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Abstract

Statins are potent inhibitors of cholesterol biosynthesis and exert beneficial effects in the primary

and secondary prevention of coronary artery disease. However, the overall benefits observed with

statins appear to occur much earlier and to be greater than what might be expected from changes in

lipid levels alone, suggesting effects beyond cholesterol lowering. Indeed, recent studies indicate

that some of the cholesterol-independent or “pleiotropic” effects of statins involve improving

endothelial function, enhancing the stability of atherosclerotic plaques, decreasing oxidative stress

and inflammation, and inhibiting the thrombogenic response. Many of these pleiotropic effects are

mediated by inhibition of isoprenoids, which serve as lipid attachments for intracellular signaling

molecules. In particular, inhibition of the small guanosine triphosphate–binding proteins Rho, Ras,

and Rac, whose proper membrane localization and function are dependent on isoprenylation, may

play an important role in mediating the pleiotropic effects of statins.

Each of the statins is unique with regard to tissue permeability and metabolism, a characteristic

that results in different potencies for extrahepatic 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase inhibition. These variations in tissue permeability and metabolism may

account for some of the observed differences in peripheral side effects.1 Lipophilic statins,

such as atorvastatin and simvastatin, are more likely to enter endothelial cells by passive

diffusion than are hydrophilic statins, such as pravastatin and rosuvastatin, which are primarily

targeted to the liver. However, because lipophilicity does not entirely predict the ability of

statins to exert extrahepatic effects in animal models and human studies, it is likely that other

unidentified factors may play a role. For example, there may be specific mechanisms for

hydrophilic statins to enter extrahepatic cells, such as endothelial cells. Such a mechanism is

present in the liver, where the hepatic organic anion transporter OATP-C enables hydrophilic

statins to enter hepatocytes.2

Until recently, all cholesterol-independent, or “pleiotropic,” effects of statins were believed to

be mediated by inhibition of mevalonate synthesis. However, a recent report suggests that

statins bind to a novel allosteric site within the β2-integrin leukocyte function–associated

antigen–1 (LFA-1), which is independent of mevalonate production.3 LFA-1 belongs to the

integrin family and plays an important role in leukocyte trafficking and T-cell activation.

Random screening of chemical libraries identified the HMG-CoA reductase inhibitor lovastatin

as an inhibitor of the LFA-1–intercellular adhesion molecule–1 interaction. This article reviews
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new data on the different pleiotropic properties of the statins and discusses the clinical

implications of these findings (Figure 1).4 Additionally, a comprehensive review of the

pleiotropic effects of statins has recently been published4a for readers interested in more

information on the topic.

Statins and Isoprenylated Proteins

By inhibiting L-mevalonic acid synthesis, statins also prevent the synthesis of other important

isoprenoid intermediates of the cholesterol biosynthetic pathway, such as farnesyl

pyrophosphate and geranylgeranylpyrophosphate (GGPP)5 (Figure 2).4a These intermediates

serve as important lipid attachments for the posttranslational modification of a variety of

proteins, including the γ-subunit of heterotrimeric G-proteins, heme-a, nuclear lamins, and

small guanosine triphosphate–binding protein Ras and Ras-like proteins, such as Rho, Rab,

Rac, Ral, or Rap.6 Protein isoprenylation (Ras and Rho guanosine triphosphatase family)

permits the covalent attachment, subcellular localization, and intracellular trafficking of

membrane-associated proteins,6,7 which are relevant in cell-signaling pathways. Thus, by

inhibiting mevalonic acid, the downstream effects of statins include reduction of inflammation,

improved vasodilation, and reduced thrombogenicity.

