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Abstract. Climate variability on multidecadal time scales appears to be organized in pronounced patterns with clear expres-

sions in sea surface temperature, such as the Atlantic Multidecadal Variability and the Pacific Decadal Oscillation. These

patterns are now well studied both in observations and global climate models and are important in the attribution of climate

change. Results from CMIP5 models have indicated large biases in these patterns with consequences for ocean heat storage

variability and eventually the global mean surface temperature. In this paper, we use two multi-century Community Earth5

System Model simulations at coarse (1◦) and fine (0.1◦) ocean model horizontal grid spacing to study the effects of the repre-

sentation of mesoscale ocean flows on major patterns of multidecadal variability. We find that resolving mesoscale ocean flows

both improves the characteristics of the modes of variability with respect to observations and increases the amplitude of the

heat content variability in the individual ocean basins. The effect on the global mean surface temperature is relatively minor.
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1 Introduction15

The ocean plays a key role in the climate system’s heat budget, absorbing some 93% of the additional heat retained due to

anthropogenic greenhouse gases (Stocker et al., 2013). Although the instrumental record of sea surface temperature (SST) is

only about one and a half centuries, the observations indicate the existence of spatially correlated patterns of variability on

multidecadal time scales, also referred to as (statistical) modes of variability (Deser et al., 2010). These modes are thought

to be part of the internal variability of the climate system and they affect the oceanic heat content by altering heat fluxes and20

consequently the global energy budget (Trenberth and Shea, 2006; Dijkstra, 2013; Zhang and Wang, 2013; Frajka-Williams

et al., 2017). Disentangling these modes of internal variability from forced changes is hence important for detection and

attribution studies of anthropogenic climate change (Zhang et al., 2019). Indeed, these SST patterns have played a major role
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in the search for the origin of the most recent global mean surface temperature trend slowdown (Kosaka and Xie, 2013; England

et al., 2014). They may also reflect a memory component of the climate system, which can provide enhanced skill in long-term25

climate predictions (Zhang et al., 2019). On a broader perspective, societies are impacted significantly by these SST patterns

through associated changes in ecosystem productivity (Mantua et al., 1997) and precipitation patterns (Sutton and Hodson,

2005).

To determine patterns of SST variability, scalar indices measuring average SST anomalies over one or more regions are

often regressed on the global SST field (Deser et al., 2010). Both the North Atlantic and North Pacific are known for their30

low frequency SST variability and associated pattern. The Atlantic mode, indicated by the average North Atlantic SST, was

first named the Atlantic Multidecadal Oscillation by Kushnir (1994), but in the absence of a single spectral peak we use the

more modern naming convention of Atlantic Multidecadal Variability (AMV). Low frequency Pacific variability was revealed

through principle component analysis of North Pacific SSTs (Pacific Decadal Oscillation; Mantua et al. (1997)) and of the

global SSTs (Interdecadal Pacific Oscillation; Power et al. (1999)). The Pacific Decadal Oscillation is thought to arise as a35

combination of low frequency tropical variability and local air-sea interaction (Newman et al., 2016). In the Southern Ocean,

SST observations are relatively sparse prior to satellite observations, but signatures of multidecadal variability are found, for

example, in the Antarctic sea ice extent (Simpkins et al., 2013). Southern Ocean variability is assessed here through an SST

index in the Atlantic sector of the Southern Ocean where eddy-mean flow interaction can result in multidecadal variability (Le

Bars et al., 2016; Hogg and Blundell, 2006; Jüling et al., 2018).40

The importance of internal ocean variability in low-frequency climate variations has become more clear in recent years by

comparing ocean model results forced by either climatological or observed atmospheric forcing (Penduff et al., 2014). Mul-

tidecadal SST variability can arise from a range of processes (Dijkstra, 2013). Energy can be shifted to lower frequencies by

integration of high-frequency variability in one component by a slower component of a system, such as the coupled atmosphere-

ocean system (Hasselmann, 1976). It can also arise from internal variability in the atmosphere which is imprinted through heat45

fluxes on the upper ocean (Eden and Jung, 2001). Internal multidecadal variability in the ocean can arise through specific insta-

bilities, such as the thermal Rossby wave mechanism (Te Raa and Dijkstra, 2002). Results of idealized models have indicated

that patterns of internal multidecadal SST variability may arise through noise excited (non)-normal modes (Frankcombe et al.,

2009; Weijer and van Sebille, 2014; Dijkstra, 2016) or due to a collective interaction of such modes (Berloff et al., 2007b;

Hogg and Blundell, 2006). Such collective interactions can change the vertical heat transport, affecting the stratification which50

in turn influences the response of the mixed layer to heat fluxes and/or wind stress (Manucharyan et al., 2017) or impact deep

convection at multidecadal timescales (Dufour et al., 2017). Mesoscale eddies can also interact with the mean flow, for example

through rectification, which can lead to changes in momentum and vorticity input by wind stress (Hogg and Blundell, 2006;

Berloff et al., 2007a). Last, nonlinear advection of kinetic energy in the western boundary current separation region can lead to

an inverse temporal cascade in which spectral energy is shifted from high to low frequencies (Martin et al., 2019).55

Models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. (2012)) generally

underestimate multidecadal climate variability (Cheung et al., 2017; Mann et al., 2020). The amplitudes of Pacific and Atlantic

multidecadal variability, as measured by the AMV and PDO indices, are significantly lower than in observations. Further,
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the regression patterns partially mismatch those in observations, in particular in the Pacific and the western boundary current

regions (Kajtar et al., 2019). Hence, CMIP5 models may miss crucial physical processes causing the patterns of multidecadal60

variability. The resolution of many, if not all, CMIP5 models is too coarse to capture all relevant internal variability. In at

least one ocean model, multidecadal variability appears in a high resolution (strongly eddying) setup but is absent at a lower

resolution (non-eddying) version (Le Bars et al., 2016).

