
 Available online at www.CivileJournal.org 

Civil Engineering Journal 

Vol. 3, No. 3, March, 2017 

 

 

 

 

172 

 

 

Effects of Soil Modulus and Flexural Rigidity on Structural 

Analysis of Water Intake Basins  

Hassan Akbari 
a* 

a
 Department of Civil Engineering, Tarbiat Modarres University, Tehran, Iran. 

Received 20 January 2017; Accepted 27 March 2017 

Abstract 

A water intake basin is a buried box that functions as a water reservoir near shorelines. Number of these structures has 
been increased in the recent years and for a safe design, it is necessary to know their behaviour under applied loads. In 
addition to common dead, live and seismic loads, the bottom of such a basin is usually located below sea water level and 
endures uplift pressure as well as reaction of supporting soils. Uncertainty of these special loads complicates the 

structural response of this buried basin to the applied loads. Therefore, the unreliability in the soil parameter and in the 
rigidity of the basin structure is studied in this research by calculating the generated internal bending moments. Different 
loads and load combinations have been taken into account and finite element analysis is carried out for modelling 

nonlinear behaviour of different types of supporting soils. It is concluded that the geometry and flexural stiffness  of the 
basin affects the analysis more than the soil parameters because the contribution of the soil modulus in the total stiffness 
of the system is negligible than the structural rigidity of the basin structure. In addition, inner walls and geometry of the 
basin should be modelled in detail to obtain acceptable results. 
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1. Introduction 

In recent years, water consumptions have been increased due to development of industrial activities as well as 

extension of urban areas. Although demand of potable water has been expanded, the source of water is limited and its 

consumption should be done with special attentions. Desalination plants near seas are cost effective and reliable 

methods for establishing the required source of water [1]. In these systems, the sea water comes to a water intake basin 

through marine pipes and then the water is pumped from the basin to the required destination. Destination can be a 

plant or a crowded area with industrial or urban activities. Seawater intakes can be classified to submerged and buried 

intakes [2]. In a submerged intake, water comes to a basin through offshore pipes and in a buried intake system, water 

passes through screens and drilled wells. The capacity of the latter case is limited; however, a submerged system is 

applicable in different conditions and it is a common practice for providing required waters for industries. A chamber 

structure is usually used at offshore and water comes to inland basin through pipes. A desalination system has different 

parts including a water intake and an effluent outfall. There are some criteria and studies for the intake and outfall 

conditions [3, 4] and different shapes of the offshore chamber is investigated [5], but studies for the structural behavior 

of the intake basins is limited. This basin is actually a buried structure because its bottom level is under the sea level 

and the water comes to the basin by gravity. The basin acts as a box with interior walls and soil pressure as well as 

water pressures exert on the exterior walls. In addition, the bottom slab should resist against uplift force and soil 

reaction. Analysis of this structure is complicated because it is a combined system of solid, water and soil. The 

thickness of the bottom slab is usually uniform and the soil beneath the intake basin support the basin with reaction 

forces. In addition to the bearing capacity of the base soil, differential and total settlements also control the design [6]. 

Although the thickness of the bottom slab affects differential settlement and bending moments, its effect on the total 
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settlement is little. The maximum bending moment may be increased with increasing the slab thickness [7], but, the 

effect of the slab thickness on the maximum bending moment is decreased by increasing the slab thickness nearly more 

than 1.5 m [8].   

Since modeling the soil beneath the basin structure can affect the total behavior of the basin, it is important to know 

the sensitivity of the analysis to the assumed soil parameters. It should be noted that there are usually considerable 

uncertainties in the soil parameters. Therefore, the effects of soil modulus on the behavior of an intake basin are 

investigated in this study by analyzing the basin under different loading conditions and by assuming different soil 

parameters. In addition, the effect of the rigidity of the bottom slab is studied. The soil beneath the basin is modeled 

via nonlinear springs and the results are also compared with the results of simplified models which assume a fixed 

support condition instead of nonlinear soil reactions. 

