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Effects of Sulfonylureas on Tumor Growth: A Review of the Literature
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Learning Objectives Describe possible opposite effects on tumor growth of different 2nd generation sulfonylureas

and diarylsulfonylureas.

Review preclinical and clinical studies investigating anticancer activity of different sulfonylureas and
diarylsulfonylureas.

/ABSTRACT

Type 2 diabetes mellitus patients are at higher cancer risk, prob-
ably because of hyperinsulinemia and insulin growth factor 1
pathway activation. The effects of antidiabetic drugs on cancer
risk have been described and discussed in several studies sug-
gesting opposite effects of the biguanide metformin and sulfo-
nylureas on cancer incidence and mortality. The anticancer
mechanisms of metformin have been clarified, and some clinical
studies, particularly in breast cancer patients, have been pub-
lished or are currently ongoing; however, data about the effects
of sulfonylureas on cancer growth are less consistent. The aims of

thisworkaretoreview preclinical evidence of second-generation
sulfonylureas effects on tumor growth, to clarify the potential
mechanisms of action, and to identify possible metabolic targets
for patient selection. Most evidence is on the adenosine triphos-
phate-sensitive potassium channels inhibitor glibenclamide,
which interacts with reactive oxygen species production thus in-
ducing cancer celldeath. Amongdiarylsulfonylureas, next-gener-
ation DW2282 derivatives are particularly promising because of
the proapoptoticactivity in multidrug-resistant cells. The Oncolo-
gist2013;18:1118-1125

Implications for Practice: The effects of anti-diabetic drugs on cancer risk have been described in several studies suggesting opposite
effects of metformin and sulfonylureas on cancer incidence and mortality, respectively. Although the anticancer mechanisms of met-
formin have been clarified, no univocal data about sulfonylureas’ effects on cancer growth are available. No previous review articles
about the same topic have been published; therefore, there is conflicting evidence about the real role of different compounds of the
sulfonylurea family on cancer cell growth. This article highlights specific proapoptotic pathways involved in the anticancer effects of
these drugs, which might help in the identification of metabolic targets for preclinical and clinical study design and patient selection.

INTRODUCTION

Cancer and diabetes are rising causes of morbidity and mortality
worldwide and represent significant health care issues. Several
reports have highlighted the increased risk of different cancer
types in patients affected by type 2 diabetes mellitus [1-3], prob-
ably due to chronic inflammation, hyperglycemia, hyperinsulin-
emia, and enhanced levels of insulin-like growth factor (IGF) with
subsequent activation of the related pathway [4] (Fig. 1). Addi-
tional studies are underway to confirm and clarify the mecha-
nisms of such correlation because of the heterogeneous features
of diabetes mellitus and the potential confounders and shared
risk factors such as obesity, metabolic syndrome, diet, and drugs.

Recently, the effects of antidiabetic drugs on cancer risk were
described and discussed in several studies [5—-8], suggesting op-
posite effects of the biguanide metformin and sulfonylureas on
cancer incidence and mortality. A primary data meta-analysis an-
alyzed 24 metformin studies and 18 sulfonylurea studies investi-

gating the correlation between antidiabetic drugs and cancer
incidence. Case-control and cohort studies confirmed that met-
formin treatment is associated with reduced cancer incidence,
but these results were not supported by randomized controlled
trials; regarding sulfonylureas, increased cancer risk emerged
only in cohort studies, whereas case-control and randomized
controlled trials did not confirm this finding [9].

Two different mechanisms seem to be at the basis of these
results. Metformin acts through adenosine monophosphate-ac-
tivated protein kinase (AMPK)/liver kinase B-1 (LKB1) pathway
activation, directly suppressing cell proliferation and indirectly
reducingglucoseandinsulinlevels [10]. In contrast, sulfonylureas
are insulin secretagogues, and this positive effect on insulin and
IGF levels seems to promote tumorigenesis [4], even though het-
erogeneous effects of different sulfonylureas have been shown
in a cohort study including more than 6,000 patients [11]. The
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Figure 1. Insulinand IGF pathway. Insulinand IGF bind toinsulin re-
ceptors and IGF receptors, activating insulin receptor substrates
and, subsequently, mitogen-activated protein kinase and PI3K-Akt-
mTOR pathways. These signals lead to cell survival and proliferation.