Decreasing the horizontal ocean grid spacing from 1◦ in CMIP5 style GCMs to 0.1◦ enables new physics with the explicit

representation of mesoscale phenomena (Tulloch et al., 2011; Hallberg, 2013). Mesoscale variability arises due to barotropic65

and baroclinic instability and affects the ocean state in myriad ways (McWilliams, 2008), for example by changing the advec-

tion of tracers (in particular affecting the heat and salinity budgets), affecting (re-)stratification (Couvelard et al., 2015; Dufour

et al., 2017), and by modifying the mean flow through rectification. Mesoscale eddies also form an integral part of the turbulent

energy cascade connecting large scale potential and kinetic energy input to small-scale dissipation. Currents, such as narrow

western boundary currents, are also much better represented in high resolution simulations as are inter-ocean exchanges of70

water masses, most notably Agulhas rings (Biastoch et al., 2008).

In most CMIP5 model simulations, mesoscale eddy effects are parametrized with the isopycnal slope mixing parametrization

of Gent and McWilliams (1990) (GM). While GM captures many effects of eddies on the circulation, it stabilizes the ocean

state and suppresses low frequency variability (Hallberg and Gnanadesikan, 2006; Viebahn et al., 2018). Furthermore, GM does

not capture rectification effects of the eddies on the mean flow. In idealized non-eddying ocean models, modes of multidecadal75

variability exist that depend critically on the prescribed eddy diffusivity (Huck et al., 2014). Increasing the resolution to allow

mesoscale eddies, Huck et al. (2014) find that the multidecadal variability persists despite changes in the mean circulation,

suggesting that the eddy parametrization may suppress such low-frequency variability if tuned incorrectly. In a comparative

study with a suite of coupled GFDL models at different resolutions, Griffies et al. (2015) find a stronger upward heat transport

by the mesoscale eddies which counteracts the general downward heat transport by the mean currents. This enhanced vertical80

heat transport leads to larger heat fluxes and faster adjustment to forcing (Delworth et al., 2012).

With the availability of multi-century simulations of global climate models with strongly eddying ocean components (Kirt-

man et al., 2012; van Westen and Dijkstra, 2017), with typical horizontal grid spacing of 10 km or less, it is timely to investigate

how the mesoscale ocean flows affect the patterns of multidecadal variability. It is exactly what we do here in this paper, using

simulations with the Community Earth System Model. The paper is organized as follows: section 2 describes the simula-85

tions and the methods of analysis, section 3 presents the results, and section 4 discusses and summarizes the results and their

implications.

2 Model Simulations and Data Analysis

We analyze results from two multi-century present-day control simulations with the Community Earth System Model version

1.0.4 (CESM, Hurrell et al. (2013)), carried out at the Academic Computing Center in Amsterdam (SURFsara), see e.g., van90

Westen and Dijkstra (2017). Both control simulations use constant year 2000 atmospheric greenhouse gas concentrations forc-
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ing, notably [CO2] = 367ppm and [CH4] = 1760ppb. The CESM components are CAM5 (Community Atmosphere Model),

POP2 (Parallel Ocean Program), CICE (sea ice model), and CLM (Community Land Model) which are coupled by the CESM1

coupler. The high resolution (HIGH) simulation employs a 0.1◦ ocean horizontal grid spacing on a tripolar grid, while the low

resolution (LOW) simulation has a 1◦ ocean horizontal grid spacing with a displaced dipolar grid. The effect of subgrid-scale95

processes on tracer and momentum transport is captured with a biharmonic diffusion operator in the HIGH simulation and

the GM parameterization in the LOW simulation (Gent and McWilliams, 1990). The HIGH simulation was initialized from

a simulation of several decades provided by the National Center for Atmospheric Research, while the LOW simulation was

initialized from a decally averaged ocean state at year 1000 of a CESM 1.1.2 simulation performed with the same resolution.

CESM 1.1.2 and CESM 1.0.4 exhibit only minor differences in their ocean state with CESM 1.0.4 having slightly higher SSTs100

(not shown). Table 1 summarizes the important simulation characteristics.

Table 1. Overview of the two CESM simulations with characteristics and names of their ocean and atmosphere grids.

name ocean grid atmosphere grid years analyzed

HIGH 0.1◦ tripole, 42 levels to 6000 m (tx0.1v2) 0.47◦

× 0.63◦ (f05) 51-300

LOW 1◦ dipole, 60 levels to 5500 m (gx1v6) 0.9◦

× 1.25◦ (f09) 11-260

From earlier simulations with the same model components (CCSM3.5: Kirtman et al. (2012) and CESM1: Small et al.

(2014)), it is known that the climatology of the higher resolution simulation improves compared to the lower resolution simu-

lation in many aspects. The overall SST biases reduce due to a better representation of boundary currents, ocean upwelling and

air-sea interactions (Small et al., 2014). Some biases remain, though, such as too warm high latitude SSTs which result in low105

sea ice extent and sea ice volume biases in the high resolution simulation (Kirtman et al., 2012).