Rho is the major target of GGPP; thus, inhibition of Rho and its downstream target Rho kinase

is a likely mechanism mediating some of the pleiotropic effects of statins on the vascular wall.
8,9 Each member of the Rho family serves specific functions in cell shape, motility, secretion,

and proliferation, although overlapping functions among the members could be observed in

overexpressed systems. Activation of Rho in Swiss 3T3 fibroblasts by extracellular ligands,

such as platelet-derived lysophosphatidic acid, leads to myosin light chain phosphorylation

and formation of focal adhesion complexes.6,7,10 Indeed, Rho kinase increases the sensitivity

of vascular smooth muscle to calcium in hypertension11 and coronary spasm.12 In contrast,

activation of Rac leads to the formation of lamellipodia, membrane ruffles, and oxidative stress,

whereas activation of Cdc42 induces actin-rich surface protrusions called filopodia.

Statins and Endothelial Function

Hypercholesterolemia impairs endothelial function. As an early manifestation of

atherosclerosis, endothelial dysfunction occurs even in the absence of angiographic evidence

of disease.13,14 An important characteristic of endothelial dysfunction is the impaired

synthesis, release, and activity of endothelial-derived nitric oxide (NO). Endothelial NO

inhibits several components of the atherogenic process. For example, endothelial-derived NO

mediates vascular relaxation15 and inhibits platelet aggregation,16 vascular smooth muscle

proliferation,17 and endothelial–leukocyte interactions.18,19 Inactivation of NO by the

superoxide anion (O2·−) limits bioavailability of NO and leads to nitrate tolerance,

vasoconstriction, and hypertension.20,21

Acute plasma low-density lipoprotein (LDL) cholesterol apheresis improves endothelium-

dependent vasodilatation,22 which indicates that statins could restore endothelial function, in

part, by lowering serum cholesterol levels. However, in some studies with statins, restoration

of endothelial function occurs before significant reduction in serum cholesterol levels,23–25

suggesting that there are additional effects on endothelial function beyond cholesterol

reduction. Indeed, statins increase endothelial NO production by stimulating and upregulating

endothelial NO synthase.26,27 Furthermore, statins restore endothelial NO synthase activity

in the presence of hypoxia28 and oxidized LDL cholesterol,26 which are conditions that lead

to endothelial dysfunction. Statins also increase the expression of tissue-type plasminogen

activator29 and inhibit the expression of endothelin-1, a potent vasoconstrictor and mitogen.
30 Statins, therefore, exert many favorable effects on the endothelium and attenuate endothelial

dysfunction in the presence of atherosclerotic risk factors.
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Another important effect of statin treatment on endothelial NO synthase function is inhibition

of caveolin.31,32 Statins also increase endothelial NO synthase activity via posttranslational

activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway.27 Phosphorylation

of Akt is an important event in several cellular activities. Indeed, endothelial production of NO

can be regulated by phosphorylation and activation of endothelial NO synthase by Akt, which

is increased in the presence of statins.33,34 Caveolin-1 binds to endothelial NO synthase in

caveolae, thereby negatively regulating the enzyme.35 Exposure of cultured endothelial cells

to hypercholesterolemic serum upregulates caveolin-1 and promotes association of caveolin-1

and endothelial NO synthase into inhibitory complexes, thereby decreasing NO production.
36 Statins have been shown to reduce caveolin-1 abundance and decrease its inhibitory action

on both basal and agonist-stimulated endothelial NO synthase activity.

Statins may also improve endothelial function through their antioxidant effects. For example,

statins enhance endothelium-dependent relaxation by inhibiting production of reactive oxygen

species, such as superoxide and hydroxy radicals, from aortas of cholesterol-fed rabbits.37

Although lipid lowering by itself can lower vascular oxidative stress,38 some of these

antioxidant effects of statins appear to be cholesterol independent. For example, statins

attenuate angiotensin II–induced free radical production in vascular smooth muscle cells