2. Analysis Procedure 

2.1. Geometry and Modelling 

To study an actual case, the geometry of the basin is selected based on an actual case. The 3D geometry of the basin 

with two horizontal sections is presented in Figure 1. Plan view and dimensions are shown in Figure 2. As presented in 

this figure, Length, width and height of the analyzed sea water intake are 48.55 m, 22.3 m and 13.0 m, respectively. 

Inner walls of the basin act as separators for water flows and their lengths are different based on their locations. Sea 

water comes into the basin from the side with smaller width and pumps are located at the side with the larger width. 

The thicknesses of roof, floor, inner walls and outer walls are 0.8 m, 1.5 m, 0.6 m and 1.0 m, respectively, yet the 

thickness of the bottom slab is also changed to study the effect of the its rigidity. Four node, isotropic shell element are 

used in the utilized finite element software (Sap2000-14.2.4) for modeling both interior and exterior walls as well as 

roof and floor slabs. Dimensions of the Basin and modeling conditions are presented in Table 1. 

 

 
 

Figure 1.  3D geometry of the basin and two horizontal sections at different levels of the basin 

 

 

Figure 2.  Plan view of the basin with dimensions 
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Table 1. Geometrical dimension of the basin and elements used for modeling   
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Length of sea water intake 48.55 m 
 

Width of sea water intake 22.3 m 
 

Top of floor level -7.0 m (CD) 
 

Top of roof level +5.5 m (CD) 
 

    
M

o
d

e
l 

Shell elements for modeling Thickness No. of elements 

Roof 0.8 m 9337 

Floor (supported on springs) 1.5 m 10481 

Inner walls 0.6 m 27185 

Outer walls 1.0 m 21521 

 

Since the basin floor is located on the bed, the soil beneath the basin structure is modeled via nonlinear springs with 

a compressive behavior. According to the physical nature of contact between basin floor and bed, the springs can only 

endure the compressive forces and they cannot act in tension. The following Figures show the model geometry. To 

consider the effect of concrete cracking in analysis, module of elasticity has been decreased by a factor of 0.35 

according to [9]. The model geometry is shown in Figure 3. and the applied classification for the shell elements i.e. 

inner walls, roof, exterior walls and foundation, respectively are shown in Figure 4. 

 

 
Figure 3.  3D modeled geometry of the basin 

   

   

Figure 4.  Classifications of shells in the modeled basin; a) outer walls, b) inner walls, c) roof and floor    

2.2. Modulus of Soil Sub-grade Reaction   

Soil beneath the basin supports the vertical and lateral movement of the structure. Assuming a fixed support is the 

simplest way for modeling the soil support. However, the better way is to model the actual behavior of the soil by 

making use of either nonlinear Winkler foundation or elastic continuum [10]. In Winkler model which is implemented 

in this study, the base soil assumes to behave like infinite number of springs that their stiffness is the modulus of 

subgrade reaction. By modeling the soil strata, the soil pressure beneath the basin will be obtained by analysis. Since 

assuming a rigid foundation is a common assumption in conventional modeling of mat foundations, the reliability of 

conventional methods is investigated in the present study for different soil parameters. To do this, the Finite element 

analysis is utilized as an effective and accurate way for analyzing the basin under applied loads. Since the sensitivity of 

the results depend on the soil parameters, different values of soil modulus have been taken into account. A wide range 

(c) (b) (a) 
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of values has been recommended for the modulus of subgrade reaction for various soil types and, the exact value of 

subgrade module at each location should be determined by field test [11]. If not, it can be calculated based on the 

equations derived based on plate load test [12] and estimates the subgrade modulus as a function of soil parameters 

[13, 14]. Several equations have been suggested for evaluating subgrade modulus, one of them is the empirical 

equation recommended by [15] as   (        )    , for clay and   (         )      ,  for sand. In these 

equations,   is subgrade modulus [t/m3], su is undrained shear strength (t/m2) and NSPT is value of Standard 

Penetration Test. Finally, typical values for different types of soils can be evaluated as the values in Table 2.  

