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The influences of spatial frequency distributions on complete amplitude death are explored by studying an

array of diffusively coupled oscillators. We found that with all possible sets of spatial frequency distributions, the

two critical coupling strengths ǫc1 (lower-bounded value) and ǫc2 (upper-bounded value) needed to get complete

amplitude death exhibit a universal power law and a log-normal distribution respectively, which has long tails in

both cases. This is significant for dynamics control, since large variations of ǫc1 and ǫc2 are possible for some

spatial arrangements. Moreover, we explore optimal spatial distributions with the smallest (largest) ǫc1 or ǫc2.
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I. INTRODUCTION

The collective behavior of a large number of coupled

oscillators has been widely explored for better understanding

the dynamics of many natural systems [1,2]. Many emergent

phenomena such as synchronization [3–5], hysteresis, ampli-

tude death [6–9], and oscillator death [10–13] have attracted

the interest of scientists. Among them, synchronization dy-

namics has been most widely studied, and various types of

synchronous dynamics, such as complete synchronization [3],

phase synchronization [14], generalized synchronization [15],

and antiphase synchronization [16] have been reported in many

fields. Meanwhile, another emergent phenomenon of strong

relevance is amplitude death (AD), which is realized by a

suppression of the oscillating dynamics. AD plays a crucial

role in many real systems, such as chemical reactions, synthetic

genetic networks [17–19], and coupled laser systems [20].

Various mechanisms of AD have been so far reported as

delay [21] in coupling due to a finite propagation of the signal,

dynamic coupling [22], coupling through conjugate variables

[23,24], nonlinear coupling [9], and parameter mismatches

[25–27].

Since parameter mismatches are omnipresent in the real

world, the occurrence of AD in coupled nonidentical oscil-

lator systems has been analyzed in many cases. Effects of

topological properties on partial AD dynamics (PAD) (defined

as a situation where parts of oscillators in the coupled system

become AD) were explored in small world networks [25],

where randomly rewired links are found helpful to eliminate

PAD existing in a ring of regularly coupled oscillators.

Transition processes were also explored in a ring [26] (or in

scale-free networks [27]) of coupled nonidentical oscillators.

Rich dynamics have been observed when the coupled system
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transits from PAD to complete AD (CAD) (all coupled oscil-

lators get to AD) owing to the competition between frequency

mismatches and coupling-induced synchronization clusters.

In [28], the authors considered a special case where the

natural frequencies of the oscillators are distributed in a regular

monotonic trend. PAD was found where AD occurs only in

regions with a relatively large gradient of natural frequencies

due to the competition between the synchronous clusters and

the frequency mismatches. Moreover, the desynchronization-

induced PAD can be weakened considerably by introducing

random frequency deviations into a linear trend of frequency

distribution.

However, the spatial frequency distributions of coupled

oscillators are not generally limited to a linear trend distri-

bution as in [28] or just adding small deviations; their spatial

frequency distribution may have various sets of rearrange-

ments. The purpose of this paper is to study the formation of

CAD and the effects of general spatial frequency distributions

on CAD. It is natural to raise then the following questions.

How does the spatial frequency distribution influence CAD

of an array of coupled oscillators? What kind of spatial

frequency distribution is beneficial for CAD in an array of

coupled nonidentical oscillators? To answer those questions,

CAD dynamics of an array of coupled nonidentical Landau-

Stuart oscillators with no-flux boundary conditions (NBCs)

are explored. Here we study the effects of different spatial

frequency rearrangements on the critical coupling constant ǫc1

and ǫc2 for CAD in Eq. (1). It is expected that each spatial

arrangement of frequencies has different critical coupling

constants ǫc1 and ǫc2 for CAD. Interestingly, all ǫc1 and ǫc2

for all sets of possible spatial frequencies distributions obey

power-law and log-normal distribution, respectively, which

both have long tails. Therefore, the rearrangement of the spatial

frequency distribution has a strong influence on the critical

value of the coupling constant needed for CAD. In particular,

arrangements with the smallest (largest) ǫc1 and ǫc2 are found.
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The remainder of this paper is organized as follows. In

Sec. II, we give our model for CAD. We will analyze the

stabilities of CAD in our model with linear and random spatial

frequency distributions in Sec. III. Finally, Sec. IV is devoted

to some brief discussions and conclusions.