(SMCs) by inhibiting Rac1-mediated nicotinamide adenine dinucleotide oxidase activity and

downregulating angiotensin-1 receptor expression.39 Because NO is scavenged by reactive

oxygen species, these findings indicate that the antioxidant properties of statins may also

contribute to their ability to improve endothelial function.20,21

Statins and Endothelial Progenitor Cells

Recently, statins have also been found to increase the number of circulating endothelial

progenitor cells.40 These cells augment ischemia-induced neovascularization,41 accelerate

reendothelialization after carotid balloon injury,42,43 and improve postischemic cardiac

function.44 Indeed, statins induce angiogenesis by promoting proliferation, migration, and

survival of circulating endothelial progenitor cells.45 In patients with stable coronary artery

disease (CAD), administration of atorvastatin for 4 weeks augmented the number of circulating

endothelial progenitor cells and enhanced functional capacity.46 These findings are in

concordance with earlier data showing that statins rapidly mobilize endothelial progenitor cells

from the bone marrow and accelerate vascular structure formation via activation of

phosphatidylinositol 3-kinase/protein kinase Akt and endothelial NO synthase.27,45,47 These

angiogenic effects were observed at lower statin concentrations and were cholesterol

independent. At higher concentrations, statins appear to have an antiangiogenic effect,48,49

suggesting a biphasic effect of statins on angiogenesis.50 However, this suggestion remains

controversial because higher doses of statins also have been shown to be angiogenic.51

Statins and Smooth Muscle Proliferation

Proliferation of vascular SMCs is a central event in the pathogenesis of vascular lesions,

including postangioplasty restenosis, transplant arteriosclerosis, and venous graft occlusion.
52 Recent studies have shown that statins attenuate vascular proliferative disease, such as

transplant-associated arteriosclerosis.52 In contrast to atherosclerosis, transplantassociated

arteriosclerosis is more dependent on immunologic mechanisms as opposed to lipid disorders,

although hypercholesterolemia exacerbates the immunologic process.53 Inhibition of

isoprenoid synthesis, but not cholesterol synthesis, by statins decreased platelet-derived growth

factor (PDGF)-induced DNA synthesis in vascular SMCs.54,55 Treatment with statins

decreased PDGF-induced Rb hyperphosphorylation and cyclin-dependent kinase (CDK)-2,

CDK-4, and CDK-6 activities. This correlated with increases in the level of the CDK inhibitor

p27Kip1, without concomitant changes in p16INK4, p21Waf1, or p53 levels. These findings

Liao Page 3

Am J Cardiol. Author manuscript; available in PMC 2009 May 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



indicate that statins inhibit vascular SMC proliferation by arresting the cell cycle between the

G1/S phase transition. It remains to be determined whether the upregulation of p27Kip1 is

responsible for the cell-cycle arrest and whether there are differences among statins in terms

of p27Kip1.

Because the small guanosine triphosphate–binding proteins Ras and Rho require

posttranslational modification for membrane localization and activity and are implicated in

cell-cycle regulation, they are likely targets for the direct antiproliferative vascular effects of

statins. Ras can promote cell-cycle progression via activation of the mitogen-activated protein

kinase pathway,56 whereas Rho causes cellular proliferation through destabilizing the

p27Kip1 protein.57 Interestingly, inhibition of vascular SMC proliferation by statins was

reversed by GGPP, but not by farnesyl pyrophosphate or LDL cholesterol.54 Indeed, direct

inhibition of Rho by Clostridium botulinum C3 transferase or by a dominant-negative Rho

mutant increased p27Kip1 and inhibited SMC proliferation after PDGF stimulation. Taken

together, these findings indicate that Rho mediates PDGF-induced SMC proliferation and that

inhibition of Rho by statins is the predominant mechanism by which statins inhibit vascular

SMC proliferation.

Statins and Platelet Function

Platelets play a critical role in the development of acute coronary syndromes (ACS).58

Circulating platelets are associated with mural thrombus formation at the site of plaque rupture

and vascular injury,59,60 and hypercholesterolemia is associated with increases in platelet

reactivity.61 These abnormalities are linked to increases in the cholesterol/phospholipid ratio

in platelets. Other potential mechanisms include increases in thromboxane A2 biosynthesis,
62 platelet α2-adrenergic receptor density,63 and platelet cytosolic calcium.64