 
Table 2. Typical values of modulus of sub-grade reaction (ks) for different types of soils  

Type of Soil 
Loose 

sand 

Medium 

dense sand 
Dense sand 

Clayey medium 

dense sand 

Silty medium 

dense sand 

ks (MN/m
3
) 5 to 15 15 to 60 60 to 130 30 to 80 20 to 50 

 

In this study, to consider uncertainty of soil condition, different values of soil modulus are modeled in a way to 

cover different types of soils. For this purpose and based on the typical values, soil modulus are selected as 10, 50, 100 

and 130 MN/m3. A fixed support condition is also modeled as the highest possible stiffness of the base soil. 

2.3. Loading 

Several combinations of dead, live, hydrostatic, seismic, soil pressure and thermal load act on the structure. Dead 

loads include the weight of basin structure, attached equipment and accessories. The weight was calculated based on 

the density of the reinforced concrete as 2400 kg/m3. Live load is the load superimposed by the use and operation of 

basin. The following items were considered as live load: Maintenance and equipment hatch load (uniform load) = 1000 

kg/m2, Personal load (uniform load) = 500 kg/m2. The Hydrostatic load varies linearly with height of the water and it 

acts perpendicular to the surfaces. The uplift pressure applied to the basin floor is the maximum water pressure with a 

uniform distribution. Seismic load is evaluated based on Iranian standards for marine structures [16].  

Static method is utilized for calculating the inertia effects of earthquake on internal forces and displacements. For 

conditions of earthquake occurrence, it is considered that the basin is in operation state and it is full of water. The 

Earthquake coefficient for this condition is considered to be 0.16 (             ) [17]. This coefficient cross the 

effective weight generates the earthquake force that is applied to the structure in two directions. Dead load plus 20% of 

live load is considered as the effective weight in calculating seismic load. In addition, seismic load may generate 

unbalanced water pressures inside the basin. To consider this effect, 30% of the dead weight is added to the above 

mentioned effective weight during earthquake and the total weight cross the earthquake coefficient is applied as the 

earthquake force. It should be noted that the weight of the water inside the basin is applied in the model in the seismic 

condition when the weight of the structure becomes important. Soil pressure around the basin is evaluated based on the 

supposed specific gravity and apparent gravity of the soil. Soil pressure is assumed equal in both seismic and ordinary 

conditions. The lateral soil pressure coefficient is assumed as k0=0.45. Thermal Loads are defined as a force caused by 

variation of temperature and it is not considered in this study. 

All the loads are combined based on [9] as presented in Table 3. An envelope combination is also determined to 

show the maximum stresses among different load cases. In addition to common load combinations, some special notes 

have been taken into account. For example, it may be required during operation to close the stop logs an empty the 

basin for maintenance or cleaning the basin. In this case, the uplift exerted on the bottom of basin can generate a 

critical state that governs design of the floor section of the basin foundation. In another case, the internal water 

pressure is not applied on the exterior walls and only the outer face of these walls are subjected to the hydrostatic 

pressure from the water outside the basin. In this manner, water pressure acting on the outer face of the exterior walls 

will not be balanced with the interior pressures and a critical condition is obtained that governs design of the exterior 

walls. To consider the worst case, MLHW level is considered for evaluating the lateral water pressure on the exterior 

and interior walls. Therefore, 3.0 m of the basin top is located above the sea water level. In a normal operating 

condition, hydrostatic pressures act on both sides of an interior wall and it do not generate a bending moment in the 

interior walls. However, when a section needs repair and it is done by closing the sluice gates, the hydrostatic water 

pressure is applied to the interior walls of the full sections of the basin. Meanwhile, the external forces applied to 

structure in this state are as same as the previous condition. The bending moment due to this condition can govern 

design of internal walls.  
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Table 3. Load combinations that are used for structural analysis of basin 

Load Comb. Dead Load Live load 
Water Pressure 

outside 

Water Pressure 

inside 

Uplift 

Pressure 

Soil 

pressure 

Earthq.  
X or Y Dir. 

