Supplementary materials

Stability in ASW

Infrared Reflection-Absorption Spectroscopy (IRAS) was used to assess the stability of SAMs upon 4 days immersion in ASW. IRAS spectra from the chemisorption of HS- $(CH_2)_{15}$ -N $(CH_3)_3^+$ on a gold surface before and after immersion in ASW of SAM obtained are shown in Figure S1. The absorption at 1081 cm⁻¹ associated with C–N vibrational mode splits to give a stronger additional band at 1099 cm⁻¹. The bands at 1489 and 1375 cm⁻¹ arise from CH₃ symmetric and asymmetric stretching vibrations, respectively. The absorption at 1464 cm⁻¹ is due to the CH₂ scissoring deformation of the backbone chain.

Figure S2 shows the IRAS spectra of SAM obtained from HS-(CH₂)₁₅-COOH chemisorbed on gold. The peak at 1745 cm⁻¹ associated with C=O stretching mode of -COOH groups slightly decreases after immersion in ASW due to the dissociation of the acid groups at the pH of seawater. The band peaking at 1717 cm⁻¹ due to C=O stretching mode of COOH dimers (hydrogen bonded acids) also appears less intense after immersion and shifts to 1700 cm⁻¹. Accordingly, the asymmetric and symmetric COO⁻ bands at 1562 and 1470 cm⁻¹, respectively, appear to increase after immersion. Contributions to the broad symmetric carboxylate stretching band are also present peaking at 1440 cm⁻¹ which are assigned to the bending mode of CH₂ groups. The band at 1314 cm⁻¹ is assigned to C–O stretch of COOH groups.

In Figure S3 are shown IRAS spectra from the adsorption of $HS-(CH_2)_{15}-CH_3$ on gold, before and after

Figure S1. IRAS spectra of $N(CH_3)_3^+$ -terminated SAM in the region between 1600–1000 cm⁻¹ before and after 4 days immersion in ASW.

Figure S2. IRAS spectra of COOH-terminated SAM in the region between $1800-1100 \text{ cm}^{-1}$ before and after 4 days immersion in ASW.

Figure S3. IRAS spectra of CH₃-terminated SAM in the region between $3050-2750 \text{ cm}^{-1}$ before and after 4 days immersion in ASW.

Figure S4. IRAS spectra of OH-terminated SAM in the region between $3500-2700 \text{ cm}^{-1}$ before and after 4 days immersion in ASW.

immersion in ASW. The bands at 2964 and 2878 cm⁻¹ are assigned to the CH₃ asymmetric (v_{as} CH₃) and (v_{s} CH₃) symmetric stretching modes, respectively. The bands at 2917 and 2850 cm⁻¹ are assigned to the v_{as} CH₂ and v_{s} CH₂

modes, respectively. The band observed at 2936 cm⁻¹ arises from the splitting of the v_{as} CH₃ band owing to Fermi resonance interactions with the lower frequency of the asymmetric CH₃ deformation mode.

IRAS spectra associated with the chemisorption of HS- $(CH_2)_{15}$ -OH on a gold surface before and after immersion in ASW are shown in Figure S4. The bands at 2920 and 2850 cm⁻¹ are assigned to the $v_{as}CH_2$ and v_sCH_2 modes, respectively. The broad adsorption peaking at 3050 cm⁻¹ arises from the OH stretching vibration.

References

- Nuzzo RG, Fusco FA, Allara D. 1987. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J Am Chem Soc 109:2358– 2368.
- Nuzzo RG, Dubois LH, Allara D. 1989. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a selfconsistent series of polyfunctional organic monolayers. J Am Chem Soc 112:558–569.
- Zhu J, Dan N, Dan W. 2011. Studies on the graft copolymer of 2,3-glycidyl trimethyl ammonium chloride onto chitosan with ultrasonic. Adv Mat Res 197–198:109–114.