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Abstract:  

Opencast coal mining has a series of consequences on land resources and places 

enormous pressure on the ecological environment. Stripping, excavation, 

transportation and dumping have different effects on soil physical, chemical and 

biological properties. Moreover, the reconstructed landscape produces increased 

small-scale spatial heterogeneity of mined soils. Currently, growing concerns for the 

negative consequences of mining have highlighted the importance of reclamation in 

minesoil studies. This review has examined the mechanisms of coal mining and 

reclamation that affect soil properties (physical, chemical, biological) and described 

soil development in reclamation, with an emphasis on the reclaimed minesoil (RMS) 

properties of reclamation sites. The major conclusions of this review were: (i) The 

randomness of soil dumping increased the heterogeneity of minesoil properties, which 

in turn increased the complexity of reclamation practice. (ii) The negative or positive 

consequences of mining and reclamation processes on RMS need to be recognized by 

scientific observations such as soil property multi-index analysis and soil 

chronosequences, on which the minesoil reconstruction practice are based. (iii) Five 

phases of reclamation (i.e., geomorphic reshaping, soil reconstruction, hydrological 

stability, vegetation restoration, and landscape rebuilding) should be considered as a 

comprehensive system for the reconstruction of minesoils. (iv) The application of new 

technologies (e.g., micro-terrain reshaping and soil non-destructive detection) and 

new studies (e.g., systematic study, rebuilding animal habitat, and biodiversity 

research) to minesoil recovery practice would enhance the new concepts of land 
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reclamation and ecological restoration in mining areas. 

Keywords: reclaimed mine soil (RMS); soil properties; surface coal mining; 

reclamation; five phases of reclamation 
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1. Introduction 

Highly mechanized mining processes are widely used in surface mining because 

they generally provide an efficient approach for achieving high production (Shrestha 

and Lal, 2011). However, high production is also associated with large volumes of 

waste production (Ramani, 2012). During surface mining, the excavated materials 

from depths of 0-200 m are stripped off and they vary substantially in physical and 

chemical properties, such as soil bulk density, water holding capacity and water 

absorbing capacity (Šourková et al., 2005). Surface mining: (i) eliminates vegetation, 

(ii) changes landforms and landscapes, (iii) alters soil, and (iv) drastically disrupts 

hydrological regimes (Ahirwal and Maiti, 2016; Kumar et al., 2015). Although soil is 

highly sensitive to mining activities, it plays a crucial role in material cycling in the 

pedosphere through balancing soil nutrient, water and energy flows that ensure 

productivity and sustain biodiversity (Dominati et al., 2010). During excavation, 

transport and dumping, the original soil structure and properties are drastically altered. 

The rearranged soil is disturbed by mining operations and can be defined as minesoil 

or Technosols (Ahirwal and Maiti, 2018; Lehman, 2006; Zhang et al., 2014; Zipper et 

al., 2013), which develop from the mixture of fragmented rock and fine earthy 

material (Thomas et al., 2000). Thus, the quality and properties of minesoil vary 

among locations depending on local conditions (e.g. geology, climate, land-use) (Liu 

and Lal, 2013). As an important part of the mining and reclamation system, the 

minesoil system plays an important role in regulating different subsystems of the 

mining area, such as plant, water, and landscape subsystems. In fact, minesoil quality 
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largely determines the future orientation of reclamation. Therefore, improved 

knowledge on the effects of mining and reclamation processes on changes in soil 

properties is needed. 

The continuous mining process destroys vegetation/soil systems and reduces soil 

productivity and fertility, while the goal of reclamation involves returning the 

minesoil to its original state by restoring the nutritional properties of soil through a 

series of reclamation methods (Upadhyay et al., 2016). With engineering, chemical 

and biological measures, these reconstructed minesoils undergo a rapid maturation 

process and are utilized for the growth of grasses, trees and crops. Thus, high 

ecological and economic benefits can be obtained in a short period of time with 

proper management and protection (Bai and Zhao, 1995). However, the great 

heterogeneity and complexity of minesoils make their use for crops and vegetation, to 

redevelop productivity and ecosystem sustainability, an ongoing challenge. 

Since the 1980s, many studies have investigated the undesirable effects of 

mechanized coal mining operations on the soil and vegetation systems as well as 

possible ways to minimize the damage. Several studies have assessed the effects of 

mining, the establishment of vegetation, and the development of reclaimed minesoil 

(RMS) (Ahirwal et al., 2017a; Akala and Lal, 2001; Bendfeldt et al., 2001; Carter and 

Ungar, 2002; Evanylo et al., 2005; Fettweis et al., 2005; Indorante et al., 1981; 

Juwarkar et al., 2010; Keskin and Makineci, 2009; Nyamadzawo et al., 2008; Shrestha 

and Lal, 2007; Shrestha and Lal, 2008; Shukla et al., 2005; Ussiri et al., 2006). These 

studies gave a basic understanding of minesoil properties and the ecosystem service of 
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minesoil. Therefore, the aim of this review is to (i) give a brief overview on the 

interactions between minesoil systems and other systems throughout mining and 

reclamation processes, (ii) summarize the effects of coal mining and reclamation on 

minesoil properties, and (iii) suggest holistic reclamation approaches that can be 

applied for the restoration of minesoil. 