II. MODELS

The coupled system consisting of Landau-Stuart oscillators

is presented as follows:

żj (t) = (1 + iωj + |zj (t)|2)zj (t) + ǫ[zj+1(t) + zj−1(t)

− 2zj (t)], j = 1, . . . ,N, (1)

where i is the imaginary, and zj (t) is a complex variable.

Here the boundary conditions are arbitrarily set as NBC with

zN+1(t) = zN (t),z0(t) = z1(t). For simplicity, we suppose that

the coupled oscillators initially have a regular monotonic

trend of the natural frequency distribution wj . Without

coupling (ǫ = 0), each oscillator has an unstable focus at the

origin |zj | = 0 and an attracting limit cycle zj (t) = eiωj t =
x(t) + iy(t) with a different oscillating frequency ωj . Without

disorder of the linear frequency distributions, the increment

of the coupling constant drives the coupled system from PAD

(happened in the middle part of arrays) to CAD (there is a

critical coupling constant ǫc1, and CAD occurs when ǫ � ǫc1),

which is similar to the results in [28]. When the coupling

constant ǫ > ǫc2, the coupled system becomes oscillating

again in a stable synchronous state (phase locking) [25,26],

i.e., CAD is destroyed.

III. RESULTS

A. Linear frequency distributions

Let us first consider the coupled oscillators with linearly

distributed natural frequencies ω:

wj = ω0 + (j − 1)δω, j = 1,2, . . . ,N, (2)

where ω0 is arbitrarily set as 1 and δω is the frequency

mismatch of neighbored oscillators. The stability of CAD is

analyzed by linearizing Eq. (1) at |zj | = 0,j = 1,2, . . . ,N . If

a perturbation ηj (t) is introduced into the fixed point |zj | =
0,j = 1,2, . . . ,N , then the evolution of the perturbations can

be governed by the following equation:

η̇j (t) = (1 − mjǫ + iωj )ηj (t) + ǫηj+1(t) + ǫηj−1(t). (3)

With the definition of the column vector η(t) = [η1(t),

η2(t), . . . ,ηn(t)]′ (where ′ is the transpose symbol), Eq. (3)

can be rewritten as follows:

η̇(t) = Hη(t), (4)

where H can be described as follows for a fixed boundary

condition:

H =

⎛

⎜

⎜

⎜

⎝

1 − m1ǫ + iω1 ǫ . . .

ǫ 1 − m2ǫ + iω2 ǫ

ǫ 1 − m3ǫ + iω3 ǫ

. . . . . . . . .

. . . ǫ 1 − mNǫ + iωN

⎞

⎟

⎟

⎟

⎠

where the blank areas of the matrix H are all zero, m1 =
mN = 1, mj = 2, (j = 2,3, . . . ,N − 1). Assume that H can

be diagonalized by a matrix P ,

P −1HP = diag(λ0,λ1, . . . ,λN−1), (5)

where λk,k = 0,1, . . . ,N − 1 are the eigenvalues of H . A

necessary condition for stable CAD of Eq. (2) is that all

real parts of the eigenvalues Re(λk) < 0,k = 0,1, . . . ,N − 1.

Therefore, the region of the AD state is completely determined

by the critical lines of all Re(λk) � 0,k = 0,1, . . . ,N − 1.

When 0 < N � 2, the parameter region for CAD was pre-

sented theoretically as in [29]. When N = 3, the real parts of

all eigenvalues can be presented analytically as in Eq. (6):

Re(λ1) = 1 − 4ǫ/3 +
1

3

3
√

A −
3δω2 − 7ǫ2

3
3
√

A
,

Re(λ2,3) = 1 − 4ǫ/3 −
1

6

3
√

A +
3δω2 − 7ǫ2

6
3
√

A
, (6)

A = 3
√

3
√

δω6−4δω4ǫ2+23δω2ǫ4−9ǫ6 − 9δω2ǫ − 10ǫ3.