Abbreviations: IGF, insulin growth factor; IR, insulin receptor;
IRS, insulin receptor substrates; mTOR, mammalian target or
rapamycin; PI3K, phosphoinositide 3 kinase; SOS, son of seven-
less; RAS, rat sarcoma; RAF, rapidly accelerated fibrosarcoma;
MEK, mitogen-activated protein kinase/ERK kinase; ERK, extra-
cellular signal-regulated kinases; TSC, tuberous sclerosis com-
plex; S6K, S6 protein kinase.

precise mechanisms supporting possible protumoral or antican-
cer effects of sulfonylureas are still unknown.

The aim of this work is to review the preclinical and, when
available, clinical evidence of second-generation sulfonylureas
and new diarylsulfonylurea (DSU) effects on tumor growth in or-
der to give an updated picture of current knowledge that might
contribute to progress in the area of diabetes and cancer.

MATERIALS AND METHODS
Anelectronicsearch was performed using the PubMed database.
To optimize the search strategy, we used the advanced search
builder with selected Bayesian words: “sulfonylurea” OR “gliben-
clamide,” “glipizide,” “glicazide,” “glimepiride” AND “antican-
cer” or “antitumor,” “apoptosis,” “tumor/cancer cell death.”
We also reviewed the reference lists in relevant publica-
tions and the abstracts from the meetings of the American So-
ciety of Clinical Oncology, the European Society of Medical
Oncology, and other main international conferences.

” u " u

RESULTS
From second-generation sulfonylurea glibenclamide to new
DSU derivatives, several compounds were identified as anti-
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cancer agents, even if the mechanism of action is still obscure
in many cases.

Among new-generation sulfonylureas, at a preclinical
level, glibenclamide proved to be a tumor growth inhibitor
[12-35]. Derivatives of DSU (S)-(+)-4-phenyl-1-[N-(4-amino-
benzoyl)-indoline-5-sulfonyl-4,5-dihydro-2-imidazolone]hy-
drochloride (DW2282) that combine dual anticancer effects
are of more interest in the clinical setting because they might
bypass chemoresistance to “classic” anticanceragentssuch as
taxanes or vinca alkaloids.

Glibenclamide

Glibenclamide is a sulfonylurea drug used in type 2 diabetes
that acts through sulfonylurea receptors (SURs) on pancreatic
B cells. SURs are subunits of adenosine triphosphate-sensitive
potassium channels (K,7p channels), which are inhibited by
glibenclamide with subsequent cell depolarization, opening
of voltage-gated calcium channels, calcium influxinto the cell,
andfinallyinsulin secretion through vesicle exocytosis [36, 37]
(Fig. 2). Over the years, some evidence has shown the effects
of glibenclamide on tumor growth arrest of different cancer
types [12, 22, 23, 30, 31, 33, 34, 38], even though the mecha-
nisms of such antitumor activity were not completely clarified.

A first step toward better knowledge of glibenclamide’s
mechanism of action was achieved by a French group investi-
gating its role as inhibitor of adenosine triphosphate-binding
cassette (ABC) transporters [24].

SUR belongs to the ABC protein superfamily, a group of
transmembrane proteins that use ATP to transport a large va-
riety of substrates across extra- and intracellular membranes,
including metabolic products, lipids and sterols, and drugs.
Multidrug-resistant proteins (MRPs) represent a subfamily of
ABC transporters involved in the cellular export of several
drugs, including anthracyclines and vinca alkaloids [21]. Con-
sequently, MRP overexpression might confer chemotherapy
resistance totumor cellsand thus might representa promising
target for anticancer treatment. Payen and coauthors consid-
ered the known properties of glibenclamide as an ABC protein
inhibitor (cystic fibrosis transmembrane conductance regula-
tor, ABC1, bile salt export pump, P-glycoprotein) [19, 20, 26,
27]as apremise forinvestigatingitsrole asan MRP inhibitorin
lung cancer cell lines. Glibenclamide induced an increased
MRP1 substrate calcein accumulation in lung cancer cell lines
overexpressing MRP1, confirming that MRP1is atarget forthe
sulfonylurea. Furthermore, intracellular accumulation of vin-
cristine, another MRP1 substrate, was shown, and this indi-
cates that glibenclamide might act as a sensitizer of cancer
cells to chemotherapeutic agents. Even though the MRP1-in-
hibiting dosage of the sulfonylurea might preclude its clinical
application, these results confirm its role as a general ABC
transporter inhibitor [24].