Statins influence platelet function, although the precise mechanisms involved are not fully

understood.65,66 Among the well-characterized effects of endothelial NO is the inhibition of

platelet aggregation.16 Statin-mediated upregulation of endothelial NO synthase is associated

with downregulation of markers of platelet reactivity.67 Potential additional mechanisms

include a reduction in the production of thromboxane A2 and modifications in the cholesterol

content of platelet membranes.68,69 The cholesterol content of platelet and erythrocyte

membranes is reduced in patients receiving statin therapy, which may lead to a decrease in the

thrombogenic potential of these cells. Indeed, animal studies suggest statin therapy inhibits

platelet deposition on damaged vessels and reduces platelet thrombus formation.59,70

Furthermore, in vitro experiments have demonstrated that statins inhibit tissue factor

expression by macrophages, thereby potentially reducing thrombotic events in the vascular

wall.71

Statins and Plaque Stability

Plaque rupture is a major cause of ACS.14,72,73 Lipid lowering by statins may contribute to

plaque stability by reducing plaque size or by modifying the physiochemical properties of the

lipid core.74,75 However, changes in plaque size by lipid lowering tend to occur over extended

time and are quite minimal as assessed by angiography. Instead, the clinical benefits from lipid

lowering are probably because of decreases in macrophage accumulation in atherosclerotic

lesions and inhibition of matrix metalloproteinase production by activated macrophages.71

Indeed, statins inhibit expression of matrix metalloproteinases and tissue factor by cholesterol-

dependent and cholesterol-independent mechanisms,71,74,76 with the cholesterol-

independent or direct macrophage effects occurring much earlier. The plaque-stabilizing

properties of statins, therefore, are mediated through a combined reduction in lipids,

macrophages, and matrix metalloproteinases.77 These properties of statins may reduce the

incidence of ACS by decreasing the propensity for plaque to rupture and may explain the rapid
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time course of event reduction in patients at high risk for recurrent coronary ischemia in the

Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL)78 and the

Pravastatin or Atorvastatin Evaluation and Infection Therapy (PROVE-IT) trials.79

Statins and Vascular Inflammation

Activation of T lymphocytes and control of the immune response are mediated by the major

histocompatibility complex class II (MHC-II) and CD40/CD40L. Under physiologic

conditions, mostly antigen-presenting cells express MHC-II constitutively, whereas induction

of interferon-γ leads to an increase of MHC-II expression in numerous cells, including human

endothelial cells and monocytes. An important regulatory complex in this pathway is the class

II transactivator (CIITA). Statins inhibit MHC-II expression on endothelial cells and

monocyte-macrophages via inhibition of the promotor IV of the class II transactivator, and

thereby repress MHC-II–mediated T-cell activation.80 In addition, statins decrease CD40

expression and CD40-related activation of vascular cells.81

A clinical marker of inflammation is high-sensitivity C-reactive protein (hs-CRP).82 hs-CRP

is an acute-phase reactant that is produced by the liver in response to proinflammatory

cytokines, such as interleukin-6, and reflects low-grade systemic inflammation.83 Elevated

levels of hsCRP are predictive of increased risk for CAD in apparently healthy men and women.
84,85 hs-CRP is elevated in patients with CAD, coronary ischemia, and myocardial infarction

(MI) compared with healthy subjects.86

Statin therapy lowers hs-CRP levels in patients with hypercholesterolemia.82,87,88 In the

Cholesterol and Recurrent Events (CARE) trial, statins significantly decreased plasma hs-CRP

levels over a 5-year period in patients who did not have recurrent coronary events.89,90

Similarly, an analysis of baseline and 1-year follow-up from the Air Force/Texas Coronary

Atherosclerosis Prevention Study (AFCAPS/TexCAPS) demonstrated that hs-CRP levels were

reduced in statin-treated patients who did not have acute major coronary events.82

Furthermore, preliminary data from the Pravastatin Inflammation/CRP Evaluation (PRINCE)

study confirm that statin therapy can significantly reduce serum hs-CRP levels in primary and

secondary prevention populations.91 After 24 weeks of statin therapy, hs-CRP levels were

reduced by approximately 13% in primary and secondary prevention populations, whereas

placebo treatment of subjects in the primary prevention arm of the study had no effect. These

findings indicate that statins are effective in decreasing systemic and vascular inflammation.