Figure 1 shows the global mean surface heat flux into the ocean indicating the equilibration of the simulations. The HIGH

simulation equilibrates significantly faster than the LOW simulation. The GFDL CM2 climate models show a similarly de-

creased drift in their higher resolution setups which is due to an enhanced upward heat transport by the explicitly resolved

eddies (Delworth et al., 2012; Griffies et al., 2015). In our CESM simulations, all basins are initiated too cool and hence the110

temperature increases at all depths, except for the deep Pacific and some layers at intermediate depths in the Indian Ocean

which cool (not shown). On interannual time scales, the Pacific surface heat fluxes vary strongest in comparison with those in

the other basins. In particular, in the LOW simulation a too strong El Niño-Southern Oscillation (ENSO) signal dominates the

global interannual surface heat flux signal (Fig. 1b; Wieners et al. (2019)).

The results in Fig. 1 indicate that a trend must be removed despite the constant forcing as the model simulations are still115

adjusting towards their statistical equilibrium. We remove a quadratic trend at each grid point of the relevant model output.

This approach allows for different proximities to the statistical equilibrium and different time scales of adjustment at each grid

cell. A further choice in the analysis is the selection of model years which are used in the analysis. Of the HIGH simulation

we ignore the first 50 spinup years as strong adjustment is evident in the global mean SST approximately until year 40. As

mentioned, the LOW simulation is initialized at year 1000 of a CESM 1.1.2 simulation with the same forcing and grid that120
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Figure 1. The globally averaged surface heat flux into the ocean of the HIGH (a) and LOW (b) simulations including the annual time series

(thin), the quadratic fit to the 250 analyzed model years (dashed), and the 13 year low-pass filtered version (solid). For the low-pass filtered

time series, 7 years are removed at each end to avoid filter edge effects.

maintains a near constant surface heat flux of 2.2ZJyr−1 concurrent to the LOW simulation. We choose to discard the first 10

years of data to avoid fast adjustment processes and analyze years 11-260 (cf. Table 1). Monthly data is de-seasonalized by

removing the mean annual cycle, i.e. the mean monthly difference to the annual mean.

To compare the SST model results with observations, we use the HadISST sea surface temperature dataset from 1870-2018

which is provided on a 1◦ × 1◦ grid (Rayner et al., 2003). The observational dataset must be detrended with an appropriate125

estimate of the historical forced signal to allow for a fair comparison with the results of the model simulations, which are

obtained under constant forcing. A simple linear detrending is unable to remove the non-linear historical forcing signal (Stein-

man et al., 2015). When an ensemble of model simulations is available, the forced signal can be approximated as the ensemble

mean assuming that the internal variability of the individual ensemble members is uncorrelated. One can use either the mean

of a single model ensemble (such as that of the Max-Planck Institute Grand Ensemble (Maher et al., 2019) or the CESM Large130

Ensemble (Kay et al., 2015)) or a multi-model ensemble (multi-model mean: MMM; such as that of the CMIP5 ensemble).

The MMM is generally superior to the single model ensemble mean in the historical period (Frankcombe et al., 2018), so we

use CMIP5 ensemble results. The forced signal can furthermore be estimated as a single time series (single factor detrending;

used for example by Steinman et al. (2015)) or as a linear combination of different forcing signals (multi-factor detrending as

described below).135

For the HadISST dataset, we choose to separate the natural and anthropogenic forcing signals which was found to be superior

to single-factor detrending (Frankcombe et al., 2018). We use the CMIP5 MMM forced with observed aerosol and greenhouse

gas concentrations until 2005 and those from the RCP8.5 scenario afterwards until 2018 (like, e.g. Kajtar et al. (2019)). The
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natural forcing is assumed to equal the CMIP5 MMM of the historical (natural forcing only) simulations. The anthropogenic

contribution (MMMant) due to greenhouse gases and aerosols is calculated as the difference between the fully forced MMM140

(MMMall) and the MMM with only natural forcing (MMMnat), i.e.,

MMMant = MMMall −MMMnat (1)

At each grid point, scaled versions of these two time series are subtracted from the historical reconstructed SST, such that the

detrended SST is

SSTdetr(x,y, t) = SST(x,y, t)−α1(x,y)MMMnat(t)−α2(x,y)MMMant(t)−α3(x,y) (2)145

where the coefficients αi at each location are determined through multiple linear regression. Stolpe et al. (2017) show for the

AMV index and the index of Pacific multidecadal variability by Henley et al. (2015) (which does not equal the PDO index, but

shares characteristics) that the various detrending methods result in similar behavior.

To assess the spatial expression of the modes of multidecadal variability, we use regression plots (Deser et al., 2010). The

plotted regression values R are defined as the covariance of the SST field and the normalized index X(t), where X = AMV,150

PDO, or SOM, according to

R(x,y) =
cov(SST(x,y, t),X(t))

std(X(t))
, (3)

such that R has units of temperature. The significance against a no-correlation null hypothesis is tested with a two-tailed

Student’s t-test. Because the time series are autocorrelated and filtered, the effective number of data points n′ is lower than

the original sample size n and can be estimated as the maximum of the reduced sample size due to filtering and due to155

autocorrelation (Trenberth, 1984):

n′ = n×max

(

f∆t,
1− r1,Xr1,Y

1 + r1,Xr1,Y

)

, (4)

where r1,X (r1,Y ) is the lag-1 autocorrelation of time series X (Y ), f the filtering frequency, and ∆t the time step.