Over the last decade, increasing evidence has supported a
regulatory function of potassium ion (K™) channels in cancer
cell proliferation and survival, suggesting that these channels
might be potential therapeutictargets[15, 16,18, 29]. Itis well
known that K, channels in plasma and mitochondrial mem-
brane are made up of four regulatory SURs and four inwardly
rectifying potassium channel subunits Kir6.x and that the
opening of K,1p channels inhibits apoptosis in ischemia, hyp-
oxia, or oxidative stress, whereas, in contrast, their closure in-
duces cell damage and apoptosis [14]. K" influx into the
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Figure 2. Glibenclamide-dependent secretion of insulin in pancreatic 3 cells. Physiologically, glucose influx into pancreatic 3 cell in-
duces ATP synthesis through glycolysis and mitochondrial respiration with subsequent K™ channel closure. In type 2 diabetes mellitus
patients, glibenclamide directly closes ATP-sensitive K channels, reducing membrane potential and inducing calcium influx, which in

turn stimulates insulin secretion.

Abbreviations: ATP, adenosine triphosphate; Ca®™, calcium ion; K™, potassium ion.

cancer cell promotes deregulated tumor growth and allows
tumor cells to survive in a hypoxic microenvironment through
resting potential depolarization [16].

Karp channels are expressed in different tissues (pancreas,
cardiac, smooth and skeletal muscle, and brain) and cancer
cells. Anticancer effects of glibenclamide, as well as other K 1p
channel closers, have been demonstrated in K, channels ex-
pressing cancer cells.

In 2008, K,1p channel expression was shown in the gastric
cancer cell line MGC-803, in which the anticancer effect of
glibenclamide was investigated. Glibenclamide was able to in-
duce reactive oxygen species (ROS) followed by cancer cell ap-
optosis. The authors investigated the mechanisms and
molecular pathways involved in such process and demon-
strated that ROS generation could decrease the mitochondrial
membrane potential throughthe activation of proapoptoticc-
Jun NH2-terminal kinase and inhibition of antiapoptotic AKT
kinase. The subsequent release of mitochondrial cytochrome
¢ and apoptosis-inducing factor to the cytosol finally could
lead to caspase-dependent and independent apoptosis [25].

Recently, our group tested the synergic effect of engaging
the tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) apoptotic pathway and glibenclamide in order to in-
duce cell death in malignant pleural mesothelioma cell lines.
We observed a statistically significant increase of caspases ac-
tivity in all cell lines (three epithelioid, one sarcomatoid, three
biphasic) treated with the combination of the two agentscom-
pared with untreated controls and compared with TRAIL and
glibenclamide used as single agents. We analyzed ROS levelsin
two celllines (epithelioid ZL55 and sarcomatoid ZL34), and we
observed ROS induction in ZL55 treated with glibenclamide
with or without TRAIL compared with no treatment, whereas
no higher ROS levels were assessed in ZL34 treated with glib-
enclamide with or without TRAIL compared with untreated
controls. Moreover, preincubation with the ROS scavenger N-
acetyl-cysteine resulted in a reduction of ZL55 cell death after
treatment with glibenclamide plus TRAIL. We concluded that
glibenclamide sensitizes malignant pleural mesothelioma cell
linesand primary cultures to TRAIL-mediated apoptosis, prob-
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ably through different mechanisms of action in the epithelioid
and sarcomatoid histotypes [35].

A different proapoptotic pathway was implied in human
melanoma cell lines in which glibenclamide induced cell
death, while sparing normal melanocytes, through sensitiza-
tionto a TRAIL-dependent extrinsic apoptotic pathway. A Jap-
anese paper published in 2012 showed that K,p channel
inhibitors such as glibenclamide were able to sensitize mela-
noma cells to TRAIL-induced apoptosis, probably through
enhanced plasma membrane potential depolarization, activa-
tion of effector caspases 3 and 7, and activation of endoplas-
mic reticulum stress-induced caspase 12 [28].

Besides the proapoptotic effect of glibenclamide, a recent
role of K,rp channel closers in neoangiogenesis has been de-
scribed. Glibenclamide showed aninhibitory effect on ovarian
ES-2 cell line invasion and migration through the inhibition of
the angiogenic pathway. Decreased secretion of several
proangiogenic proteins was observed after treatment with
glibenclamide and subsequent K, channel closure, with par-
ticular reference to platelet-derived growth factor AA, which
is involved in cell growth, migration, and differentiation. In
particular, an inhibitory effect of glibenclamide on the auto-
crine system through which platelet-derived growth factor
promotes ovarian cancer invasiveness was observed [32].