However, any potential clinical benefits conferred by lowering hs-CRP levels are difficult to

separate from those of the lipid-lowering effects of statins without performing further clinical

studies. Perhaps the ongoing randomized, placebo-controlled JUPITER trial, which is enrolling

patients with modest LDL cholesterol (<3.4 mmol/L [130 mg/dL]) and elevated hs-CRP (>2

mg/dL) levels, will help address the question of whether hs-CRP is an additional non–lipid-

associated cardiovascular risk factor that can be modified by statin therapy.

Statins and Ischemic Stroke

Although MI is closely associated with serum cholesterol levels, neither the Framingham Heart

Study nor the Multiple Risk Factor Intervention Trial (MRFIT) demonstrated significant

correlation between ischemic stroke and serum cholesterol levels.92,93 An intriguing result of

large clinical trials with statins is the reduction in ischemic stroke.94 For example, the recent

Heart Protection Study (HPS) showed a 28% reduction in ischemic strokes in >20,000 people

with cerebrovascular disease or other high-risk conditions.95 The proportional reductions in

stroke were about 25% in all subcategories studied, including individuals >70 years at entry

and those presenting with different levels of blood pressure or lipids, even when the

pretreatment LDL cholesterol was <3.0 mmol/L (116 mg/dL). Thus, the findings of these large

statin trials raise the interesting question of how a class of cholesterol-lowering agents can
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reduce ischemic stroke when ischemic stroke is not related to cholesterol levels. It appears

likely that there are cholesterol-independent effects of statins that are beneficial for ischemic

stroke. Some of these beneficial effects are attributed to the effects of statins on endothelial

and platelet function.

In addition to the beneficial effects of statins on endothelium and platelets, other effects of

statins may reduce the severity of ischemic stroke. For example, statins attenuate P-selectin

expression and leukocyte adhesion via increases in NO production in a model of cardiac

ischemia and reperfusion.96,97 Others have reported that statins upregulate tissue-type

plasminogen activator and downregulate plasminogen activator inhibitor–1 expression through

a similar mechanism involving inhibition of Rho geranylgeranylation.29 Thus, the absence of

neuroprotection in endothelial NO synthase–deficient mice emphasizes the importance of

endothelium-derived NO in augmenting cerebral blood flow but also, potentially, in limiting

the impact of platelet and white blood cell accumulation on tissue viability after ischemia. In

humans, atherosclerosis of precerebral arteries causes stroke through plaque disruption and

artery-to-artery thromboembolism, and—in contrast to the mouse models—statins exert

additional stroke-protective effects in humans through their antiatherosclerotic and plaque-

stabilizing effects. Furthermore, the anti-inflammatory actions and mobilization of endothelial

progenitor cells of statins may also contribute to neuroprotection. Therefore, it is possible that

statins contributed to the decrease in the incidence of ischemic strokes in clinical trials, in part,

by reducing the size of cerebral infarcts to clinically unappreciated levels.

Clinical Trials with Statins: Evidence for Pleiotropy

Because serum cholesterol level is strongly associated with CAD, it has been generally assumed

that cholesterol reduction by statins is the predominant, if not the only, mechanism underlying

their beneficial effects. Data from an analysis of lipid-lowering trials suggest lipid modification

alone cannot account for all of the clinical benefits associated with statin therapy.4a Indeed,

the slope of the relation between cholesterol reduction and mortality risk reduction was the

same for statins and nonstatins, whereas the mortality risk reductions realized during statin

treatment periods ≥2 years were found to be a consequence of cholesterol reduction alone

(Figure 3, left). However, this type of analysis does not account for differences in the length

of the individual trials with respect to cardiovascular benefits. Some of the nonstatin lipid-

lowering trials—such as the Lipid Research Clinics–Coronary Primary Prevention Trial (LRC-