2. Coal mining and reclamation process and minesoil 

2.1. Mining and reclamation process 

Surface mining techniques include strip mining, mountaintop removal mining, 

and open-pit mining. Although mining and reclamation operations are complex and 

regionally specific, the overall coal mining process consists of similar sequential 

stages (preparing the surface, drilling, blasting, overburden removal, loading the 

deposit, haulage of the mined deposit, and rehabilitation). The first step for a 

successful reclamation, following surface mining, is to salvage suitable topsoils and 

built a sustainable minesoil system. Yet, a sustainable mining and reclamation path 

calls for a holistic ecosystem reclamation approach (ERA) (Burger, 2011), the 

objective of which is to restore the ecosystem services provided by vegetation such as 

carbon sequestration, faunal habitat and floral productivity (Burger, 2011; Zipper et al., 

2011). Thus, to ensure land productivity, mining and reclamation processes need to be 

considered as a whole when researching the impacts of coal mining on soil properties. 

The complexity of mining impacts on soil properties arises not only from the 

interactions of the mining subsystems and but also from other man-made systems, 

such as human communities and land-use types, and natural processes, such as the 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

variations in climate and landscape (Ramani, 2012). Mining and reclamation involves 

changes in soil physical properties which can determine the influence of mining on 

soil chemical properties, soil fauna and plant growth (Nawaz et al., 2013). A 

simplified schematic of coal mining and reclamation processes are shown in Fig. 1. 

2.2. Minesoil 

Minesoils developed on anthropogenically altered landscapes that are affected by 

post-mining reclamation sessions become RMS (Shrestha and Lal, 2008). There are 

several ways in which mining and reclamation can influence soil properties (Fig. 2). 

Physical, chemical and biological properties of RMS form close connections. Any 

interference with the connection will lead to the degradation of the sound and healthy 

conditions of RMS. Over many centuries, soils have developed a sophisticated 

self-regulation capacity involving nutrient supply, chemical buffering, soil aggregate 

stabilization, porosity, aeration, water holding capacity, detoxification and 

self-regeneration (Vanbreemen, 1993). This self regulation capacity is driven by the 

five soil formation factors (i.e. climate, organisms, topography, parent material and 

time) that tie the soil and other systems together (Jenny, 1941). Therefore, minesoils 

can be reconstructed by enabling positive exchanges between the RMS system and 

other subsystems. Coal mining often causes drastic changes in the soil profile and the 

loss of soil organic carbon and nutrient pools (Indorante et al., 1981). As a direct 

result the soil system can suffer substantial and long-lasting damage, which negatively 

affects land productivity and ecosystem functionality (Hartmann et al., 2014). With 

the proper reclamation techniques and reclamation management practices, disturbed 
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mined soils can be restored (Shrestha and Lal, 2010). However, without proper 

mining and reclamation procedures, RMS cannot easily recover to its original state. It 

is common to take 50 or 100 years for a satisfactory minesoil development, but full 

recovery does not always occur (Bradshaw, 1997; Bradshaw, 2000). 

Physical, chemical and biological components of soil are not isolated; rather, 

these components are interconnected and play important roles in the development of a 

functioning soil system on severely disturbed lands (Rowland et al., 2009). The 

selection of minesoil indicators that reflect mining effects not only depends on the 

basic indicators associated with soil quality, fertility, and health, but also the factors 

that limit minesoil and plant productivity on mine sites (Bendfeldt et al., 2001). Coal 

mining results in structural and functional changes in minesoils, such as a high level 

of soil compaction, acidity, and toxicity; limitations in soil water holding capacity and 

the availability of nutrients; and the imbalance of soil microbial processes. Many 

indicators of minesoil properties showed anomalies in comparison with the 

undisturbed soils (Table 1). In addition to the influence of water, vegetation, landscape 

and other subsystems on the reclamation potential, minesoil reclamation practices 

involve complex and lengthy processes Thus, the study of minesoils should consider 

plants, water and landscape as a whole system. Connections and responses between 

RMS subsystem and other subsystems should be fully understood (Fig. 2). 

