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The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls.
Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the
interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we
reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral
2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface
between regions with different DMI, over particularly strong confinement of domain walls and skyrmions
within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic
waveguides, and much improved skyrmion racetrack memory.

DOI: 10.1103/PhysRevB.95.144401

I. INTRODUCTION

The ground state magnetization of a thin ferromagnetic film
with perpendicular magnetic anisotropy (PMA) is uniform
at nanoscale. Only at larger length scales, domains of ‘up’
and ‘down’ magnetization can be stabilized by the long
range dipolar interactions, a process called demagnetization.
However, in ultrathin heterostructures where a ferromagnetic
layer, e.g., a Co layer, is coupled to a nonmagnetic layer with a
strong spin-orbit coupling, e.g., a heavy metal like Pt, one has
to take into account the interfacially induced Dzyaloshinskii-
Moriya interaction (DMI) [1–4]. This chiral interaction favors
rotation of the magnetization at short length scales, and, when
strong enough, stabilizes chiral spin structures such as cycloids
(parallel Néel walls) and skyrmions (closed Néel walls) [5–8].

The confining effect of the boundaries and the shape
of the ferromagnetic film on the chiral spin structures has
already been thoroughly studied [9–12]. This confining effect
is utilized in the design of skyrmion-based devices, e.g.,
a skyrmion racetrack memory in which skyrmions can be
moved by spin currents [13–16]. Another way to control the
behavior of chiral spin structures in these devices is by locally
applying an electric field. Such external electric field changes
the magnetic anisotropy and consequently changes locally the
relative strength of the different types of magnetic interactions
[17–19]. In this paper, we suggest a third ingredient to design
advanced skyrmion-based devices: the spatially engineered

DMI.
The effective DMI strength depends on the thickness of

the ferromagnetic layer and the stacking of the ferromagnetic
layer and heavy-metal layers [20–26]. In principle, one can
alter the DMI strength locally by changing the thickness of
the ferromagnetic layer. This, however, is very challenging
to realize experimentally. Furthermore, this causes nontrivial
(3D) boundary effects in the ferromagnetic film. Instead, we
suggest to use a uniform, extended ferromagnetic layer and
alter the DMI strength locally by using lithographic techniques
to (partially) change or remove the heavy metal layer on top
of the ferromagnet [27,28]. Modifying the DMI, by altering

*jeroen.mulkers@uantwerpen.be

the covering heavy metal layer, can possibly change other
material parameters, such as the magnetic anisotropy. In our
theoretical study, we want to identify the exclusive effect
of spatially varied DMI and thus keep the other material
parameters homogeneous. In the considered heterochiral films,
we show that a spatially engineered DMI gives rise to a plethora
of unique effects. For example, the uniform state shows spin
canting at the interface between regions with different DMI;
high-DMI regions strongly confine chiral spin structures,
such as single domain walls, cycloids, and skyrmions; DMI
engineering can be used to design tracks for magnons and
skyrmions, with improved characteristics compared to other
existing realizations.

The paper is organized as follows. In Sec. II we briefly
recapitulate the micromagnetic framework of ferromagnetic
films with an interfacially induced DMI. In Sec. III, we
discuss characteristic static magnetization configurations in
ferromagnetic films with a spatially engineered DMI. This
includes canting of the magnetization at interfaces where
DMI changes, confined cycloids in high-DMI strips, and
confined skyrmions in high-DMI disks and strips. Some
possible applications of a spatially engineered DMI are
discussed in Sec. IV, ranging from manipulation of size and
shape of confined domains, relevant to miniaturization and
reliability of magnetic memory, over spin waveguides [29–32],
to an advanced design of skyrmion racetrack. Our results are
summarized in Sec. V.

II. MICROMAGNETIC FRAMEWORK

We describe the magnetization of a ferromagnetic film by a
2D field �M(x,y) = Msat �m(x,y) with magnetization modulus
| �M| = Msat and magnetization direction �m(x,y). The local free
energy density, related to the magnetization �M , has multiple
sources: exchange, anisotropy, Zeeman interaction, DMI, and
demagnetization. We approximate the demagnetization energy
by using an effective anisotropy Keff = K − 1/2μ0M

2
sat [33].