CPPT), which used the bile acid resin, cholestyramine,98 and the Program on the Surgical

Control of the Hyperlipidemias (POSCH) trial, which used partial ileal bypass surgery99—

reported benefits after 7.4 and 9.7 years, respectively, whereas most of the statin trials showed

benefits at much earlier time points (within 5 years). Thus, when benefits after 5 years for all

lipid-lowering trials are compared, it is evident that the nonstatin trials are no longer on the

same slope of cholesterol-to-mortality risk reduction as are all of the statin trials (Figure 3). In

fact, the benefits of cholesterol lowering after ileal bypass surgery in the POSCH study were

not realized at 4.5 years, despite a significant reduction in LDL cholesterol of 34% within the

first 3 months after the surgical procedure. These results suggest that the beneficial effects of

statins occur more rapidly and may not be entirely dependent on cholesterol reduction.

Despite the rapidity of benefits of statin therapy compared with other nonstatin lipid-lowering

therapies, it is still difficult to prove that pleiotropic effects of statins translate into clinically

meaningful outcomes. First, patients receiving statin therapy invariably will have reduced lipid

levels, and it is often difficult to separate the lipid-lowering from the non–lipid-lowering effects

of statins in clinical trials. Second, many effects of statins, such as improved endothelial

function, decreased inflammation, increased plaque stability, and reduced thrombogenic

response, could all be accounted for, to some extent, by lipid lowering. Third, concentrations

used to demonstrate the biologic effects of statins in cell culture and animal experiments,
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especially in inhibition of Rho geranylgeranylation, but not phosphatidylinositol 3-kinase/Akt

activation, appear to be much higher than what is prescribed clinically.100 Finally, both

hydrophilic and lipophilic statins, which inhibit hepatic HMG-CoA reductase, appear to exert

cholesterol-independent effects, despite the relative impermeability of hydrophilic statins in

vascular tissues.2

Recently, in HPS and the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), relative risk

reduction conferred by statin treatment was independent of pretreatment lipid levels.101,102

These large, prospective trials raise the question of whether individuals with CAD can benefit

from statin drugs independently of cholesterol levels. Interestingly, subgroup analyses of

previous clinical trials suggested that the beneficial effects of statins could extend to

mechanisms beyond cholesterol reduction. For example, subgroup analyses of the West of

Scotland Coronary Prevention Study (WOSCOPS) and CARE trial indicate that despite

comparable serum cholesterol levels among the statin-treated and placebo groups, statin-

treated individuals had significantly lower risks for CAD compared with agematched placebo-

controlled individuals.103,104 Indeed, when the statin treatment group was divided into

quintiles of percentage of LDL cholesterol reduction, there was no difference in the 4.4-year

coronary event rate for quintiles 2 through 5 (LDL cholesterol reductions of 23% to 41%).

Hence, there was no apparent association between coronary event rate and the level of LDL

cholesterol reduction. Furthermore, analyses of cholesterol-lowering trials suggest that the risk

of myocardial infarction in individuals treated with statins is significantly lower compared with

individuals treated with other cholesterol-lowering agents or modalities, despite comparable

reduction in serum cholesterol levels in both groups.2,4a,105 For example, application of the

Framingham risk score to WOSCOPS produced a coincidence between predicted and observed

risk in the placebo group but underestimated the benefit of the pravastatin group by 31%.106

Finally, the lipophilic statins lovastatin, fluvastatin, simvastatin, and atorvastatin would be

expected to penetrate cell membranes more effectively than the more hydrophilic statins,

eliciting more pleiotropic effects. However, the observation that hydrophilic statins also have

pleiotropic effects raises an important question on the role of solubility in any of the cholesterol-

independent effects of statins and also on the magnitude of these effects. Indeed, recent

evidence suggests that some of the cholesterol-independent effects of these agents may be

mediated by inhibition of hepatic HMG-CoA reductase, leading to subsequent reduction in

circulating isoprenoid levels.2 This hypothesis may help explain why hydrophilic statins, such

as pravastatin and rosuvastatin, are clinically still able to demonstrate cholesterol-independent

benefits2 while being less efficient at directly entering vascular wall cells.2 In this respect, the

word pleiotropic probably does not reflect the hepatic versus nonhepatic effects of these agents.