Other Sulfonylureas
No evidence of any effect on tumor growth of glipizide and
glimepiride has been reported.

Gliclazide is another commonly used second-generation sul-
fonylurea, with a mechanism of action similar to that of glibencl-
amide but with a rapidly reversible binding to SUR1 compared
with the prolonged binding of the other sulfonylureas. Antioxi-
dant activity of gliclazide has been reported in type 2 diabetes
mellitus patients [17], and increasing evidence of reduced DNA
damage induced by ROS was observed [39-41].

It is known that chronic hyperglycemia in type 2 diabetes
mellitus patients might generate oxidative stress with subse-
qguent intracellular signaling pathway impairment and ge-
nome stability damage [42].
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When a protective effect of gliclazide on DNA damage of
cancer cells was explored, positive activity on DNA repair in
pancreatic cancer cells was demonstrated [43]. Particularly,
gliclazide seemed to stimulate nucleotide excision repair and
nonhomologous end-joining double-strand-break repair
mechanisms in pancreatic cancer cells, whereas no protective
effects were observed in human normal cells [43].

Previous evidence of glibenclamide and other sulfonylureas
has shown a ROS-inducing effect of such drugs, with subsequent
loss of mitochondrial membrane potential, cytosolic calciumrise,
and pancreatic cell death. In contrast, a peculiar ROS scavenging
effect of gliclazide has been described more recently [44, 45],
with antiapoptotic activity in pancreatic and endothelial cells
[46-48]. Apparently, the ROS scavenging effect is not the only
“protective” mechanism; reversible binding to SUR1 and upregu-
lation of antioxidant enzymes also have been described.

The antiapoptotic effects of gliclazide in pancreatic and
breast cancer cells were investigated recently, and a protective
effect toward oxidative stress was confirmed; loss of mitochon-
drial membrane potential was inhibited by gliclazide, with re-
duced cytosol calcium levels and suppressed cancer cell death [49].

From Glibenclamide to DSUs

Since the end of the 1980s, the anticancer effects of DSUs— com-
pounds structurally similar to oral antidiabetic glibenclamide—
have been described in vitro and invivo [50]. In particular, several
authors reported antitumor activity of N-(4-methylphenylsulfo-
nyl)-N’-(4-chlorophenyl)urea (LY181984) and N-(5-indanylsulfo-
nyl)-N’-(4-chlorophenyl)urea (LY186641; sulofenur) in in vitro
and in vivo models of solid tumors, with modest activity in hema-
tologic cancer [50-53].

Preclinical studies underscored that sulofenur, a com-
pound with along half-life and highly protein bound, hasanew
and not completely defined antitumor mechanism that distin-
guishes it from other chemotherapeutic agents.

The anticancer effects of sulofenur on solid tumors were also
exploredin phase | and Il clinical trials [50, 54, 55]. On the basis of
partial response observed in the phase | trial in a ovarian cancer
patient [50], the phase Il trial was designed to elucidate response
rates and toxicity profile in stage lll-IV previously treated ovarian
cancer patients [54]. Sulofenur at the daily dose of 800 mg/m?
showed prolonged stable disease (median: 20 weeks) in 42% of
the study population and partial response (6.5-18 weeks) in 15%
of the patients. In both phase | and phase Il clinical trials, major
toxicities were methemoglobinemia with decreased red blood
cell survivaland severe anemia. Toxicity was also the main reason
why a different schedule was tested in the phase Il trial: 2 days of

Chlebowski and colleagues showed that breast
cancer incidence in postmenopausal diabetic
women, compared with nondiabetic women, can
be different according to the type of antidiabetic
drug; in fact, a 25% risk reduction of breast cancer
was reported among women taking metformin ver-
sus a 16% increase in risk for women who received
other antidiabetics. The main pitfall of this analysis
relates to the fact that diabetes seems to confer
about a 30% higher risk of breast cancer.

www.TheOncologist.com

rest after 5 days of daily treatment for 3 weeks of reduced toxic-
ity, even though dose reduction was still required in 31% of the
patients. The toxicity profile of sulofenur precluded further clini-
cal studies in cancer patients, although future study of the mech-
anism of action of this and other DSUs might be interesting. DSU
seemed not to interfere with proteins and nucleic acids synthesis
[56,57], although a mitochondrial effect was suggested as a pos-
sible cytotoxic mechanism. Several prior studies showed mito-
chondrial localization of DSU with subsequent morphological
changes and cell death [58, 59]. Similar to glibenclamide and
other sulfonylureas, the mitochondrial oxidative phosphoryla-
tion uncoupling and the lowering of adenosine triphosphate lev-
els were particularly evident with sulofenur, and this likely
represents the new cytotoxic mechanism shown in preclinical
cancer models [59].