2.3. The importance of minesoil property index selection and chronosequences 

To provide a general overview of mining and reclamation effects on RMS, all of 

the physical, chemical and biological property changes should be included. Although 
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the sources of RMS vary a lot, causing larger differences in the same parameters 

among different studies, the values of the same properties still present the same trends 

under the similar reclamation conditions. As time progresses, these parameters exhibit 

increasing or decreasing trends, which can be obvious references for the effects of 

reclamation and the possible reclamation methods (Table 1). Usually, the impact of 

mining and reclamation on minesoil cannot be assessed by individual soil parameters. 

An integrated analysis of soil physical, chemical and biological properties before and 

after reclamation will provide a meaningful assessment of the RMS status. There are 

many soil quality indices that have been proposed for minesoils by researchers 

(Mukhopadhyay et al., 2013; Mukhopadhyay et al., 2014; Sinha et al., 2009; Zhao et 

al., 2013; Muñoz-Rojas et al.,2016; Bendfeldt et al., 2001; Seybold et al., 2004; 

Rodrigue and Burger, 2004; Jones et al., 2005). 

The analysis of ecosystem restoration after disturbance is challenging because it 

requires not only the above- and belowground ecosystem characteristics, but it also 

requires observations over long time periods. Soil chronosequences are an established 

approach to the challenge and have been used in many previous studies(Huggett, 1998; 

Jenny, 1946; Walker et al., 2010). The age chronosequence approach is important to 

understand the changes in soil physical, chemical and biological processes in a 

mineland ecosystem, especially because initial soil properties are often unknown 

(Shrestha and Lal, 2010). In mining areas, the restoration of disturbed systems is 

primarily a soil-driven process (Gleeson and Tilman, 1990; Wali, 1999), and the value 

of examining minesoil chronosequences in order to evaluate the effects of ecosystem 
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restoration practices on soil processes has been recognized. 

Indicators such as soil erosion and vegetation characteristics have been considered 

previously in determining reclamation success (Mummey et al., 2002; Wich, 2007). 

However, these aboveground indicators cannot reflect a holistic aspects of ecosystem 

structure and function (Dangi, 2012). Studies using soil chronosequences have shown 

that long-term soil development results in characteristic shifts in soil physical, 

chemical and biological properties (Akala and Lal, 2001; Avera et al., 2015; Carter 

and Ungar, 2002; Shrestha and Lal, 2008; Sun et al. 2017). 

It is clear that reclamation is not a short-term investment. The recovery of large 

disturbances and the growth period of reclamation plants requires prolonged 

reclamation periods. However, there is still uncertainty surrounding the likely success 

of reclamation efforts. Over the short term, studies of soil and vegetation development 

during early succession on restored coal waste indicated some soil changes favoring 

the increase of plant community complexity (Alday et al., 2012). Although long-term 

effects (desirable or undesirable) are still unknown, all chronosequences tend to 

proceed toward a relatively stable equilibrium in the long term and they are likely to 

enhance rehabilitation/restoration ecology (Wali, 1999). 

3. Minesoil physical properties 

Surface materials such as native soils and rock spoils on the post-mining 

landscape can vary widely in their physical consistency and suitability for plant 

species (Zipper et al., 2013). These physical differences manifest in minesoil 
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structural and functional changes. Physical properties, such as soil texture, bulk 

density, and aeration have a large influence on soil remediation by controlling soil 

hydraulic properties and hydrological stability. Therefore, these are selected as the 

main indices in the present study. 

3.1. Minesoil horizon development 

The soil dumping technology used determines the development of the 

reconstructed soil horizon. After mining disturbs soil horizons, RMS undergoes a 

self-restoring process. The younger minesoils develop through interactions between 

climate, living organisms, and the land surface, over time (Jenny, 1941; Sencindiver 

and Ammons, 2000). These soils and can show signs of pedogenesis after only 10 

years and can develop weak B horizons. Minesoils have at least two horizons 

(Johnson and Skousen, 1995): a distinguishable surface horizon containing some 

organic matter and high percentage of fine earth material, and a lower horizon having 

poor structure and various sizes of rock fragments (Johnson and Skousen, 1995). In 

one minesoil study, the surface horizons were 2.5 to 10 cm thick when RMS ranged 

from 1 to 40 years (Haering et al., 1993). The thickness of the solum (A and B 

horizons) has previously been found to increase with age in minesoils (Thomas et al., 

2000; Sencindiver and Ammons, 2000). A horizons of RMS can achieve a thickness of 

13 cm in 5 years, and B horizons with silty-textured minesoils have developed in 12 

to 19 years (Haering et al., 1993; Varela et al., 1992). Because of the complexity of 

minesoil properties, subsurface horizon formation has been reported in minesoils of 

various ages, ranging from several years to decades (Roberts et al, 1988b; Ciolkosz et 
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al., 1980; Schafer et al., 1980). Moreover, young minesoils (1-7a) generally had 

massive structures, while old minesoils had developed cambic-like horizons, which 

were observed in 50-year-old minesoils with the shallow depths that barely to meet 

cambic criteria (Roberts et al, 1988a). Structural units and inherited properties from 

the materials used for the reconstruction of RMS were no longer visible as time 

progressed (Haering et al., 1993). 