The clinical relevance of hepatic versus nonhepatic isoprenoid inhibition to cardiovascular

outcomes is currently unclear, and future studies could explore the role of statin solubility on

the differences between these cholesterol-independent effects.

Conclusion

Statins exert many pleiotropic effects in addition to lowering serum cholesterol levels. These

additional properties include having beneficial effects on endothelial function and blood flow,

decreasing LDL cholesterol oxidation, enhancing the stability of atherosclerotic plaques,

inhibiting vascular smooth muscle proliferation and platelet aggregation, and reducing vascular

inflammation (Figure 1). Recent evidence suggests that most of these effects are mediated by

the inhibitory effect of statins on isoprenoid synthesis. In particular, inhibition of Rho

guanosine triphosphatases in vascular wall cells by statins leads to increased expression of

atheroprotective genes and inhibition of vascular SMC proliferation. It remains to be

determined which and to what extent pleiotropic effects account for the early clinical benefits

of statin therapy that are beyond cholesterol lowering.
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Figure 1.

Cholesterol-independent effects of statins. Plus sign = enhanced/activated; minus sign =

inhibited; AT1 = angiotensin 1; ET-1 = endothelin 1; hs-CRP = high-sensitivity C-reactive

protein; MMPs = matrix metalloproteinases; NO = nitric oxide; PAI-1 = plasminogen activator

inhibitor-1; ROS = reactive oxygen species; SMC = smooth muscle cell; TF = tissue factor; t-

PA = tissue-type plasminogen activator; TXA2 = thromboxane A2. (Adapted with permission

from Arterioscler Thromb Vasc Biol.)4
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Figure 2.

Biologic actions of isoprenoids. Cholesterol biosynthesis pathway shows effects of inhibition

of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase by statins. Decrease in

isoprenylation of signaling molecules, such as Ras, Rho, and Rac, leads to modulation of

various signaling pathways. BMP-2 = bone morphogenetic protein–2; CoA = coenzyme A;

eNOS = endothelial nitric oxide synthase; ET-1 = endothelin-1; HMG-CoA = 3-hydroxy-3-

methylglutaryl–CoA reductase inhibitor; PAI-1 = plasminogen activator inhibitor–1; PP =

pyrophosphate; t-PA = tissue-type plasminogen activator. (Reprinted with permission from

Annu Rev Pharmacol Toxicol.4a)
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Figure 3.

Relation between low-density lipoprotein cholesterol (LDL-C) reduction and risk of

cardiovascular events. (Left) Decrease in LDL-C (% reduction) is correlated with reduction in

risk of nonfatal myocardial infarction (MI) or coronary artery disease (CAD) among statin (the

West of Scotland Coronary Prevention Study [WOSCOPS], the Cholesterol and Recurrent

Events [CARE] study, and the Scandinavian Simvastatin Survival Study [4S]) and nonstatin

(the Lipid Research Clinics–Coronary Primary Prevention Trial [LRC-CPPT] and Program on

the Surgical Control of the Hyperlipidemias [POSCH]) trials. Note that the relation (slope)

holds between statin and nonstatin trials, suggesting that the beneficial effects of statins are

likely due only to cholesterol lowering. (Right) Decrease in LDL-C (% reduction) is correlated

with reduction in risk of nonfatal infarctions MI or CAD among statin (WOSCOPS, CARE,

and 4S) and nonstatin (LRC-CPPT and POSCH) trials after 4.5 years of treatment. Note that

the nonstatin trials (LRC-CPPT and POSCH; dashed lines) show fewer cardiovascular benefits

than statin trials (WOSCOPS, CARE, and 4S) and are no longer on the same slope (solid

lines). (Reprinted with permission from Annu Rev Pharmacol Toxicol.4a)
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