also serve to 
enhance contact and, thereby, disease transmissions (Brahmbhatt 
et al., 2012; Wilber et al., 2019). Indirect contacts were estimated 
here based on a fixed ASF virus decay rate of 5 days. However, 
the survival of ASF virus varies depending on environmental con-
ditions, for example, it may persist for over 2 weeks when tem-
perature is <4°C (Davies et al., 2017). We estimated variation in 

F I G U R E  6   (a) Population-level relative 
R0 for African swine fever (ASF) virus 
under the monthly changes in predicted 
(black) and observed (red) contact 
structures over the study period. The grey 
areas are the upper and lower boundaries 
of individual-level relative R0. (b) Sex-
specific contributions to population-level 
relative R0. (c) Effects of the number of 
baits on ASF population-level R0 relative 

to direct contacts before baiting. Error 
bars show 95% quantiles. (d) Effects of 
monthly removal rates on population-level 
R0 relative to non-removal in simulated 
scenarios. Error bars show the upper 
and lower boundaries of individual-level 
relative R0
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indirect contacts under different decay scenarios (1, 5 and 14 days; 
Figure S8) and found the average indirect contact degree could in-
crease over three times as the survival time of ASF virus increases 
from 1 to 5 days and the average strength can increase from 0.5 to 
7.1 by increasing ASF virus survival time from 1 to 14 days, high-
lighting that application of our results to other study areas needs to 
consider the impacts of different pathogen decay rates. Given lo-
gistical constraints of the study, we attempted to monitor the larg-
est set of animals occupying a contiguous space as possible. While 
we did not have a second site to use as a negative control for baits, 
we compared contact structure among animals with and without 
bait sites in their ranges (Figure S9).

We found contact and group structure of wild pigs, like racoons 
(Hirsch et al., 2013) and badgers (Weber et al., 2013), were dynamic 
across different months and sites. This variation can result from re-
source availability, climate conditions and reproductive cycles (Keuling 
et al., 2009; Mayer & Brisbin, 2009). Thus, we may expect different 
management impact on contact and disease transmission in different 
seasons and areas, which were also suggested in fencing effects on 
interspecific contact and effects of climate and feeding season length 
in elk-brucellosis system (Cross et al., 2007; Wilber et al., 2019). Future 
studies with long-term active management actions might be needed to 
quantify the seasonality of wild pigs’ response to disturbance.

4.3 | Disease control measures

Culling host to control diseases in wildlife populations is controver-
sial. Where transmission is density dependent, limiting host popula-
tion density below the threshold for disease invasion through culling, 
predation or recreational hunting should theoretically control the 
(re-)emergence of infectious diseases (Silk et al., 2017; Sokolow 
et al., 2019). Culling has been applied with varying success to control 
chronic wasting disease in white-tailed deer (Wild et al., 2011), bTB 
in badger-cattle system (Donnelly et al., 2003) and brucellosis in cat-
tle-bison system (Schumaker et al., 2012). However, this practice can 
catalyse unexpected changes in host movement, like disrupting rang-
ing or territorial behaviours, which might neutralize density impacts 
by increasing infectious contacts (Donnelly et al., 2003; Sokolow 
et al., 2019). Although previous studies have suggested significant 
influences of recreational hunting on spatial utilization by European 
wild boar (Keuling et al., 2008; Thurfjell et al., 2013), we found no 
detectable removal effects on wild pig contact network, likely be-
cause our removal intensity was low. Even after large perturbations 
like translocation, wild pigs return to pre-translocation movement 
patterns within several weeks (J. Smith, D. Keiter, S. Sweeney, R. 
Miller, P. Schlichting, & J. Beasley, unpublished data). Results from 
both our observed and simulated removal scenarios provide support 
for a decrease in ASF relative R0 mediated through a low-intensity 
removal. The primary mechanism for reduced R0 was a reduction in 

host survival rather than changes in contact degree.
Our estimation of relative R0 uses probabilistic networks to 

predict variation in ASF establishment over different degree 

distributions during the study period. However, our population-level 
epidemiological model is a simple proxy for the complex transmis-
sion system. Although an individual-level relative R0 is provided to 
demonstrate variation in contact and ASF transmission, infectious 
contact rates between each animal pair (Ryder et al., 2007) and the 
shedding rate of ASF virus were not included in the derivation of 
R0. A more detailed transmission model that accounts for additional 
heterogeneity in the contact network would be necessary to de-
termine the full effects of wild pig contact dynamics on invasion 
of diseases like ASF for guiding optimal control strategies. Contact 
duration is also important for disease transmission, but we focused 
on contact frequency for defining network strength so that our re-
sults are comparable to those from GPS data (which do not capture 
contact duration). Also, given our pre-field verification in the lab-
oratory, proximity loggers had high error rates measuring contact 
duration while measures of contact frequency are more accurate.

As with all empirical studies of contact structure, our results 
describe contact network for a limited sample across two pop-
ulations (48 animals). In wildlife movement studies, this level 
of sampling is generally thought to be sufficient to gain general 
population insights; previous research found 18–58 animals was 
sufficient on average to capture population movement patterns in 
wildlife (Hebblewhite & Haydon, 2010). Additionally, by inferring 
pairwise contacts probabilistically from the empirical data to un-
derstand mechanisms that drive contacts, our models can allow 
probabilistic prediction for larger populations. However, we es-
timated an approximately linear relationship between host den-
sity and average degree (Supporting Information 4; Figure S10), 
despite accounting for spatial limitations in contact structure. 
We expected this relationship would saturate at higher densities 
because contact structure was not homogenous in our system. 
The fact that we predicted saturation only weakly (upper limit of 
uncertainty) at higher densities suggests that our ability to pre-
dict contact structure in denser populations was constrained by 
our sample size. A larger sample size would improve prediction of 
average degree outside the host density conditions in our study. 
But, the fact that the upper bound on uncertainty was saturating 
suggests that our sample size is close to adequate for enabling out-
of-sample prediction. Validation of these predictions using data 
from denser populations to test for density-dependent effects on 
degree would be valuable for inferring contact structure in larger 
or smaller (i.e. effects of removal) populations. In conclusion, the 
dynamic nature of wild pig contact and high sensitivity of R0 to 

contact degree highlights the importance of understanding con-
tact patterns for estimating disease invasion risk and identifying 
optimal control strategies.
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