1 1.40 
      

2 1.40 1.70 
  

1.70 
  

3 1.40 1.70 1.70 
 

1.70 
  

4 0.90 
 

1.275 
 

1.275 
  

5 1.40 1.70 1.70 
 

1.70 1.70 
 

6 1.40 1.70 1.70 1.70 1.70 1.70 
 

7, 8, 9, 10 1.05 1.275 1.275 1.70 1.275 1.275  1.40 

11, 12, 13, 14 0.90 
     

 1.40 

Envelope Maximum output of all other combinations 

 

3. Effect of Soil Modulus 

The structure of the basin is analyzed under different load combinations and the maximum bending moment in each 

element is obtained from the envelope combination. A sample output corresponding to the subgrade reaction modulus 

of 100 MPa/m is presented in Figure 5. that shows the distribution of the maximum bending moments in two 

perpendicular directions i.e. M11 and M22 in different elements of the bottom slab. As shown in this figure, the 

maximum bending moment per unit length of the bottom slab is nearly 200 tonf.m/m. The average value of the 

maximum bending moments as well as the standard deviation of these values can be calculated. The average value of 

the bending moment in this case is nearly 17 tonf.m/m and it can be useful in evaluating the adequacy of the thickness 

of the bottom slab. These maximum, averaged and standard deviations of the maximum bending moments in the 

bottom slab are calculated for different cases with different subgrade modulus.  

The results are shown in Figure 6. According to these results, the averaged value of the bending moment is 

significantly less than the maximum value which is generated in a local point of the bottom slab. Since the soil 

modulus are selected based on loose to hard conditions, it can be concluded that the maximum bending moment in the 

bottom slab is not too sensitive to the soil modulus, however, a harder soil condition results in a lower bending 

moment value. The limit condition happens when a fixed support is modeled for the base reaction modeling. The 

averaged value is more sensitive to the changes in soil condition and it has been changed from the maximum value of 

19 tonf.m/m in a loose soil to a minimum value of 10 tonfm/m in a hard soil condition. On the other hand, the standard 

deviation of a hard soil condition is clearly less than softer soil conditions. The effect of soil modulus on the averaged 

bending moment in different walls is presented in Figure 7. As shown in this figure, the bending moment in the bottom 

slab is clearly a function of soil modulus. The reason is that the slab is directly supported on soil and its behavior is 

more sensitive to the soil condition. However, the averaged bending moment in outer walls, inner walls and roof is 

independent to the soil modulus because stiffness of the intake is dominant to the soil condition.   

 

 

Figure 5.  Bending moment in elements of the bottom slab in the envelope load combination    
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Figure 6.  Averaged, standard deviation and maximum bending moment in the bottom slab with different subgrade 

modulus    

 

 
Figure 7.  Averaged bending moment in different walls with different subgrade modulus    

4. Effect of Bottom Slab Rigidity and Inner Walls 

To study the effect of the existence of inner walls on the generated bending moment in the basin, two different 

structures with and without inner walls are analyzed by taking into account two different soil conditions with soil 

modulus of 10 and 100 MPa/m. The results i.e. averaged bending moment in different walls and slabs are presented in 

Figure 8. As shown in this figure, in the case of removing the inner walls, bending moment in all the shells (outer 

walls, roof and bottom slab) has been increased. The maximum effect is yet in the bottom slab where the averaged 

bending moment in the case of a structure without any inner wall is nearly twice the averaged bending moment in the 

case of existence of inner walls. The bending moment in the roof is also increased significantly by removing the inner 

walls. The minimum effect, however, has been occurred in the outer walls. Actually, the inner walls increase the 

rigidity of bottom slab and roof sections clearly and the length between the stiff supports will be decreased 

accordingly.  