We analyze time series in the spectral domain with multi-taper spectra (Ghil et al., 2002). This estimator of spectral density

is superior to the classic periodogram in that it reduces spectral leakage and is statistically robust, i.e. the estimated noise160

reduces with more data points. However, as a trade-off the effective spectral resolution is reduced which becomes problematic

at periodicities near the length of the time series. We therefore limit our analysis to periodicities below 50 years when focussing

on model-observation comparisons but extend the range to 100 year periods for comparisons between the simulations. We use

a bandwidth parameter of 2 and the number of tapers is 3. To test significance against a red noise null hypothesis (Hasselmann,

1976), we generate 10,000 Monte-Carlo first order autoregressive (AR(1)) processes. The autocorrelation coefficient and noise165

amplitude are estimated with the maximum likelihood estimator via Kalman filtering from the deseasonalized and detrended

but unfiltered monthly time series Durbin and Koopman (2012).
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3 Results

The results are divided into four subsections: the first describes the variability in SST by means of the chosen indices, the

second focuses on the surface heat fluxes (SHF), the third explores the spatial structure of multidecadal variability of the Ocean170

Heat Content (OHC), and the fourth shows the consequences for the Global Mean Surface Temperature (GMST).

3.1 Sea Surface Temperature
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Figure 2. The three 13 year low-pass filtered indices of multidecadal variability for the two-factor detrended HadISST data (a) and the

quadratically detrended HIGH (b) and LOW (c) simulations. Atlantic Multidecadal Variability (blue) and Southern Ocean Mode (red) indices

are in units of Kelvin. The monthly time series of the Pacific Decadal Oscillation index is dimensionless with unit standard deviation is also

low-pass filtered and has been divided here by 4 for a comparable amplitude to the other indices (orange). At each end of the time series 7

years are removed to avoid filter edge effects. Panel (d) shows the standard deviation of the low-pass filtered time series.

From the deseasonalized and detrended model and observational SST fields, we determine area averages and principle

components as indices of modes of multidecadal variability. The AMV index is calculated here over the domain [0◦N,60◦N]×

[80◦W,0◦E], very similar to that in Stolpe et al. (2017) who use the zonal extent [75◦W,5◦W]. The PDO is captured by the175

first principal component of the Pacific SSTs north of 20◦N as originally proposed by Mantua et al. (1997). The Southern

Ocean Mode (SOM) index, proposed by Le Bars et al. (2016) as a signature of the multidecadal variability in the Atlantic

sector of the Southern Ocean, is computed over the region [50◦S,35◦S]× [50◦W,0◦E]. The index regions are outlined in the

respective regression maps of Fig. 3. The indices are defined as the 13 year Butterworth low-pass filtered monthly time series

with the first and last 7 years removed to avoid filter edge effects. Figure 2 shows the AMV, PDO, and SOM indices which all180

display variability at multidecadal time scales (Fig. 2a-c). The AMV and SOM indices (in units of Kelvin) exhibit a smaller

amplitude in the simulations than in the historical data (Fig. 2d). Both amplitudes are higher in the HIGH simulation than in
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the LOW simulation. Larger PDO amplitudes after lowpass filtering of the underlying monthly, unit standard deviation time

series indicate larger spectral power at frequencies below the filter cutoff frequency.

Figure 3. Regression maps (values of R(x,y) as in eqn. 3 in Kelvin) of the detrended SST fields onto the AMV (a-c), PDO (d-f), and

SOM (g-i) indices for the 149 year detrended HadISST historical dataset (left) and the 250 year data sets of HIGH (center) and LOW (right)

simulations. Purple dashed lines demarcate the areas of significant correlations at the 98% level. Black boxes outline the index areas. Parallels

and meridians are drawn every 30◦ and 60◦, respectively. Note the different colorbar ranges.

Figure 3 shows the regression patterns of the detrended SST on the AMV, PDO, and SOM indices for the detrended his-185

torical data (HIST) and the two simulations (HIGH and LOW). For the AMV index, the regression pattern of the detrended

historical SST data shows a horse-shoe shape with significant positive regression values throughout the North Atlantic, with a

maximum in the subpolar gyre and a secondary maximum in the subtropical gyre. The regression patterns of both HIGH and

LOW simulations show a comparable pattern to the historical data, albeit with lower regression values. Like the observations,

the HIGH simulation exhibits the strongest regression values in the subpolar gyre, while the LOW simulation shows more190

pronounced regression values in the subtropical gyre. The LOW simulation exhibits significant negative correlations inside the

horseshoe pattern that are not present in the historical observations or the HIGH simulation. In the historical data and the HIGH

simulation regression values are smaller in magnitude outside of the North Atlantic, but the LOW simulation’s tropical Pacific

exhibits positive correlation values exceeding those in the North Atlantic. Both simulations show a significant ENSO/PDO-

like regression pattern in the Pacific and dipole structure in the Indian Ocean, whereas the historical data shows only largely195

non-significant positive correlations in the tropical Pacific and a positive correlations throughout the northern Indian Ocean.
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Overall, the areas of significant correlations are larger in the LOW simulation than in both the HIGH simulation and the histor-

ical data. This suggests possible teleconnections between the Indian and Pacific basins and the Atlantic basin at multidecadal

time scales especially in the LOW simulation, but such correlations are not significant in observations (Steinman et al., 2015).