By doing this we neglect the volume magnetic charge
contribution of the Néel domain walls. This is justified since
we will confine domain walls in regions with a strong DMI,
where the effect of the volume magnetic charges on the energy

2469-9950/2017/95(14)/144401(8) 144401-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.144401


MULKERS, VAN WAEYENBERGE, AND MILOŠEVIĆ PHYSICAL REVIEW B 95, 144401 (2017)

is insignificant compared to the negative DMI energy of
Néel domain walls [34]. The expressions for the remaining
energy-density terms are, respectively,

εex = A

[

(

∂ �m
∂x

)2

+
(

∂ �m
∂y

)2
]

, (1)

εext = − �B · �mMsat, (2)

εanis = Keff
(

1 − m2
z

)

, (3)

εdmi = D

[

mx

∂mz

∂x
− mz

∂mx

∂x
+ my

∂mz

∂y
− mz

∂my

∂y

]

, (4)

with exchange stiffness A, DMI strength D, anisotropy
constant Keff , and external magnetic field �B. To simplify the
notation, we introduce the exchange length ξ = √

A/Keff and
the critical DMI strength Dc = 4

√
AKeff/π . Note that the

energy of a single domain wall Ewall = 4
√

AKeff − πD is pos-
itive for DMI strengths below Dc and negative otherwise [9].

The energy expression can be simplified for 1D problems
for which we make the assumption that the magnetization
varies only along the x direction and the magnetization has
no y component (since this lowers the DMI energy) [9]. The
magnetization is then fully defined by its angle θ with respect
to the z axis: m = (sin θ,0, cos θ ). Under these conditions, the
local free energy density becomes

ε = A

(

dθ

dx

)2

− D
dθ

dx
+ Keff sin2 θ. (5)

The dynamics of the magnetization is governed by the
Landau-Lifshitz-Gilbert (LLG) equation

�mt = γLL

1 + α2
( �m × �Heff + α[ �m × ( �m × �Heff)]), (6)

with gyromagnetic ratio γLL and damping factor α. The effec-
tive magnetic field is the functional derivative of the magnetic
free energy E =

∫

εdV with respect to the magnetization:
�Heff = −δE/δ �m.

We will consider the magnetization to be a continuous
field. If we do not impose this property, the exchange energy
will be infinite at the points of discontinuity, rendering the
magnetization unable to capture the physics of the underlying
atomic magnetic moments. In contrast to the continuity
of the magnetization field, there is no reason to impose
continuity on its spatial derivatives. It is sufficient to have
a semidifferentiable field, meaning that the field is continuous
and that at every point one can calculate the left and right
derivative. This requirement makes the derivatives continuous
almost everywhere (except at material interfaces), allowing
us to compute definite integral functionals depending on the
magnetization and its first derivatives, in particular the energy
functional and the effective field.

With these requirements in mind, we can calculate the
DMI energy of magnetization configurations in films with
regions of different DMI. The DMI energy density εdmi can be
integrated by considering a different left and right derivative
at the interface where DMI changes, multiplied by the corre-
sponding DMI strength. Although this is not appropriate for a
continuously varying DMI, it is fine for any finite discretization

θ

x/ξ

θ0 ≈ 0.36 radD1 D2

x/ξ

z θ0

FIG. 1. Canting of the spins in the quasiuniform state of a
ferromagnetic film, at the interface of two regions with different
DMI strengths (D1 − D2 = 1.1Dc).

(where a continuous function is represented as a stepped
series). Moreover, at the atomic scale the DMI strength is
defined between two distinct magnetic moments, thus assumes
steplike change where material properties change.

In most cases it is hard, or even impossible, to minimize the
energy or solve the LLG equation analytically, which makes
numerical computations inevitable. For one-dimensional prob-
lems, in which the magnetization can be characterized by
a single angle θ (x), we minimize the energy functional by
discretizing the magnetization on a fine spatial grid θi =
θ (i
x) with 
x ≪ ξ , and minimizing the total energy E(θi)
in which the spatial derivatives are approximated by finite
differences. For the more challenging numerical computa-
tions and simulations, we use the finite-differences-based
micromagnetic simulation package Mumax3 [35], where we
incorporated inhomogeneous DMI in the above described
fashion (this feature is made publicly available in Mumax
version 3.9.3 and later). The cell size in such simulations is set
to (0.1,0.1,0.1)ξ and demagnetization is approximated with
an effective anisotropy.