3.2. Minesoil textures 

Minesoil textures vary from site to site. Many are similar to the textures of the 

surrounding undisturbed soils, but some differ because different textured overburden 

has been substituted for the native soil materials (Sencindiver and Ammons, 2000). 

Soil textural classification is based on particle-size analyses in most parts of the world 

(Nemes and Rawls, 2004). Particle size distribution (PSD) is used to characterize and 

describe soil texture and reflects soil changes during reclamation processes (Wang et 

al., 2015; Wood and Pettry, 1989). The minesoil PSD is affected by a variety of 

factors, such as rock/spoil material weatherability, reclamation time and weathering 

conditions (Haering et al., 1993; Wood and Pettry, 1989). The mean soil particle size 

of mined sites became finer than those of unmined sites under similar conditions 

(Wali, 1999). Generally, sandy loam and sandy clay loam textures are optimum for 

tree growth on minesoils (Burger and Zipper, 2002; Burger et al., 2005). Silty soils 

and soils with high clay content are more easily compacted and restrict soil aeration 

and drainage, which are chief causes of poor tree survival and growth (Jones et al., 

2005). Moreover, large machinery compaction causes soil aggregation changes, which 
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may decrease water and nutrient availability, aeration and plant production due to 

limitation in root growth (Abu-Hamdeh and Nidal, 2003; Kim et al., 2010). Soil pore 

structure development and aggregation formation are very long processes that involve 

the migration of clays, chemical elements, organic matter and various bonding 

mechanisms (Skousen et al., 1998). If the minesoils are compacted by large machinery, 

soil air and water exchanges are blocked, resulting in substantial, long-lasting and 

sometimes irreversible damage, which negatively affects soil productivity and 

ecosystem functionality (Cambi et al., 2015; Hartmann et al., 2014). 

Many minesoils have a higher proportion of rock fragments and possess coarser 

texture (sandy, loamy sand and sandy loam) (Bussler et al., 1984; Zhen et al., 2015), 

which results in losses of water and nutrients from root zone via deep percolation and 

preferential flow (Asghari et al., 2011). The high coarse fragment content of many 

RMS affects rooting depth, water holding capacity and nutrient transport capacity 

(Asghari et al., 2011; Zipper et al., 2013). Smaller rock fragments are more prevalent 

in upper horizons than lower horizons because of the weathering. The texture of 

minesoils was found to be similar to the surrounding native soils, after 25 to 100 years, 

once rock fragments were sieved out (Johnson and Skousen, 1995; Turman and 

Sencindiver, 1986). A study of minesoil property changes conducted in the eastern 

USA showed that coarse fragment content decreased from 65% to 55% after 5-year 

reclamation and weathering processes. Similarly, in India, the coarse fragment content 

of RMS decreased by 20.4% compared to reference sites (Mukhopadhyay et al., 2016). 

Studies have also shown that the necessary coarse fragment content required for tree 
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growth and restored productivity is below ~60% (Zipper et al., 2011). 

3.3. Soil bulk density and aeration 

Soil compaction is the physical form of soil degradation that changes soil structure 

and productivity (Mueller et al., 2010), and compaction poses a potential threat to 

sustainable development in mining and reclamation practices. In a mining area, the 

most frequently used parameter used to characterize minesoil compaction is bulk 

density (Panayiotopoulos et al., 1994). Due to the use of heavy machinery during 

mining and reclamation processes, RMS often have higher bulk densities (1.55 to 1.86 

Mg m-3) (Shrestha and Lal, 2008). As reclamation progresses, the bulk density of 

RMS decreases because more roots have penetrated the soil and porosity has 

increased (Wali, 1999). These soils need to be reclaimed with various methods and 

long time frames so that their properties can return to match those of the undisturbed 

soils (Wang et al., 2016). After 1 to 3 decades, soil bulk density can reach lower levels 

(~1.54~1.75 g cm-3) that are more suitable for rooting and vegetation. Ten years of 

reclamation can cause RMS bulk density decrease from 1.35 to 1.53 g cm-3 at a dump 

site (Yang and Wang, 2013). 