Let Re(λi) = 0,(i = 1,2,3), we can get then the critical lines

for CAD theoretically as presented in Eqs. (7) and (8), which

are noted with L1 and L2, respectively, in Fig. 1(a). The CAD

domains in the parameter space ǫ ∼ δω are the areas enclosed

by L1 and L2 [Eqs. (7) and (8), respectively], which coincide

well with the numerical results as the dotted areas in Fig. 1(a):

δω =

√

6ǫ3 − 19ǫ2 + 16ǫ − 4

1 − ǫ
, (7)

δω =

√

ǫ2 − 4ǫ + 1

2ǫ − 1
. (8)

However, it is difficult to diagonalize the matrix H analyti-

cally for large N . The CAD dynamics of the coupled oscillators

should then be explored by numerical simulations. The CAD

domains in the ǫ ∼ δω parameter space are numerically

presented in Fig. 1(b) for N = 9. The AD domain of coupled

oscillators are the top part of the V-like lines. For a given

coupling strength ǫ (or the frequency mismatch δω), CAD can

be realized when the frequency mismatch δω (or the coupling

strength ǫ) is larger than a critical value. When δω < δωc

(δωc = 1.2 106 for N = 3, the tip of the V-shaped lines, is

related to the system size N ), the coupled system transits from

a noncoherent state to a synchronous state directly without

a CAD state with the increment of the coupling strength.
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FIG. 1. (Color online) (a) The CAD domain of numerical results

in the parameter space (ǫ,δω) and the theoretical critical lines of

CAD for N = 3 coupled oscillators with linear trend of frequency

distribution. The V-type areas enclosed by L1 [Eq. (7)] and L2

[Eq. (8)] are the CAD domains where the minimum frequency

mismatch of the neighbored oscillator necessary for CAD is δωc =
1.2106. (b) The CAD domain of numerical results for N = 9.

When δω > δωc, CAD is realized in the interval of [ǫc1,ǫc2].

There are two critical values of ǫc1 and ǫc2 which can be

calculated according to Eqs. (7) and (8), respectively, for given

δω for N = 3. These results coincide with the results in [29],

where CAD is analytically found in the parameter region

ǫ ∈ [1,(1 + δω2/4)/2] when δωc � 2 for N = 2. However,

the coupled system is in a noncoherent state or in a partial

synchronization (or coexisting with PAD) state for ǫ < ǫc1

and in a synchronous state for ǫ > ǫc2. We have to explain

that ǫc1 decreases to a constant value ǫ0 (ǫ0 ≈ 1.0, which

coincides with the analytic results in [29]) when the value

of δω increases. Moreover, we find different scale effects of

the critical values of ǫc1 and ǫc2 in dependence on the system

size N for a given δω. ǫc1 decreases linearly to a constant value

7.642, while ǫc2 has a power law relation to the system size N .

ǫc1 and ǫc2 versus the system size N for δω = 1 in Eq. (2) are

presented in Figs. 2(a) and 2(b), respectively.

B. Random frequency distributions

To investigate effects of the spatial distribution of the natural

frequencies on CAD, we rearrange the coupled oscillators

which are originally in a linear frequency distribution by

randomly exchanging their spatial sites. An arbitrary spatial

site arrangement is denoted by a set A = {a(1),a(2), . . . ,a(N )}
whose elements are permutations of {1,2, . . . ,N}. Then the

frequency distribution of an arbitrary spatial configuration of

the frequency distribution can be described as ω̂a(j ) = ωj ,(j =
1,2, . . . ,N ). The total number of independent possible spatial

arrangements for N coupled oscillators is N !. Since N !

increases so quickly with N , comprehensive computations

of ǫc for all different configurations is impossible for large

N . Fortunately, we find that the distributions are stable for

randomly arranged large numbers of samples. The critical

FIG. 2. (a) and (b) The system size effects on the critical values

ǫc1 and ǫc2, respectively, for coupled oscillators with linear frequency

distributions.

coupling constants ǫc1 and ǫc2 for CAD are expected to be

varied for different sets of spatial arrangements. To better

explore the critical coupling constants ǫc1 and ǫc2 for all

possible sets of spatial frequency distributions, we have to

select a proper value of δω due to reasons listed below:

(1) If δω is too large, the critical coupling strength ǫc1 for

CAD is almost constant for all possible spatial rearrangements.

(2) When the value of δω is selected near the tip of the V-like

critical line, most of the samples of the site rearrangements

transit to a synchronous state directly from a non-CAD state.

For simplicity, we first consider coupled oscillators with

a rather small size N = 9 and δω = 2 (not limited to those

given values). The frequencies are first set according to Eq. (2).