In both numerical approaches, the derivative of the mag-
netization in a cell is approximated by the sum of the left
and right first-order finite differences. This allows us to study
the effect of a regionally different DMI with an interface
running through the centers of adjacent cells. Note that for
uniform material parameters, the sum of left and right finite
differences yields the second-order central difference. Only at
the interface cells, we end up with a first-order approximation
of the magnetization derivatives. It is worth mentioning that
using the sum of left and right first-order finite differences
turns out to be equivalent with an atomistic spin model on an
orthorhombic lattice with lattice parameters the same as the
cell dimensions in the finite-difference micromagnetic model
(see Appendix). These cell dimensions are usually larger
than the typical distance between atoms, but as long as the
magnetization varies slowly, the micromagnetic model and
the spin model on the atomistic scale will yield approximately
the same magnetization density.

III. MAGNETOSTATICS OF HETEROCHIRAL FILMS

A. Quasiuniform state

As the simplest case of a heterochiral film, we first consider
a 1D model with DMI strength D1 on the left (x < 0) and
DMI strength D2 < D1 on the right (x > 0), as depicted in
Fig. 1. After relaxing the uniform magnetized state, significant
canting of the magnetization is observed at the interface
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between regions with different DMI (in the present case, at
x = 0). We denote the canting angle of magnetization at the
interface as θ0.

After minimizing the energy functional (5) with the
Euler-Lagrange method, we obtain the expression for the
magnetization

θ (x) = 2 arctan

(

e−|x/ξ | tan
θ0

2

)

, (7)

which bears similarities with the expression for a domain wall.
Note that one still has to determine the angle θ0. In order to
do this, we calculate the energy difference with respect to the
energy of the uniform state:

E1D
cant =

∫

εdx = 4
√

AKeff(1 − cos θ0) + (D2 − D1)θ0.

(8)

The first term is the increase in exchange and anisotropy energy
due to the canting with angle θ0 at the interface. The second
term is the DMI energy which depends on the difference
between DMI strengths D1 and D2. Minimizing the energy
difference, by varying the angle θ0, yields

θ0 = arcsin
D1 − D2

4
√

AKeff
. (9)

The canting of the magnetization at the interface depends
on the difference between DMI strengths D1 and D2. Even
for DMI strengths below Dc, canting will occur. Increasing
the exchange or the anisotropy will lower the canting of the
magnetization θ0, i.e., would tend to make the state more
uniform. Since the DMI can be positive or negative, the largest
canting angle is obtained when D1 = −Dc and D2 = Dc and
is equal to arcsin(2/π ) ≈ 0.69 rad.

B. Confined cycloids

The magnetic ground state of a chiral ferromagnetic film is
cycloidal in the case of a strong DMI |D| > Dc and uniform
otherwise. Therefore, in a heterochiral film, it is possible to
confine a cycloid in a high-DMI region. To illustrate this,
we consider a high-DMI strip in the film, surrounded by an
extended region without DMI. The energy of the confined
cycloid is the sum of the energy in the outer regions, which we
calculated analytically in the previous section [Eq. (8)], and
the energy inside the high-DMI strip. We can rewrite the 1D
energy functional for this case as

E1D =
∫ +a

−a

[

A

(

dθ

dx

)2

− Din
dθ

dx
+ Keff sin2 θ

]

dx

+
√

AKeff(4 − 2| cos θ−a| − 2| cos θ+a|), (10)

for a cycloid confined in a high-DMI strip with DMI strength
Din and width w = 2a, centered at x = 0. We minimize the
energy E1D using a conjugate gradient method. This yields
a stable magnetization θ (x), including the magnetization at
the interfaces θ±a . The stabilized number of domain walls
in the confined cycloid depends on the initial guess of the
magnetization. The energy and magnetization profiles of the
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FIG. 2. (a),(b) Magnetization profiles of confined cycloids in
high-DMI stripes within a ferromagnetic film, for stripe width w = 4ξ

and w = 8ξ and DMI strength Din = 1.18Dc. (c) The energies of the
cycloids in a function of confinement width w. (d) The ground-state
phase diagram of confined cycloids as a function of both width w and
DMI strength Din.

confined cycloids, corresponding with the lowest energy states,
are shown in Fig. 2.