In compacted soils, the air and water exchange capacity is directly affected. Thus, 

for an accurate measurement of minesoil compaction, other properties, such as soil 

porosity, strength and moisture, are also needed (Lipiec and Hatano, 2003). High bulk 

density equates to low soil porosity. Air-filled porosity is most often used to evaluate 

soil aeration, and a critical value for plant growth would be < 10% (Lipiec and Hatano, 

2003). It has been widely reported that soil porosity decreased after mechanical 
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operations in compacted areas (Ball et al., 1994; Blackwell and Soane, 1981; 

Groenevelt et al., 1984; Munkholm et al., 2002; Nawaz et al., 2013), and it seems that 

transmission parameters, such as air permeability and oxygen diffusion rate (ORD), 

better reflect the aeration status of the physical changes of RMS. Reductions in soil 

aeration can be quantified by parameters such as the oxygen diffusion rate and air 

permeability (Cannell, 1977). Air permeability is related to soil structure, pore size 

and continuity (Lipiec and Hatano, 2003). Researchers found that air permeability was 

greater for coarse structures (4-8 mm peds) than for fine structure (<2 mm peds) at the 

same level of compactness (Lipiec and Hatano, 2003), while another study found that 

air permeability of sandy soils was higher than that of silt loam soil (Schjønning and 

Rasmussen, 2000). Regardless of soil texture, long time periods and deep plowing 

significantly increased air permeability (Ball et al., 1994; Bateman and Chanasyk, 

2001), indicating that continued plowing and deep tillage are encouraged in RMS 

reclamation processes for agricultural utilization. 

3.4. Hydrologic stability 

Hydrologic restoration in minesites develops similar infiltration/runoff patterns to 

unmined landscapes with time (Ritter and Gardner, 1993), and that the rate of 

hydrologic change is affected by vegetation and soil types. Therefore, an effective 

restoration of uncompacted, deep soils and vegetation on reclaimed minesites is 

expected to ensure the hydrological stability at macroscales like landscape and 

watershed. 

Hydrologic flow paths are restored by loosely placing minesoils that allow water 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

infiltration, storage, drainage, and groundwater recharge (Burger, 2011). The 

relationship between precipitation and infiltration rate of RMS and groundwater 

conditions determines the amount of available soil water (Evans et al., 2015). Several 

factors affect water infiltration, including soil texture, coarse fragments and soil 

aggregation. Soil aggregation, in turn, was governed by soil organic matter and the 

activity of soil biota (Bronick and Lal, 2005). The poor condition of RMS, such as 

soil compaction and lack of vegetation, contributes to deficiencies in organic matter, 

leading to a vicious circle. 

Researchers have found that RMS infiltration was influenced by high soil bulk 

densities and that infiltration rates can change over time. Surface soil compaction can 

lead to a slower infiltration rate shortly after mining and reclamation (Weiss and 

Razem, 1984). Therefore, soil surface hydrology is typically not in equilibrium on 

recently established mine sites. In central Pennsylvania, infiltration rates were found 

to be low during the initial stage of reclamation, but infiltration capacities increased 

over a 12-year reclamation effort (Ritter and Gardner, 1993). 

Other researchers found that RMS infiltration was also highly influenced by the 

amount of vegetation (Zipper et al., 2011). Conversion of natural forest into other land 

uses due to mining was found to significantly reduce the nutrient contents and soil 

quality, and thus the infiltration rate in RMS was ten times lower than that in the 

reference forest (Ahirwal and Maiti, 2016). In reclaimed dumps, minesoil infiltration 

rate was a determining factor in the redistribution of rain or irrigation water (Larney 

and Angers, 2012). In short-term reclamation, water infiltration rates of RMS 
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increased by stimulating microbiological activity; thus, the soil aggregate stability 

increased. With incremental additions of amendments, long-term increases in 

infiltration rates were achieved (Larney and Angers, 2012; Taylor et al., 2009). 

Improvements in soil hydraulic properties are expected to lead to improved 

revegetation success, which would help to ensure hydrologic stability of the reformed 

landscape. 

Other vital hydraulic properties of RMS include water holding capacity and 

hydraulic conductivity (Table 1). The water holding capacity of degraded minesoils 

was lower than the water holding capacity of soils with proper amendments 

(Camberato et al., 2006; Fierro et al., 1999). Additionally, the field capacity increased 

and the wilting point decreased with reclamation age (Cejpek et al., 2013). Hydraulic 

conductivity was generally low in young sites. There was no clear evidence to support 

the idea that the spreading of topsoil leads to long-term improvements in soil 

hydrological properties (Cejpek et al., 2013). 