Intuitively, one may expect that the distribution of the critical

values of ǫc1 and ǫc2 for all spatial arrangements would be a

normal distribution, since the roughness R of the frequency

distribution [defined as R = �N−1
i=1

1
N−1

(ωi+1 − ωi)
2] for all

possible spatial arrangements is found to obey a normal

distribution (results are not presented here). However, our

research uncovers an opposite result: the distributions of all

ǫc1 and ǫc2 for all sets of spatial frequency distributions are

well fitted by a power law function and log-normal function,

respectively, as plotted in Figs. 3(a) and 3(b). The power law

function is described as

P (ǫc1) ∝ ǫ
γ

c1, (9)

where γ = −3.1. The log-normal function has the form

P (ǫc2) =
1

βǫc2

√
2π

e
− [ln(ǫc2)−λ]2

2β2 , (10)

which has the mean 〈ǫc2〉 = e(λ+β/2) with λ = 3.441 and β =
0.162. It is notable that both the power law distribution and the

log-normal distribution have a long tail and are very common in

many systems, e.g., scale-free networks, geology and mining,

medicine, mining, medicine, climatology, and aerobiology,

economics, etc. [30–34]. What should be mentioned is that

there is a peak noted B in Fig. 3(b) which is located near the
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FIG. 3. (a) The possibility distribution of the critical value of

ǫc1 for all possible rearrangements of frequencies (dots). The black

line is a fitted power law function with parameter γ = −3.1. (b) The

possibility distribution of the critical value of ǫc2 (dots). The black line

is a fitted log-normal function with parameter λ = 3.41, β = 0.85.

There are large numbers of spatial arrangements with the smallest ǫc2

(noted with B).

smallest ǫc1 = 1.05. The height of peak B is related to δω. If

δω increases, then the height of peak B increases. Actually,

this is because some spatial arrangements have an effect of

enlarging the average frequency mismatch δω. Therefore, if

the average frequency mismatch of the arrangements is larger

than δωc
′, then system (1) will get to CAD for the smallest

ǫc1 = 1.05. Meanwhile, there are also some arrangements that

have no CAD state but transit to a synchronous state if their

equal effects of average frequency mismatch are below δωc,

as noted in Fig. 1(a).

It is curious to know what kinds of spatial distribution have

the smallest or largest critical coupling constant for CAD.

According to the results listed in Table I, we find that the spatial

distributions with the smallest or largest critical coupling are

quite different for ǫc1 and ǫc2, respectively.

When the spatial arrangement of site indices are presented

as A = {9,2,7,4,5,6,3,8,1} or A = {1,8,3,6,5,4,7,2,9}, CAD

can be realized with the smallest ǫc1. The frequency distribu-

tions are presented in Fig. 4(b) with the order of linearly

increasing (decreasing) site indices a(j ).

When the spatial arrangement of site indices are presented

as A = {9,7,5,3,1,2,4,6,8} or A = {8,6,4,2,1,3,5,7,9}, CAD

can be realized with the largest ǫc1 and smallest ǫc2. The

frequency distributions are presented in Fig. 4(c) with the order

of linearly increasing (decreasing) site indices a(j ).

TABLE I. Spatial arrangements with the smallest and largest

critical coupling constant.

ǫc1 ǫc2

Spatial distribution with smallest ǫc. Fig. 4(b) Fig. 4(c)

Spatial distribution with largest ǫc. Fig. 4(c) Fig. 4(a)

FIG. 4. Two sets of spatial frequency distributions (solid dots and

circle dots) with which the coupled oscillators have stable CAD for

the smallest (largest) ǫc. j ’s are the site numbers of oscillators. ωj is

the frequency of oscillator j . CAD can be realized (a) with the largest

ǫc2; (b) with the smallest ǫc1; (c) with the smallest ǫc2 and the largest

ǫc1.

For the largest ǫc2, the spatial arrangement of site

indices are presented as A = {1,2,3,4,5,6,7,8,9} or A =
{9,8,7,6,5,4,3,2,1}. The frequency distributions are presented

in Fig. 4(a) with the order of linearly increasing (decreasing)

site indices a(j ).

It is well known that CAD and synchronization are both

the results of competitions between spatial inhomogeneity

and the coupling-caused order [26]. In the case of only two

coupled nonidentical oscillators [29], the system transits from

a phase-shifting state (ǫ < 1) to a phase-locking state and

finally reaches a CAD state (under the condition of δω > 2

and 1 < ǫ < (1 + δω2/4)/2) with the increment of coupling

constant. When the frequency mismatch is small δω < 2, the

coupled system will transit to synchronization. However, the

transition process may be more complex for an array (N > 2)