The spin canting at the interface, discussed in the previous
section, is clearly visible for the quasiuniform state. This spin
canting also occurs when the number of domain walls is small
in a wide high-DMI strip [see single-wall case in Fig. 2(b)]. The
energy of the cycloidal state with n domain walls converges to
the sum of wall energies Ewall and the energy of canted spins
at the interface Ecant, i.e., nEwall + Ecant for large confinement
widths w. In other words, adding walls lowers the energy
for large w. On the other hand, a large number of domain
walls is not preferred in narrow confinement regions due to
the resulting high exchange energy. These competing effects
are notable in the phase diagram of the ground state, shown in
Fig. 2(d). The ground state is quasiuniform for DMI strength
Din below Dc, or for small w. The number of domain walls in
the ground state increases for increasing DMI strength or an
increasing confinement width w of the high-DMI strip.

This phase diagram is similar to the phase diagram of
cycloids confined in finite ferromagnetic films with homoge-
neous DMI [11]. However, there is a fundamental difference
between the two design methods regarding the stability of
domains. The energy barrier related to the annihilation of
domain wall at the edge of a monochiral ferromagnet is
smaller than the energy needed to collapse an entire domain
in a high-DMI strip within a low-DMI film. A Bloch point is
unavoidable when collapsing an entire domain in an extended
film. This leads to a very high energy barrier (infinite exchange
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FIG. 3. (a) Ground-state magnetic phase diagram of a high-DMI
circular region (with radius R and DMI strength Din) within an
extended ferromagnetic film without DMI. (b) Skyrmion size as a
function of the confinement radius R, for different DMI strength Din.
The red segments indicate a skyrmion as the ground state of the
system.

energy in the continuum approximation). Pushing a domain
out of a film can be done in a continuous manner without the
formation of a Bloch point, corresponding with a finite energy
barrier. In an atomistic model, the energy barrier to annihilate
a skyrmion becomes finite, but it is reasonable to assume that
this barrier is still much higher than the energy barrier for the
escape of a skyrmion through sample boundary.

C. Confined skyrmion

In the next consideration, we assume that the magnetization
θ (r) has cylindrical symmetry and the direction of the
magnetization is radial, as done previously in Ref. [9]. In that
case, the energy functional in polar coordinates becomes

E2D[θ (r)] = 2π

∫ +∞

0

[

A

(

dθ

dr

)2

+ A
sin2 θ

r2

−D(r)

(

dθ

dr
+ cos θ sin θ

r

)

+ Keff sin2 θ

]

rdr,

(11)

with allowed radially dependent DMI strength D(r). Here,
we consider a strong DMI in a central circular region of
radius R, surrounded by an extended region without DMI
[D(r) = Din�(r − R), with �(r) the Heaviside step function].
We then relax the quasiuniform state (no walls to begin
with), a confined skyrmion (single closed wall), and a ring
domain (two concentric closed walls) by minimizing the
energy numerically. Comparing the energies of the three
configurations yields the phase diagram of the ground state
shown in Fig. 3(a). The quasiuniform state is the ground
state for DMI strengths below Dc or for strong confinement
(small R). For DMI strengths above Dc, there is a range
of confinement size R for which the magnetization with a
skyrmion in the high-DMI region is the ground state. For a
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(a)
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0.66 0.72 0.78 0.84 0.90 0.96 1.02 1.08 1.14Din/Dc

FIG. 4. Isomagnetization outline (mz = 0) of a skyrmion in a
skyrmion track of width 6ξ (a), 8ξ (b), and 10ξ (c), defined by
a stripe with DMI strength Din within a larger ferromagnetic film
without DMI. Panels (d) and (e) show the size of the skyrmion along
the track (x direction) and across the track (y direction). The dashed
curves indicate the expansion of the skyrmion into a linear domain.

strong DMI and a loose confinement (large R), the circular
domain is the lowest energy state of the three configurations
considered. For larger R, one finds higher order ring domains
or other cycloidal-like domains (e.g. S-shaped ones, beyond
our cylindrical approximation), within the parametric area
labeled ‘other’ in Fig. 3(a).