4. Minesoil chemical properties 

The effects of mining and reclamation on certain soil chemical properties have 

been investigated by several researchers (Johnson and Skousen, 1995; Shrestha and 

Lal, 2011; Varela et al., 1993; Zhen et al., 2015). One major environmental concern is 

the effect of weathering on minesoil functions. In some mining areas, it is an urgent 

issue to find the suitable topsoil substitutes to tackle the problem of soil scarcity and 

to create a viable rooting medium for good tree growth (Burger et al., 2007; Rodrigue 

and Burger, 2004; Zipper et al., 2011). Without timely and effective measures for the 
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disposal of coal mining residues, these exposed materials are affected by several 

elements (temperature, precipitation, pressure, etc.) of the geosphere, hydrosphere and 

atmosphere. Heavy metal elements inside the mine residues and acid drainage travel 

into water and soil and become circulate among these spheres through weathering and 

dissolution processes (Larocque and Rasmussen, 1998), changing the minesoil 

chemical properties. Weathering processes remove soluble minerals from alkaline 

mine spoils, causing reductions of both electrical conductivity and pH, to ranges 

comparable to native forest soils (Burger et al., 2007). In most cases, weathered spoils 

and salvaged soils are often favorable for restoration (Zipper et al., 2011). Although 

further research on minesoil reconstruction materials’ suitability for plant growth is 

needed, the adverse impact of weathering of reduced-sulfur minerals, pyrites and 

sulfides should be paid more attention (Zipper et al., 2013). For example, high-sulfur 

coal gangue oxidizes and acidifies when exposed to water and oxygen (Singer and 

Stumm, 1970), causing spontaneous combustion, air pollution, and the generation of 

acid mine drainage (Atkins and Pooley, 1982; Canovas et al., 2007; Herlihy et al., 

1990; Zhao et al., 2007). The effect of acidity on minesoils is manifested by the 

leaching of Ca, Mg, and K from the soil profiles (Golez and Kyuma, 1997; Ross et al., 

1985). The loss of base cations affects minesoil development, and the discharge of 

acid mine drainage are also a major threat to clean water resources. 

4.1. Soil pH 

Soil pH moderates the availability of plant nutrients during the process of RMS 

restoration (Shrestha and Lal, 2011). As one indispensable indicator of RMS chemical 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

properties, soil pH varies widely among RMS and is easily affected by materials and 

environmental conditions. Sometimes, minesoil pH and other properties can be 

mutually influenced. Changes in RMS pH are generally caused by contamination of 

unweathered overburdened materials that contain carbonates (Shrestha and Lal, 2011). 

Fresh, unweathered non-pyritic sandstones and siltstones increase the pH (7.0-8.5) of 

constructed soils, which contrast to the moderately acidic pH (4.5-6.5) of the native 

soils (Emerson et al., 2009; Miller et al., 2012; Roberts et al., 1988b).  

Reclamation activities also significantly change soil pH, and this can influence the 

growth of specific tree species (Zipper et al., 2013). For example, the growth rates of 

native tree species are often suppressed in alkaline minesoils (Emerson et al., 2009; 

Miller et al., 2012). Volunteer trees favor more acidic soils with a pH the range of 

~4.5-6.5 (Zipper et al., 2013). Although pH preferences vary between tree species, 5.0 

to 6.5 is often cited as being a generally favorable pH range for plants (Zipper et al., 

2012). In addition, minesoil pH changes with reclamation time. After two years of 

reclamation, RMS constructed from unweathered siltstones declined from 7.1 to 6.4 

(Roberts et al., 1988b). However, after 10 to 20 years of reclamation, rock spoils 

leached soluble salts and pH stabilized (above 6.5) (Zipper et al., 2013). Under this 

condition (i.e., RMS with a pH that is slightly acidic to the circumneutral range), 

native trees exhibit successful establishment and growth (Rodrigue and Burger, 2004). 

4.2. Soil EC 

As an integrated indicator of soil physical and chemical properties, soil EC is 

closely related to crop yield (Shrestha and Lal, 2011; Rodrigue and Burger, 2004). At 
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lower depths of RMS, the EC was reported to be more than 200% greater than 

undisturbed soils (Shrestha and Lal, 2011). This may be attributed to soil 

contamination by spoil materials that contain a high amount of CaCO3 (Shrestha and 

Lal, 2010). However, lower EC can be commonly found in weathered spoils as 

reclamation proceeds (Miller et al., 2012; Showalter et al., 2010). According to 

different studies, EC is determined by several factors, such as soil texture, depth, 

reclamation time, substrate and weathering conditions, but after a relatively long 

period of time (>20 years), the EC and other properties can sustain a favorable level 

for the growth of native species. 

4.3. Soil C and N concentrations 

Soil C and N are two major fractions of SOM pools. In mining areas, 

unsustainable management causes soil carbon and nitrogen loss, and these areas are 

likely to become net sources of greenhouse gas emissions (Shrestha and Lal, 2006). 

Study of minesoil C and N dynamics is critical to the understanding of C and N cycles 

and ecosystem functions (Shrestha and Lal, 2010). 