The PDO regression pattern is characterized by negative values in the Kuroshio extension and positive values in an enclosing200

horseshoe pattern to the East. In the observations, the minimum is located east of the dateline and significant positive values

exist in the Eastern tropical Pacific. Weaker negative (positive) regression values exists in the southwest Pacific (the Belling-

shausen Sea). The simulations show largely similar patterns, although the minima in the Kuroshio extension area are shifted

west of the dateline, especially so in the LOW simulation. The historical data shows uniformly positive correlations in the

Indian Ocean where both simulations display a dipole pattern which is more pronounced in the LOW simulation. All PDO205

patterns exhibit positive values in the tropical Pacific, but the regression values of the LOW simulation are closer to those of

the historical data. In the LOW simulation a large area of significant correlations in the tropical Atlantic exists that is absent in

both the observations and HIGH simulation.

The SOM index regression pattern shows a coherent pattern spanning much of the Southern Ocean at significant levels in

the historical data with maximum values in the SOM region and a secondary maximum north of the Kerguelen Plateau in the210

West Indian Ocean sector of the Southern Ocean. Both simulations exhibit these two positive value areas and whereas the

HIGH simulation’s correlation values are closer to those of the historical SST data, both feature a more azonal pattern with

negative values in the Eastern Weddell Gyre. All patterns exhibit negative regression values in the tropical Pacific, but only

the simulations feature this structure at significant levels and then as part of a larger South Pacific horseshoe shape pattern

that extends south to the Bellingshausen Sea; there, slightly negative values occur in the observations as well. The LOW215

simulation’s area of significant correlations extends further into the Northern Hemisphere, especially in the Pacific.

Figure 4 shows the spectral power of the unfiltered monthly index time series of AMV, PDO, and SOM. Again, the historical

indices cover 149 years while the simulated ones cover 250 years, resulting in different spectral resolutions. To allow a compar-

ison between the results, also the period of variability of the historical data has been extended to 50 years, although the higher

period results are less reliable than in the models, because of the difference in data series length. In the detrended observations,220

significant (99%) spectral power for all three indices occurs at large periodicities above 40 years. The PDO signal also extends

beyond the red noise (95%) at periods of about 20 years. Most previously published spectral analysis of the North Atlantic

observed temperatures find significant periodicities around 50-70 years, but they overwhelmingly remove a linear trend only

which distorts the signal (Steinman et al., 2015). Longer proxy data records reveal significant multidecadal variability around

the North Atlantic from sources including Greenland ice cores (Chylek et al., 2011), tree rings (Gray et al., 2004), sediments225

(Knudsen et al., 2011), or a combination of proxies (Delworth and Mann, 2000; Wang et al., 2017). In the HIGH simulation,

significant spectral power peaks only exist at 40-50 years for the AMV index (>95%), around 13-15 and 20-25 years for the

PDO index (>99%), while the SOM index shows significant variability around 15 years (>95%) and above 40 years (>95%).

The indices of the LOW simulation exhibit no significant spectral power for either the AMV or SOM indices and the red noise

null hypothesis cannot be rejected at 95% level, and only the PDO index has a significant spectral peak (95%) at 16 years.230
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Figure 4. Multi-taper spectral estimates of the unfiltered monthly SST indices (blue) underlying the filtered time series of Fig. 2. Panels (a-c)

show the AMV, (d-f) the PDO, and (g-i) the SOM index spectra for the two-factor detrended 149 year HadISST dataset (left) and the 250

year HIGH and LOW simulations (center and right, respectively). The units of the spectral power are [K2 yr] for the SST average AMV and

SOM and [yr] for PDO index which is dimensionless as a principal component. As a null hypothesis 10,000 AR(1) processes were simulated

to estimate the 95% and 99% red noise confidence interval (solid and dashed orange lines).

3.2 Surface Heat Fluxes

Figure 5 shows the time series and spectra of the surface heat flux (SHF) into the global ocean (black) as well as into the major

ocean basins (Atlantic: blue, Pacific: orange, Southern Ocean: red). We define the Southern Ocean as south of the parallel at

Cape Agulhas at 34◦S, the Atlantic Ocean is bounded in the north by the Labrador Sea and extends to Iceland, while the Pacific

extends up to the Bering Strait (inset map in Fig. 5b). For global as well as Atlantic and Pacific heat fluxes, the LOW spectra235

show enhanced power around 4 and 8 years which is due to a strong and regular ENSO in this simulation. At multidecadal

time scales, the HIGH simulation clearly exhibits larger surface heat flux variability than the LOW simulation in particular

in the Southern Ocean and, as a result, globally. The Atlantic and Pacific SHF spectral comparison is more subtle, as there

are periods between 25-35 years where the LOW simulation shows higher variability than the HIGH simulation. However, the
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Figure 5. Time series for the 13 year low-pass filtered surface heat fluxes (SHF) into the global (black; equals thick solid line of Fig. 1),

Atlantic (blue), Pacific (orange), and Southern (red) oceans for the (a) HIGH and (b) LOW simulations. The inset global map defines the

three major ocean basins. Panel (c) shows the multi-taper spectral estimates of the unfiltered, but quadratially detrended time series. For

visual clarity, the spectra were separated vertically by multiplying the basin flux spectra by constant factors, these shifts are indicated by

vertical lines.