The radius of the confined skyrmion, after minimization of
the energy functional (11), is shown in Fig. 3(b). The figure
shows clearly the effect of the confinement: The stronger the
confinement, the smaller the skyrmion radius. In the continuum
approximation, there is no limit on how small one can confine
a skyrmion. In real samples, however, substantial shrinking of
a skyrmion makes it increasingly unstable, and eventually the
skyrmion will collapse [36,37].

D. Skyrmion on a track

In this section, we examine the confinement effects and
resulting deformation of a skyrmion within a high-DMI track.
A single skyrmion was placed at the center of the track and
subsequently relaxed, using the minimizer in Mumax3, for
different widths w and DMI strengths Din of the track (outside
the track, DMI was held at zero). The obtained change of
geometry and size of the relaxed skyrmion is shown in Fig. 4.

For low DMI strength (|Din| < Dc), the effect of the
confinement is only visible for narrow tracks. The size of the
skyrmion converges to its expected size in an infinite film with
given DMI, when increasing the width of the high-DMI track.
For a stronger DMI in the track, a skyrmion will be elongated
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10ξ
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10.9ξ

B
-1
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1
mz

FIG. 5. (a) The cycloidal ground state in absence of an external
field and (b) a skyrmionic ground state for an external field B =
0.3Keff/Msat in a high-DMI strip of width w = 10ξ and DMI strength
Din = 1.3Dc. In the shaded area outside the high-DMI strip there is
no chiral interaction.

in the direction of the track. If the width of the track is above
a threshold value, the skyrmion will expand along the track
and convert into a stripe domain. This transition is represented
in Fig. 4(d) by the ‘divergent’ size of the skyrmion in the x

direction.
In an extended ferromagnetic film with a strong DMI

(|D| > Dc), the ground state is cycloidal. However, it is
possible that the ground state becomes a triangular skyrmion
lattice when applying an external field [38]. For a high-DMI
strip, we see a similar phenomenon. For example, the ground
state in a high-DMI track of width 10ξ and Din = 1.3Dc is a
single stripe domain. In the presence of an external magnetic
field B = 0.3Keff/Msat, the ground state becomes a skyrmion
chain confined in the center of the track (see Fig. 5). For larger
width of the track, the zigzag instability of the skyrmionic
chain is expected, in analogy to similar studies on quasi-1D
colloidal [39] and superconducting vortex systems [40].

IV. EXEMPLIFIED APPLICATIONS

A. Domain design by DMI engineering

Considering a ferromagnetic strip with a spatially inhomo-
geneous DMI strength, a rotation in its magnetization is more
favorable in regions with a strong DMI. We already showed
that cycloidal states, including a single Néel domain wall, can
be very effectively confined in straight high-DMI strips. We
find that this is also the case for curved high-DMI strips, which
means that a spatially-engineered DMI can be used to fix the
location of the contained domain wall(s) and thereby design
domains of arbitrary shape and size. Figure 6 demonstrates the
proof of principle of such domain design approach by showing
the lowest energy states of ferromagnetic films with (curved)
high-DMI strips of different widths w and shape.

Figures 6(g)–6(i) also demonstrate that small gaps in the
high-DMI strips do not affect the end result. This is important
to prove that the suggested method to fix the shape and the size
of domains is robust against sample imperfections, which may
be crucial for experimental realization. Note that the number of
domain walls in the lowest-energy state depends on the width w

of the high-DMI region. This dependence is already discussed
in detail for straight high-DMI strips in Sec. III B. Recall
also that in Sec. III D we showed that, in a high-DMI strip
with |Din| > Dc, a skyrmion expands and eventually forms a
cycloidal state with two walls parallel to the borders of the
strip. This expansion can be used to create worm domains of
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FIG. 6. Spatial magnetization profiles of the lowest energy states
for high-DMI strips of different shapes and width w. The DMI
strength is 1.18Dc inside the strips (outlined by black lines) and
zero elsewhere (shaded area).

desired shape in curved, pre-engineered high-DMI strips [see
e.g. Fig. 6(e)] by first nucleating a skyrmion anywhere within
the strip.