SOC is the main component of soil organic matter (SOM), which is critical for the 

soil structure and fertility (Frouz et al., 2001; Ahirwal et al., 2017b). The loss of the C 

pool in disturbed soil usually occurs by mineralization, erosion and leaching 

(Izaurralde et al., 2000; Mukhopadhyay and Maiti, 2014). The concentration of soil 

organic carbon (SOC) in RMS has been found to decrease after mining and 

reclamation activities (Shrestha and Lal, 2011) (Table 1). Compared to undisturbed 

soils, the SOC content of RMS in 0-5 cm, 5-15 cm, and 15-30 cm decreased by 77%, 
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50% and 33%, respectively (Ganjegunte et al., 2010). The SOC pools in RMSs 

declined immediately after mining (Shrestha and Lal, 2011), and the surface layer of 

RMS had more SOC losses the deep layer of RMS since the surface layer was more 

active, dynamic and exposed to extreme weather conditions (Shrestha and Lal, 2011). 

Similar decreasing trends can be found in the concentrations of TN. A large loss in N 

after mining and reclamation has been confirmed previously, with the highest loss 

(>60%) of N occurring in the 0-15 cm layer (Ganjegunte et al., 2010). Previous 

studies have also shown that the depleted C and N pools can be restored through 

appropriate reclamation land use and soil management (Shrestha and Lal, 2007; 

Shrestha et al., 2009). A comparison of C: N ratios between undisturbed sites and 

RMS shows that in some cases there were decreases in this ratio but in one case, an 

increase was observed (Table 1). An obvious improvement in RMS quality, such as 

the increase in SOC and TN, required long-term reclamation practices lasting more 

than 20 years (Shrestha and Lal, 2010). 

The depleted minesoil C and N pools can be restored through conversion to an 

appropriate land use and proper soil management (Lal, 2004a; Lal, 2004b; Shrestha 

and Lal, 2006). For example, the C and N loss in RMS can be minimized by proper 

handling of topsoil materials during removal, storage, and application, and also 

reclaiming as soon as possible. Soil and crop management practices such as 

application of manure, fertilizer, and the establishment of plants with high biomass 

production can also enhance mine soil fertility (Shrestha and Lal, 2011). The resulting 

improvements in minesoil quality can contribute to achieving food security and the 
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Sustainable Development Goals (SDGs) proposed by the United Nations (Bouma, 

2014). 

4.4. Toxic chemicals and metal concentrations 

Compared to other parameters such as soil texture, pH and organic matter, 

micronutrients and heavy metals are not the dominant factors controlling the quality 

of minesoils in surface coal mining areas, however, a holistic assessment of soil 

quality should include the physical, chemical and biological properties as well as the 

presence of hazardous and potentially toxic chemicals (Mukhopadhyay et al., 2016). 

The seven essential micronutrients of plants (Fe, Mn, B, Zn, Cu, Mo, Cl) become 

toxic if the present concentrations greater than the threshold limits. Besides, heavy 

metals (As, Cd, Co, Cr, Hg, Ni, Pb, Se, etc.) are also added by anthropogenic 

activities during mining process (Maiti, 2013). Therefore, the environmental impact of 

metals released from coal mine waste remains a major issue in the reclamation 

practice. High concentrations of metals sometimes coincide with low pH values in the 

acid mine drainage (AMD), which has great impacts on the growth of vegetation 

(Askaer et al., 2008). Moreover, lower pH in RMS increases the bioavailabity of 

metals. To avoid these metals transferring to the ecological food-chain, some 

ameliorative measures, like liming at the minesoil surface to bring down the soil pH, 

are required (Maiti, 2007). The waste rocks removed during coal exploitation are low 

in coal content and contain high amounts of iron sulfide minerals that produce heat 

and acid when exposed to water and air (Askaer et al., 2008). Once the pH is lowered, 

metal elements, such as Ni, Al, and Zn, from sulfide oxidation as well as toxic 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

chemicals, such as Cu, Pb and Cr, are leached (Larsen and Mann, 2005). Without the 

proper management of waste materials, which are very visible in piles and heaps 

around mining areas, large amounts of trace elements in AMD are easily channeled 

into nearby streams and rivers (Nganje et al., 2011). The predominant negative 

impacts of AMD such as soil acidity, toxic metal concentrations and vegetation 

damage, have been the focus of previous studies (Dang et al., 2002; Kumar and Maiti, 

2015; Madejon et al., 2002). An integrated soil quality assessment containing metal 

elements was carried out on the reclaimed coalmine overburden in India. 

Concentrations of metal elements (K, Ca and Mg) were higher in the reclaimed sites 

than in the mine spoil reference sites, whereas the content of micronutrients (Fe, Cu, 

Zn, and Mn) decreased significantly in the reclaimed sites (Mukhopadhyay et al., 

2016). This decrease can be attributed to the uptake effect of plants. 