In order to bypass hematological toxicity of the first-genera-
tion DSU sulofenur, new drugs such LY181984 and LY295501
were investigated in preclinical and clinical studies [60—62]. The
different metabolism of such compounds compared with su-
lofenur, particularly no formation of aniline metabolites (a possi-
ble cause of methemoglobinemia), makes them less toxic. The
higher potency of LY295501 compared with other DSUs [63] led
to a phase | clinical trial with advanced solid tumors [62] that set
the maximum tolerated doses for further clinical studies at 1,000
mg/m? per day, administered weekly for 3—4 weeks; as ex-
pected, no typical toxicities of sulofenur were shown, with neu-
tropenia and thrombocytopenia as the most common
hematological toxicities.

Looking for new DSU derivatives with minimal toxicity and
appreciable clinical benefit in cancer patients, further studies led
to anovel compound synthesis, DW2282, that is able to suppress
tumor growth in vitro and in vivo with an uncertain mechanism
[64, 65]. A preclinical study in promyelocytic leukemia cells tried
to elucidate the antitumoral mechanism of DW2282; decreased
levels of cdc2 with subsequent cell cycle arrestin the G2/M phase
seemed to induce apoptosis in treated cell lines. Moreover, re-
duction of antiapoptotic protein BCL2 and procaspase 3 activa-
tion contribute to apoptosis induction [66].

More recently, new DW2282 derivatives methanesulfonates
and arylsulfonamides were synthesized as promising anticancer
agents. These drugs combine an inhibitory activity against tubu-
lin polymerization, similar to well-known chemotherapeutic
agents taxanes and vinca alkaloids, with the ability to target mul-
tidrug-resistant tumors. Efflux pumps such as P-glycoprotein and
MRP seem to be the basis of resistance to taxanes and vinca alka-
loids. Some compounds in this new DSU family were tested in dif-
ferent cancer cell lines (breast, colon, non-small cell lung cancer)
and showed antiproliferative effects correlated with tubulin po-
lymerization inhibition and the G2/M phase of cell cycle arrest; fi-
nally, antimitotic activity was confirmed in multidrug-resistant
celllines treated with these compounds [67].

DISCUSSION

Cancer and diabetes are the second and seventh causes of death
worldwide, respectively, and both diseases are multifactorialand
heterogeneous. Increased cancer incidence in diabetic patients
has been described in several cohort studies [68 —74] and con-
firmed in some meta-analyses [1, 75], although it is difficult to
provide a precise risk estimate because of confounding factors,
shared medical conditions, and pathophysiological pathways. Di-
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abetes is present in 8%—18% of cancer patients, and the relative
risk of cancer in diabetic patients ranges between 1.12 (non-
Hodgkin lymphoma) and 2.51 (liver cancer). Higher relative risks
of liver, pancreatic, or endometrial cancer have been reportedin
diabetic patients, whereas the increase of relative risks of breast,
bladder, colorectal, kidney, and biliary neoplasms is less evident;
moreover, the relative risk of prostate cancer seems even lower
in diabetic patients [2, 76].

Apart from the epidemiologic association between diabe-
tes and cancer, the observation that some antidiabetic drugs
seem to modify the risk of cancer is of great interest [9, 77].
Observational studies, however, have some limitations be-
cause they consider various metabolic conditions and differ-
entindications on antidiabetic treatmentin affected patients.

Metforministhefirst-line antidiabeticdrug and belongsto
the biguanide family, which lowers glucose levels in type 2 di-
abetes patients. Recently, metformin was associated with a
10%-30% decreased risk of cancer in case-control studies
(24,829 patients) and cohort studies (355,420 patients); how-
ever, this protective effect was not confirmed in the only two
available randomized clinical trials (6,578 patients) [9].