B. High-DMI waveguides

Domain walls are known to act as spin waveguides [29–32].
As shown in the preceding subsection, it is possible to fix the
position, shape, and number of domain walls using a smoothly
curved high-DMI strip and thereby also engineer the path for
guidance of the spin waves. An example of a curved spin
waveguide, based on a single Néel domain wall confined in a
curved high-DMI strip, is shown in Fig. 7.

Using a confined domain wall in a high-DMI strip of
an extended, heterochiral ferromagnet instead of a domain
wall confined by the boundaries of a finite, monochiral
ferromagnet, is beneficial for the robustness of the waveguide
against deformations of the domain wall guiding the wave.
For example, consider a domain wall mostly confined in a
high-DMI strip but with a meandering deformation that places
the domain wall partially inside the low-DMI region around
the waveguide. This deformed domain wall will then relax

10ξ

mz = −1

mz = 1 0

δmz

FIG. 7. A spin wave, with angular frequency w = 0.4γLLK/Msat,
traveling (from left to right) along a single domain wall confined in
a curved high-DMI strip. The DMI strength is Din = 1.18Dc inside
the strip and zero elsewhere. A damping factor α = 0.02 is used. The
color map depicts the dynamic variation of the z component of the
magnetization.
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a b c

8ξ

d e f 8ξ

FIG. 8. (a)–(c) Time resolved self recovery of a domain-wall
waveguide in a high-DMI strip within an extended, heterochiral
ferromagnet, with DMI strength Din = 1.18Dc inside the strip and no
DMI elsewhere (shaded area). (d)–(f) Relaxation of a broken domain
wall waveguide in a finite, monochiral ferromagnet with DMI strength
D = 1.18Dc. The initial configurations (a) and (d) are relaxed using
the LLG equation with damping parameter α = 1.

towards its equilibrium state, back in the center of the confining
high-DMI strip. This self-recovery mechanism is illustrated
in Figs. 8(a)–8(c). Note that the geometrically designed
ferromagnetic strips for domain-wall based waveguides do
not have this self-healing property: Once the domain wall is
deformed in such a way that it crosses the boundary of the
waveguide, it will not relax back to the state with a single
domain wall at the center of the strip [Figs. 8(d)–8(f)].

C. Racing skyrmions on high-DMI tracks

A spin-polarized current can move skyrmions along a
racetrack. Due to drifting and, more importantly, the skyrmion
Hall effect, it is possible for the skyrmion to leave the track.
This process, however, has to overcome an energy barrier
related to the repulsive force between the skyrmion and the
edge of the racetrack. For strong spin currents, the skyrmion
Hall effect can become sufficiently large to expel the skyrmion
out of the racetrack.

Racetracks are usually designed by shape engineering of
the ferromagnetic film. We propose an alternative method,
in which the racetrack is created by a high-DMI strip in an
extended ferromagnetic film, with weak or no DMI outside the
strip. We compare the repulsive force between skyrmions and
the track’s edges for the two design methods, by calculating the
energy of a skyrmion as a function of its distance d⊥ to the edge
of the racetrack. This is done by relaxing the magnetization
while keeping the magnetic moment at the center of the
skyrmion fixed at a certain distance d⊥ from the edge. The
obtained energies and repulsive forces are shown in Figs. 9(a)
and 9(b). When we subsequently relaxed the magnetization
without fixing any spins, we see that the skyrmions move back
to the center of the strip and they do not collapse, as long as
there is a repulsive force with the edge. This proves that our
fixed-spin method, used to determine the repulsive force, is
justified.