of coupled nonidentical oscillators. With the competition of

frequency mismatch of oscillators and spatial location, the

formation of some synchronous clusters (oscillators in one

cluster have the same frequencies) are expected. They combine

with each other and become larger clusters. If the frequency

arrangement is helpful to form one synchronous cluster, then a

larger critical coupling constant ǫc1 is needed to get CAD

and a smaller critical coupling constant ǫc2 is needed to

leave CAD, since the synchronous clusters may delay or even

prevent CAD. A detailed analysis on synchronization with the

influences of the spatial frequency distributions is presented

in [35]. If the frequency arrangement is beneficial to form

two clusters with large average frequency mismatches and an

equal number of oscillators, then a smaller ǫc1 can realize

CAD. In order to verify the above speculations, we take the

spatial frequency arrangement as shown in Figs. 4(b) and 4(c)

which has smallest and largest ǫc1, respectively. We carefully

calculate the average frequency 〈ωj 〉 [defined in Eq. (11)]

of each oscillator versus ǫ as shown in Figs. 5(a) and 5(c),
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FIG. 5. (Color online) Average frequency of coupled nonidentical oscillators versus coupling constant. (a, c) With the spatial arrangement

as in Figs. 4(b) and 4(c), respectively (δω = 4). (b, d) with the spatial arrangement as in Figs. 4(c) and 4(a), respectively (δω = 0.5).

respectively:

〈ωj 〉 = lim
T →∞

1

T

∫ T

0

θ̇j (t)dt. (11)

This way we find the following:

(1) In Fig. 5(a), the oscillators 1 − 4 are combined to

a synchronous cluster with 〈ωj 〉 = 1, while the oscillators

5 − 9 form another synchronous cluster with 〈ωj 〉 = 33.

Obviously, the two synchronous clusters have the largest

average frequency mismatches, which results in the smallest

ǫc1 for CAD.

(2) In Fig. 5(c), the oscillators 1 − 5 are combined to a

synchronous cluster with 〈ωj 〉 = 16.5 and the oscillators 6 − 9

form another synchronous cluster with 〈ωj 〉 = 33. Finally, the

two clusters are combined to one cluster with 〈ωj 〉 = 16.5 at

ǫ = 1.02. Both synchronous clusters with half of the maximum

frequency mismatch and the combined cluster may delay or

even prevent of CAD. Therefore, the largest ǫc1 is necessary

for CAD.

Similarly, according to the average frequency 〈ωj 〉 of

the coupled system with spatial frequency arrangement in

Figs. 4(c) and 4(a) as shown in Figs. 5(b) and 5(d), respectively,

we find that one synchronous cluster is formed at ǫc = 1.01

for the spatial frequency arrangement in Fig. 4(c), while it is

formed at ǫc = 20.6 for the spatial frequency arrangement in

Fig. 4(a).

IV. DISCUSSION AND CONCLUSION

In conclusion, we have comprehensively studied the influ-

ences of the spatial frequency distribution on CAD in an array

of diffusively coupled nonidentical oscillators and uncover

a regime of the spatial frequency distribution on CAD. Two

different critical coupling constants ǫc1 and ǫc2 for getting CAD

are theoretically found related to the frequency mismatches of

neighbored oscillators in two coupled oscillators in [29]. In an

array of coupled nonidentical oscillators, the rearrangement of

the spatial frequency distribution can considerably diversify

the values of ǫc1 and ǫc2, since ǫc1 obeys a power law distribu-

tion, while ǫc2 obeys a log-normal one for all possible samples

of spatial configurations. Compared to the normal distribution,

the long tail characteristics of the power law distribution

and the log-normal distribution are more significant from the

viewpoint of control, since there exist some values which

are far away from the mean of the critical values. Therefore,

some arrangements of spatial frequency are possible far away

from the CAD state for a given coupling constant. The results

would be valuable from a practical standpoint with regard

to controlling the dynamics. Moreover, the optimal spatial

distributions are found for the smallest (largest) ǫc which

are found to be related to the competition of synchronous

dynamics and spatial mismatches. This may be helpful for

understanding desynchronization patterns in coupled systems.

What should be mentioned is that the results are not

inclusive in NBC but also in periodical boundary conditions.

Meanwhile, the original distribution is not limited to a linear

trend of the frequency distribution (δωj is constant), and the

distributions of ǫc1 and ǫc2 are stable kept when δωj are

presented in a random distribution. Research on the effects

of spatial frequencies may be promising in exploring pattern

formation in two-dimensional coupled oscillators, or even in

complex networks where rich dynamics are expected under
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the competition between the spatial frequency distributions

and the topological structures.
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