11

https://doi.org/10.5194/os-2020-85

Preprint. Discussion started: 18 September 2020

c© Author(s) 2020. CC BY 4.0 License.



integrated Atlantic and Pacific multidecadal spectral power is higher in the HIGH simulation compared to the LOW simulation.240

Remarkable is further that the Southern Ocean SHF spectrum is nearly white with similar power at all frequencies, while both

the Atlantic and Pacific show decreasing power at lower frequencies.

3.3 Ocean Heat Content

The basin-scale ocean heat content (OHC) changes are largely determined by surface heat fluxes while horizontal heat di-

vergences play a minor role. The strong multidecadal surface heat flux variability motivates the investigation of the structure245

of OHC anomalies in this section. Long reconstructions of the OHC exist for the industrial period (1870-2015; Zanna et al.

(2019)) and even the Common Era (15-2015; Gebbie and Huybers (2019)), but they lack the detail that we aim to investigate

here so that we compare model data only.

The HIGH simulation temperature data has been interpolated to a 0.4◦ rectangular grid and the OHC calculations were

performed on that grid. The OHC of the LOW simulation is calculated on the original displaced dipole grid and zonal integrals250

are performed along the grid x-direction (so not along parallels in the high northern latitudes). The first two columns of Figure 6

are Hovmöller diagrams of 13 year low-pass filtered zonally and vertically integrated OHC anomalies, indicated by OHCv ,

i.e.,

OHCv(y,t) = cp

∫ ∫

ρθ(x,y,z, t) dxdz , (5)

where θ is the potential temperature, ρ the density, and cp = 3996Jkg−1 K−1 the sea water heat capacity used in the CESM.255

The last column in Figure 6 shows the standard deviation of the 13 year low-pass filtered anomalies as a function of latitude.

Almost everywhere the variability as measured by this standard deviation is higher in HIGH compared to LOW. The first row

shows the global signal which also captures the Southern Ocean signal south of 34◦S (marked by the green line). Here signs of

the SOM in the HIGH simulation can be seen with north- and southward propagating anomalies; these are absent in the LOW

simulation. The Atlantic behavior is qualitatively similar between the HIGH and LOW simulations with southward propagating260

anomalies between 40◦N and 10◦N, although the anomaly amplitude is larger in the HIGH simulation. Both simulations further

show meridionally coherent anomalies south of 10◦N in the Atlantic. On the other hand, in the Pacific remarkable differences

exist: only in the HIGH simulation OHC anomaly signals propagate equatorward around 30◦N, imprinting on the global pattern.

This is also visible to a lesser extent in the South Pacific just north of 30◦S. In the equatorial Pacific, the unrealistically strong

ENSO signal of the LOW simulation is filtered out by the 13 year low-pass filter. However, compared to the HIGH OHCv ,265

the difference is reduced between the tropical and extratropical low frequency spectral power as revealed by the standard

deviations. The Atlantic and Pacific peaks at northern midlatitudes are shifted equatorward in the HIGH simulation compared

to the LOW simulation due to a better representation of the western boundary current separation. In the Indian Ocean, the

HIGH simulation shows a less meridionally coherent pattern compared to the LOW simulation.

Figure 7 shows 13 year low-pass filtered Hovmöller diagrams of the horizontally integrated OHC anomalies, given by270

OHCh(z, t) = cp

∫ ∫

ρθ(x,y,z, t) dxdy, (6)
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Figure 6. The 13 year low-pass filtered zonally and depth integrated OHC anomalies (OHCv(t,y) of Eq. (5)) as Hovmöller diagrams of

the HIGH (left) and LOW simulations (center), respectively. The top row shows the globally integrated OHC anomaly (which includes the

Southern Ocean signal south of 34◦S, demarcated with the green line in the first row), while the lower rows show the individual ocean basins.

The equator is marked with a thin dashed line. The right column shows the standard deviation in time of the zonally and depth integrated

OHC (solid: HIGH, dashed: LOW). The LOW latitudes values are averaged along the grid x-coordinate, such that north of 60◦N they are

not exactly representing the true latitudes. Note the different color scale ranges of each row with units of PJ/m = 1015 J/m.
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Figure 7. The 13 year low-pass filtered horizontally integrated OHC anomalies (OHCh(t,y) of Eq. (6)) as Hovmöller diagrams of the HIGH

(left) and LOW (center) simulations, respectively. The different rows show the global, Atlantic, Pacific, and Southern Ocean integrals over

time. Note the change of depth scale at 1500 m. The right column shows the standard deviation in time of horizontally integrated OHC (solid:

HIGH, dashed: LOW), calculated similarly as in Fig. 6. Units are in EJ/m = 1018 J/m.
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where the last column shows the temporal standard deviation at each depth. Globally and in the individual ocean basins, the

HIGH simulation exhibits stronger and deeper OHC variability than the LOW simulation. The global OHCh anomalies on

multidecadal timescales are dominated by those in the upper 1200 m (Fig. 7c). The HIGH global multidecadal signal below

the mixed layer is made up in approximately equal parts of the Atlantic, Pacific, and Southern Ocean components, as they275

exhibit similar magnitudes in their OHCh standard deviations. In the LOW simulation, the global anomalies are dominated by

those in the Pacific. The Atlantic HIGH OHCh anomaly standard deviation shows a pronounced peak between 400 and 1500 m

depth. In the Pacific, the variability is larger between 200 m and 1500 m in the HIGH simulation. In the upper 1000 m, the

anomalies propagate quickly downwards in the Atlantic but slower in the Pacific. At Pacific depths below 1000 m, a very slow

downward propagation of anomalies is visible in the HIGH simulation that is absent in the LOW simulation. The faster vertical280

propagation of heat anomaly signals in the Atlantic compared to the Pacific can be explained by the presence of the North