The outer walls are not supported on the inner walls and therefore, they experience fewer amounts of changes due 

to removing inner walls. On the other hand, the effect of soil stiffness on the averaged bending moment is little 

especially in outer walls and roof slabs. The bottom slab is the only shell element type that its bending moment is a 

function of soil stiffness. However, the effect of inner walls on the generated bending moment is clearly more than the 

effect of the soil condition. It is worth mentioning that the effect of soil condition on the averaged bending moment is 

limited only to the bottom slab and this effect is yet less than the effect of inner walls. In a soft soil condition, the 

existence of inner walls is more important in controlling the bending moment in bottom slab because the contribution 

of inner walls in the total stiffness is higher than its contribution in a stiff soil condition. As shown in Figure 9, the 

averaged bending moments in the bottom slab of a structure with inner walls are nearly the same for two soil 

conditions. However in the case of removing inner walls, the bending moment in the bottom slab has been increased 

nearly 30% in the case of the softer soil condition.  

In addition to the inner walls, rigidity of the bottom slab depends on the thickness of the foundation. To evaluate 

this item, two different thicknesses i.e. 0.5 m and 1.5 m have been modeled for the shell elements at the bottom slab. 
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The results are presented in Figure 9. The thickness of the bottom slab does not affect the averaged bending moments 

in other walls and its effect is limited only to the bottom slab itself. A thicker slab absorbs a higher bending moment in 

a way that by increasing the thickness by three times, the generated averaged bending moment has been increased by 

the same order.    

   

 

Figure 8.  Averaged bending moment in different walls with and without inner walls and two different subgrade modulus       

 

 

Figure 9.  The effect of rigidity o the bottom slab on the averaged bending moment in different walls     

5. Conclusion 

The structural behavior of a water intake basin is studied under different applied loads. Since the basin is a buried 

structure which is supported vertically by the soil layers, the effect of the soil modulus on the internal bending 

moments is investigated by making use of a FEM analysis. Different soil parameters from a soft to a stiff condition 

have been taken into account to cover the unreliability of the soil parameters. In addition, the rigidity of the foundation 

is studied by making use of different thicknesses and removing inner walls. Based on the results, it is concluded that: 

 The maximum bending moment in the basin structure is not too sensitive to the soil stiffness and the maximum 

effect of the soil modulus on the maximum bending moment is nearly 25% that occurs in the bottom slab 

located directly on the soil. 

 In comparison with the maximum bending moment, the averaged bending moment in the bottom slab is more 

sensitive to the soil parameters and the averaged bending moment would be underestimated if a stiff soil 

condition was considered. In another word, the averaged bending moment in the bottom slab will be increased 

by assuming a softer soil condition. On the other hand, the averaged bending moment in other walls except the 

bottom slab is nearly independent to the soil modulus. 

 The bending moment will be increased in all of the basin elements in the case of removing internal walls. 

Among the basin elements, the roof and bottom slabs are more sensitive because they are actually supported by 

inner walls.  

 The effect of inner walls on the bending moment depend on the soil parameters and in a case of removing inner 

walls, the averaged bending moment in the bottom slab can be increased nearly 30% from a stiff to a soft soil 

condition. The effect of inner walls on the generated bending moment is more than the effect of the soil 
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condition and in a soft soil condition; the averaged bending moment in the bottom slab may be doubled in the 

case of removing internal walls.  

 The thickness of the bottom slab defines its rigidity and by thickening the foundation slab a higher bending 

moment will be obtained. However, the bending moments in other walls i.e. outer wall, roof and inner walls are 

not a function of the foundation thickness. 

 As a result, design of the basin walls based on the maximum bending moment can be done with making an 

acceptable assumption for the soil modulus. However, it is necessary to model the geometry of inner walls 

accurately when evaluating the structural behavior of a basin. It can be concluded that the contribution of the 

soil modulus in the total stiffness of the basin is less than the contribution of the geometry of the basin. 
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