A skyrmion placed close to the boundary of a finite chiral
ferromagnet (d⊥ < 2.4ξ for D = 0.8Dc) will exit through
the boundary, as shown by the shorter energy/force curves
in Figs. 9(a) and 9(b) for the shape-engineered racetrack. In
the case of our racetrack, designed by heterogeneous DMI, the
skyrmion can also escape from the DMI track by moving into
the low DMI regions. This, however, requires overcoming a
much larger energy barrier, especially if Dout is much smaller
than Din. Consequently, the high-DMI track can sustain larger
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FIG. 9. Repulsion energy (a) of a skyrmion at a distance d⊥ from
the edge of the racetrack and the corresponding force (b), for two
design methods of the track (finite chiral strip versus the high-DMI
strip within the extended film with lower DMI). A comparative
snapshot of racing skyrmions for the two designs (with same DMI
Din = 0.80Dc, width of the track w = 16ξ , and spin-current density
J ) is shown in panels (c) and (d).

spin currents, without losing the skyrmion, than the ordinary
shape-engineered DMI track. Figures 9(c) and 9(d) shows the
path of a skyrmion in the two types of racetracks for the
same spin current and inner DMI strength. For this current the
skyrmion escapes from the shape-engineered track, whereas
it keeps racing on the high-DMI track. This significantly
improves the performance of the racetrack memory device
and dramatically reduces its volatility to skyrmion collapse.

V. CONCLUSION

To summarize, we demonstrated in this paper the new
manner to manipulate chiral spin structures in ferromagnetic
films, such as cycloids and skyrmions, by engineering spatially
the Dzyaloshinskii-Moriya interaction (DMI). Besides the
useful analytic considerations, we showed that domain walls
and skyrmions can be very effectively confined inside the
prepatterned regions with higher DMI and how the properties
of the ground state depend on the width of the confinement
and interfaces between the regions with different DMI in a
heterochiral film. We propose to utilize these findings in the
advanced design of devices based on spatial DMI engineering,
such as curved spin waveguides, and devices requiring precise
selectivity of the shape and size of magnetic domains. We also
demonstrate a much improved functionality of a skyrmion
racetrack memory for a track defined by a high-DMI strip
within an extended film with lower (or no) DMI, due to
much increased repulsive force between a skyrmion and the
border where DMI changes compared to the force keeping
the skyrmion within the conventional finite tracks. Since the
interfacially-induced DMI in a ferromagnetic film is possible
to spatially engineer in experiment by, e.g., patterning the
adjacent heavy-metal layer, we expect that our findings are
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only the first of emergent phenomena to be revealed in
heterochiral, ferromagnetic films in the coming years.

ACKNOWLEDGMENTS

This work was supported by the Fonds Wetenschap-
pelijk Onderzoek (FWO-Vlaanderen) through Project No.
G098917N.

APPENDIX

In this Appendix, we demonstrate how one can translate
the DMI energy expression of a classical atomistic Heisen-
berg model Dij · (Si × Sj ) to the DMI energy density in a
micromagnetic model, in the case of a spatially varying DMI
strength. Let us consider a magnetic moment So at an interface
between DMI strength Dl on the left side and Dr on the right
side, as depicted in Fig. 10. The DMI energy density εo

dmi at
this position depends on the magnetic moment on the left S l

and the one on the right Sr , both at an interatomic distance a

(assuming constant magnetization along the y direction). The
DMI energy density in the cell at the interface, with volume
Vcell = abt , then becomes

εo
dmi = 1

2abt
[Dl(S

o × S l)y − Dr (So × Sr )y]. (A1)

One easily finds that this can be rewritten as

εo
dmi = 1

2bt

[

So
x

(

Dlδ
lSo

z + Drδ
rSo

z

)

− So
z

(

Dlδ
lSo

x + Drδ
rSo

x

)]

,

(A2)

SoSl SrSl oo SrSoo

x

z

yt

a

b

DlDll DrDDrr

FIG. 10. Cartoon of atomistic spin model with a magnetic
moment So at an interface with on the left side DMI strength Dl

and on the right side DMI strength Dr .

with

δlSo = So − S l

a
and δrSo = Sr − So

a

which can be considered as the first-order left and right
finite difference of the magnetization field m at the interface.
Note that expression (A2) is equivalent with expression (4)
of the DMI energy density in the micromagnetic model
where we allow for different left and right derivative. Note
that if Dl = Dr , then the sum of two derivatives yields the
second-order central difference. We therefore conclude that
the energy densities from the two models are equivalent up to
first order at the interface and up to second order elsewhere.
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