Atlantic downward branch of the meridional overturning circulation (Buckley and Marshall, 2016). In the Southern Ocean

large differences are evident: the HIGH multidecadal variability is much stronger and extends to the full depth as opposed

to the LOW variability that is weaker at all depths, in correspondence with results in Le Bars et al. (2016). The SOM index

(Fig. 2) correlates very well with Southern Ocean surface OHCh signal.285

3.4 Global Mean Surface Temperature

The multidecadal global mean surface temperature (GMST) evolution is a consequence of the heat flux convergence in the

atmosphere as energy is exchanged through the sea surface with the oceans and through the top of the atmosphere with outer

space. Figure 8 shows the time series and spectral estimates of the GMST. At periods around 4 years, the too strong ENSO of the

LOW simulation (as extensively analysed in Wieners et al. (2019)), leads to a larger interannual variability in the GMST time290

series and manifests iteself as a peak of the GMST spectral signal. At multidecadal time scales (beyond periods of 13 years)

the integrated spectral power in the HIGH simulation is higher than in the LOW simulation, but for periodicities at 35-60 years

the LOW GMST spectral power is higher than that of the HIGH simulation. The spectral power of the two-factor detrended

historical GMST data lies between both simulations at sub-decadal time scales, agrees well with both simulations at (inter-)

decadal time scales, and exceeds both simulations at periods above 30 years.295

4 Summary and Discussion

We investigated the effect of ocean model resolution on multidecadal variability by contrasting two multi-century simulations

with the Community Earth System Model (CESM), one with a non-eddying ocean typical of the CMIP5 models (LOW) and one

with a strongly eddying ocean (HIGH). The enhanced horizontal ocean model resolution allows for more detailed features of

the circulation with many documented improvements, such as better representation of boundary currents, reduced SST biases,300

air-sea exchange, and internal variability of both high and low frequency relative to the life times of mesoscale ocean eddies. In

particular, we focused on three modes of multidecadal SST variability: the Atlantic Multidecadal Variability (AMV), the Pacific

Decadal Oscillation (PDO), and the Southern Ocean Mode (SOM). We find that these modes of multidecadal variability are
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Figure 8. Time series and multi-taper spectra of the annual global mean surface temperature in units of [K2 yr]. The historical GMST

estimate is derived from the two-factor detrended time series as discussed in section 2, while model (HIGH and LOW) spectral estimates are

based on the quadratically detrended time series.

more pronounced in the HIGH simulation than in the LOW simulation (Fig. 2) and compare more favourably to observations

both in regression patterns (Fig. 3) and spectral properties (Fig. 4). At multidecadal time scales, stronger surface heat fluxes305

(globally and in all major ocean basins) are associated with this larger SST variability (Fig. 5). The integrated ocean heat

content (OHC) signal varies more strongly in the HIGH simulation than in the LOW simulations and anomalies extend to

greater depths (Figs. 6, 7). However, while the integrated spectral power of the global mean surface temperature (GMST) at

multidecadal tie scales is larger in the HIGH simulation than the LOW simulation, there are frequencies at which the LOW

GMST variability is larger (Fig. 8). From the analyzed LOW and HIGH CESM simulations, we conclude that representing310

mesoscale eddies in the CESM leads to an enhanced intensity of multidecadal variability in the ocean.

In the Atlantic, an improvement in the simulation of the AMV pattern is evident in the HIGH simulation compared to the

LOW simulation. While the overall AMV pattern is similar in observations and model simulations, the subpolar maximum in

the regression patterns in the HIGH simulation matches the detrended observations in contrast to the subtropical maximum in
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the LOW resolution. Due to the specifics of our detrending approach, the historical regression pattern looks somewhat different315

from Deser et al. (2010), especially outside the North Atlantic. In particular, the pattern shows a statistically significant positive

correlation in the northwestern tropical Pacific that is not evident in the regression pattern of Deser et al. (2010). The AMV

spectra also show that the HIGH simulation performs better compared with the historical SST data by showing significant

power at multidecadal periodicities against the red noise null hypothesis, while the spectral estimate of the LOW AMV signal

fails to reject this null hypothesis (Fig. 4). While the magnitude of OHC variability is larger in the HIGH simulation, the320

meridional and depth structures of the Atlantic OHC variability are similar between the HIGH and LOW simulations (Figs. 6

7). This suggests that the AMOC effects on the OHC variability are captured with the coarse resolution in agreement with earlier

studies (Delworth et al., 1993; Delworth and Mann, 2000) providing support for physical mechanisms of the AMV deduced

from idealized models which are independent of mesoscale variability (Te Raa and Dijkstra, 2002). Increasing the resolution

can still improve the AMV relative to observations by reducing ocean mean state biases, in particular the representation of the325

Gulf Stream and of deep water formation.