The bulk of the evidence on metformin and cancer inci-
dence has been produced in breast cancer. Epidemiologic
studies showed a 23%—-56% decreased risk of breast cancer in
diabetic women who received metformin compared with
those not on metformin [78, 79]. The association between
metformin treatment and breast cancer incidence has been
exploredrecentlyinthe Women’s Health Initiative clinical trial
setting. Chlebowskiand colleagues showed that breast cancer
incidence in postmenopausal diabetic women, compared
with nondiabetic women, can be different according to the
type of antidiabeticdrug;in fact,a25% risk reduction of breast
cancer was reported among women taking metformin versus
a 16% increase in risk for women who received other antidia-
betics [80]. The main pitfall of this analysis relates to the fact
that diabetes seems to confer about a 30% higher risk of
breast cancer [81], and this represents a confounding factor
when comparing nondiabetic women and diabetic women us-
ing metformin. It has become clear that diabetes and breast
cancer share some clinical conditions, such as obesity and
metabolic syndrome, and this indicates a higher risk when hy-
perinsulinemia and insulin resistance occur [82].

The antiproliferative effects of metformin were explored
in some clinical studies. A retrospective analysis of 2,529 early
stage breast cancer patients showed a higher rates of patho-
logical complete response after neoadjuvant chemotherapy
in diabeticwomen taking metformin compared with those not
using metformin (24% vs. 8%, p = .07) and in nondiabetic
women compared with diabetic patients not taking met-
formin (16% vs. 8%, p = .04). Moreover, metformin was iden-
tified as an independent predictive factor of pathological
complete response [83].

The effect of metformin on Ki-67 change between biopsy
and surgical samples was investigated in a window-of-oppor-
tunity randomized study including 200 nondiabetic operable
breast cancer patients. Ki-67 was not significantly affected by
metformin treatment compared with placebo in the overall
population, whereas a trend toward Ki-67 decrease was ob-
served in patients with insulin resistance and high body mass
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index, and this decrease was more evidentin luminal Btumors
[84].

Itis known that metformin targets a specific molecular path-
way and directly produces antitumor activity through mamma-
lian target of rapamycin downregulation in an AMPK-dependent
manner (insulin independent) [10, 85]. In addition, metformin
downregulates the mammalian target of rapamycin pathway
through decrease of insulin levels (insulin-dependent, AMPK-in-
dependent mechanism). Available clinical data from breast can-
cer patients underscore higher antitumoractivity in patients with
insulin resistance and metabolic disorder subsequent to type
2 diabetes, suggesting that anticancer effects of metformin
are related to improvement in metabolic disorder rather
than aninsulin-independent mechanism [83, 84].

An intergroup phase lll clinical trial of metformin versus
placebo in early stage breast cancer is currently ongoing. This

Available clinical data from breast cancer patients un-
derscore higher antitumor activity in patients with in-
sulin resistance and metabolic disorder subsequent
to type 2 diabetes, suggesting that anticancer effects
of metformin are related to improvement in meta-
bolic disorder rather than an insulin-independent

mechanism.

trial has recurrence-free and overall survival as study end-
points and will explore whether the anticancer effect of met-
formin is related to an insulin-dependent or -independent
mechanism (ClinicalTrials.gov identifier NCT01101438).

Although a protective effect of metformin against cancer
has been described, data about sulfonylureas and cancer risk
are conflicting. Six cohort studies (296,904 patients) reported
higher cancer risk in diabetic patients taking sulfonylureas
compared with nonsulfonylurea users; however, these results
were not confirmed in 10 case-control studies (12,040 pa-
tients) and 2 randomized clinical studies (6,573 patients) [9].

No specific mechanism supporting an antitumoral rather
than a protumoral effect of sulfonylureas was identified. Sul-
fonylureas areinsulin secretagogues, and the increased levels
of insulin and activation of the IGF1-IGF-1R pathway was hy-
pothesized as a possible protumoral mechanism. Several
compounds belong to the sulfonylureas family, and the corre-
lation with cancer incidence should be studied for each indi-
vidual compound. Recently, gliclazide and glibenclamide were
related to a 35% reduced risk of cancer, whereas glipizide was
related to a 16% increased cancer risk [11]. In contrast, an-
other case-control study reported increased cancer risk in pa-
tients treated with glibenclamide and a lower risk in patients
who received gliclazide [5].