We use the PDO index to capture Pacific low frequency variability and the resulting regression patterns are similar between

observations and simulations. The spectral estimates of both the historical PDO and simulated ones extend beyond the 95%

confidence interval interdecadal time scales around 20 year periodicity. The LOW simulation exhibits a strong and regular

ENSO signal (Wieners et al. (2019); visible e.g. in Fig. 5c) and the low frequency tropical Pacific SHF spectral power is rela-330

tively larger than the extratropical spectral power compared to the HIGH simulation (Fig. 5i). That the PDO partly comprises

a low-frequency ENSO signal is visible in the strong tropical Pacific regression maximum on the LOW simulation. With the

better representation of the western boundary currents, in particular the Kuroshio, in the HIGH simulation, there are qualitative

differences in the meridional structure of the Pacific OHC anomaly propagation: around 30◦N, and to a lesser degree around

30◦S, equatorward propagation is evident in the HIGH simulation while meridionally coherent anomalies appear in the LOW335

simulation (Fig. 6).

The representation of the Antarcic Circumpolar Current in the Southern Ocean changes dramatically between the HIGH

and LOW simulations due to the presence of mesoscale eddies. The multidecadal SHF variability is much enhanced in the

strongly eddying HIGH simulation compared to the LOW simulation. Ocean heat anomalies also penetrate much deeper into

the Southern Ocean, suggesting a crucial difference between explicitly simulated mesoscale eddies and their parametrization340

in advecting heat downward (Fig. 7). In the HIGH simulation, the SOM is visible in the meridional structure with north- and

southward moving anomalies, while anomalies simply converge on 45◦S in the LOW simulation (Fig. 6). The presence of the

SOM is expected in the HIGH simulation as it is thought to be caused by the interaction of mesoscale eddies and the mean

flow (Hogg and Blundell, 2006; Le Bars et al., 2016; Jüling et al., 2018). However, the SOM regression patterns of the HIGH

and LOW simulations are more similar to one another than to the observations with a more azonal, circumpolar wavenumber-3345

pattern and stronger correlations extending into the South Pacific. However, the pattern in the HadISST dataset is likely to be

biased due to the limited number of observations in this region, in particular prior to satellite observations.

Multiple mechanisms through which mesoscale eddies can generate multidecadal variability have been alluded to in the

introduction, such as eddy-mean flow interactions (Hogg and Blundell, 2006; Berloff et al., 2007a), the changes to the stratifi-
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cation introducing memory (Manucharyan et al., 2017) or the modification of conditions for convection (Dufour et al., 2017).350

Furthermore, only eddying models are capable of simulating observed high-frequency variability correctly (Penduff et al.,

2011), where an ‘inverse temporal cascade’ is important for the shift of variance from high to low frequencies. Any mecha-

nism, involving eddies or not, leading to such a cascade thus requires a source of spectral energy at high frequencies which can

be provided by the eddies. It is beyond the scope of this study to analyze the exact mechanisms at play in the HIGH simulation,

but it will be the subject of further study.355

Naturally, the comparison between observations and model results is fraught with challenges, not least of which is the

choice of an appropriate detrending procedure. The inadequate removal of the forced signal in the observations leads to biased

regression patterns (Brown et al., 2015). In the model simulations the forcing is held constant and there is only a modest model

drift to detrend (Fig. 1) for which we chose to a second order polynomial. The observations are based on the climate system’s

response to non-stationary forcing and we chose the scaled multi-model mean approach (Frankcombe et al., 2015). Here the360

detrending signal is derived from the multi-model mean of the CMIP5 models which are biased in their own ways and have

different relative climate sensitivities to different forcings. Furthermore, the external forcing prescribed in the CMIP5 models

is in itself uncertain and hence may alter the relative contribution due to external forcing and internal variability. Furthermore,

the atmospheric grid spacing decreases from 1◦ in the LOW to 0.5◦ in the HIGH simulation. However, no new essential

atmospheric processes are resolved, so no significant changes are expected apart from coupling to different ocean boundary365

conditions.

These caveats do not detract from our main point which is to emphasize that low frequency variability may be underestimated

in climate models with low-resolution ocean model components and that representing mesoscale eddies in climate models can

improve the simulation of this variability. Of course, we showed this here only for the CESM but expect the improvement of

multidecadal variability to be generalizable to other coupled climate models, as some of the features like enhanced vertical heat370

transport are consistent with results obtained with other models (Griffies et al., 2015). The introduction of high frequency vari-

ability through mesoscale ocean features and the reduced ocean state bias can further improve the simulations’ multidecadal

variability skill. Certainly, better eddy parametrizations may improve shortcomings of the traditional Gent-McWilliams ap-

proach (Zanna et al., 2017). A recent study claimed an absence of evidence for multidecadal variability in CMIP5 models

(Mann et al., 2020), but all these models use non-eddying ocean components. As most CMIP6 models outside the High Reso-375

lution Model Intercomparison Project (Haarsma et al., 2016) still use non-eddying ocean components, not much improvement

is expected on the representation of multidecacal variability in these models compared to CMIP5 models.

Internal variability obscures any forced GMST signal and periods of accelerated and decelerated warming are observed,

such as the recent warming trend slowdown (Medhaug et al., 2017). Many studies use global circulation models with coarse

resolution ocean components to investigate, for example, the origin of these so-called hiatuses (e.g. Maher et al. (2014)). In380

light of our findings, estimates of the frequency and magnitude of excursions from the forced trend may be systematically

low biased in low-resolution models, as internal multidecadal variability is underestimated. The increased internal variability

also implies that the attribution of forced signals becomes more difficult and the issue of the origin of the recent warming

trend slowdown may therefore never be satisfactorily resolved (Hedemann et al., 2017). Finally, our finding of stronger than
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previously modelled multidecadal OHC variability underlines the necessity of continued observations of the ocean heat content385

with the ARGO program.
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