Inthis review, we have reported conflicting epidemiologic
evidence about cancerincidencein diabetic patients receiving
sulfonylureas [9, 77], and we have described the mechanism
of action of these drugs. In particular, we reviewed preclinical
and clinical evidence of proposed mechanisms of action sup-
porting antitumoral or antiapoptotic activity.

Most evidence of antitumor activity of sulfonylureas con-
cerns glibenclamide, which was tested in different cancer
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Figure 3. Proposed modelfor antitumor activity of glibenclamide. Glibenclamide increases NADPH oxidase and mitochondrial respira-
tory chain ROS production followed by release of proapoptotic factors and caspase activation. Membrane depolarization by glibencl-
amide and TRAIL induces ER stress-mediated apoptosis. Glibenclamide sensitizes tumor cells to TRAIL-dependent apoptosis through

membrane depolarization and ROS production.

Abbreviations: Cas, caspase; ER, endoplasmic reticulum; K™, potassium ion; rc, respiratory chain; ROS, reactive oxygen species;

TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

types at the preclinical level. The role of glibenclamide as a
Katp channel closer and itsinteraction with ROS production seem
to underlie the antitumor effect of this compound (Fig. 3).

ROS are implied in several signaling transduction pathways
and regulate different biological activities such as cell growth,
survival, and angiogenesis. ROS increase is associated with ab-
normal cancer cell growth and reflects a disruption of redox ho-
meostasis related to either an elevation of ROS production or a
decline of ROS-scavenging capacity. Cancer cells exhibit a higher
ROS set point compared with normal cells because of increased
metabolic activity and thus are likely to be more vulnerable to
damage by further ROSinsults [86,87]. Thisisthe reason why sev-
eral antitumor treatments (e.g., chemotherapy, radiotherapy)
are based on increased and irreversible oxidative stress.

The main cell sites of ROS production are cytosol, through
NADPH oxidase, and redox centers of the mitochondrial respira-
tory chain. The interaction between mitochondrial potassium
channels and ROS induction has not been clarified, paving the
way for investigation of different K™ channel modulators. Uncer-
tainty about the role of potassium flux effects on ROS production
has emerged, and conflicting results about ROS increase or de-
crease through K" mitochondrial influx have been reported.
Probably these discrepancies derive from a tissue-dependent
contribution of different respiratory chain complexes [88].

Glibenclamide closes K,rp channelsin both plasma and mito-
chondrial membrane, and other potassium channel modulators
showed some off-target effects, such as mitochondrial uncou-
pling [89].

Oxidative stress subsequent to K™ efflux probably activates
signaling pathways and leads to apoptosis directly or through
sensitization to other extrinsic triggers [25, 28, 35] (Fig. 3).

Another target of glibenclamide is the MRP, which is often
overexpressed by cancer cells and mediates the efflux of che-
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motherapeutic agents, resulting in chemoresistance. Gliben-
clamide seems to directly bind and block MRP at higher
concentrations than those permitted in affected patients
without toxicity [24].

The main limitation of glibenclamide and other sulfonyl-
ureas is the lack of clinical studies, probably because the
principal mechanism of action has not been identified yet.
First-generation DSUs, which are structurally similar to gliben-
clamide with an unknown anticancer mechanism, reached
clinical application in some cases but with poor tolerability
and disappointing results [50, 54, 55].

New-generation DW2282 derivatives, developed to solve
the dose-limiting toxicity of first-generation DSUs, are more
promising because of the proapoptotic activity in multidrug-
resistant cells. Two promising antimitotic mechanisms have
been described. First, these new agents showed strong anti-
proliferative activity in vitro through tubulin polymerization
inhibition. This mechanism is already known for traditional che-
motherapeutic agents such as taxanes and vinca alkaloids. As de-
scribed above, tumor cells could develop resistance to these
drugs through MRP and other efflux pumps overexpression. The
second property of DW2282 derivatives is their anticancer activ-
ity, even in presence of MRPs on cancer cells, probably because
they are not substrates of the efflux pumps [67]. Further investi-
gation of these novel DSUs is currently ongoing.

CONCLUSION

Specific metabolic targets in different tissues should be iden-
tifiedin orderto clarify the anticancer mechanisms of sulfonyl-
ureas and to select cancer patients for treatment. Considering
their use as antidiabetic agents, a better knowledge of sulfo-
nylureas might make them a serendipitous discover in oncol-

ogy.

©AlphaMed Press 2013
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