5. Minesoil biological properties 

Soil biota govern processes related to nutrient, energy and organic matter cycling. 

The biodiversity of soil fauna reflects the ecosystem metabolism; therefore, it is often 

used as an indicator of soil quality to evaluate the recovery conditions in mining areas. 

For this reason, the identification of RMS biodiversity in reclamation systems and the 

objective of increasing RMS biodiversity introduces two major issues to reclamation 

practices. The abundance of soil fauna is significantly related to microhabitat 

conditions, which reflect of the distribution of organic matter as an important factor 

that affects microclimate (Frouz et al., 2011). In order to keep a self-sustaining 

soil-plant system in reclamation sites, the microorganisms play an important role in 
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the decomposition of litter, mineralization process, nutrient cycling, and accumulation 

of organic matter and formation of humus (Maiti, 2013d). Soil microbial biomass and 

activity are commonly used as the indicators of the group of microbes, such as 

bacteria, fungi and actinomycetes (Maiti, 2013c). Microbial biomass provides 

information about the overall amount of microflora in soil and is a good indicator of 

the overall growth of the microbial community during succession. To estimate 

minesoil microbial activity, microbial respiration, cellulose decomposition and soil 

enzyme are commonly measured (Helingerova et al., 2010). Many studies have been 

conducted in mining and reclamation, mainly focusing on the changes in biomass of 

microfauna and mesofauna and the activity of soil enzymes. These studies contain not 

only the changes in biological properties but also the spatial variation of biota caused 

by dumping and overburdened topography. Moreover, the diversity and dynamic 

complexity of animals, plants and micro-organism communities constitutes the 

ecosystem. Under the impact of mining, post-restoration diversity is a result of 

site-level factors and various historical contingencies (Maiti, 2013b). The main 

purpose of biodiversity conservation is to increase the ecosystem services of 

microorganisms, animal and plants, such as soil microfauna and large fauna. 

The removal of topsoil during surface coal mining instantly reduces the pool of 

soil organic matter (Larney and Angers, 2012); additionally, the habitat of soil 

organisms is greatly altered. As the soil profiles are basically turned upside down, and 

those substrate materials may contain fossil carbon that are sensitive to erosion, 

unsuitable water regimes and nutrient deficiency (Frouz et al., 2006; Scullion and 
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Malinovszky, 2010). In the coal mine dump, the reconstructed soils therefore upset the 

equilibrium of biological activity, and the processes required to regain a dynamic 

equilibrium state require a long time period. The soil hosts a complex system of 

organisms that are involved in many biological processes, such as nitrogen and carbon 

cycling, which also affect the soils physical and chemical properties, and ultimately 

the ecosystem of mined lands (Frouz et al., 2006). For example, aeration and pH 

affect the activity of many microorganisms, which in turn, change the relevant 

processes involved in nutrient cycling. The activity of soil organisms provides useful 

information when monitoring the quality of minesoil produced from severe coal 

mining disturbances, and microbial properties have increasingly been used in the 

evaluation of soil recovery efforts (Li et al., 2015). As the microbial community is 

sensitive to the soil environment and is related to diverse soil processes, including 

decomposition of organic residues, nutrient cycling, and degradation of toxic 

compounds and pollutants (Kaschuk et al., 2010), it has been used as an ecological 

indicator in severely disturbed mine sites by many researchers (Claassens et al., 2012; 

Filcheva et al., 2000; Frouz et al., 2006; Helingerova et al., 2010). 

5.1. Soil microfauna 

At post-mining sites, microfauna include small animals and unicellular organisms 

that are visible only under a microscope. The microbial community is responsible for 

nutrient cycling and soil organic matter accumulation (Bradshaw, 1984; Frouz et al., 

2007) and provides the base for the reclamation plant growth. A field study of 

microbial properties was conducted in heaps of coal mining materials and lasted for 
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41 years; the study showed that the organic matter accumulation and the development 

of the soil microbial community were closely related; additionally, most soil microbial 

parameters measured at 30- to 40-year-old reclamation sites were of comparable 

magnitude to those at undisturbed sites (Frouz and Novakova, 2005). 

5.2. Soil enzymes 

The importance of soil enzymes has been widely recognized. They regulate the 

function of the ecosystem, and play key biochemical functions in the overall process 

of organic matter transformation and nutrient cycling in soil system. Various 

intracellular and extracellular enzymes that originate from microorganisms, plants and 

animals constitute the overall enzyme activity in soil. Enzymatic activity can be easily 

influenced by the disturbance of minesoils. Researchers have found that different 

enzymes can be used as suitable indices for monitoring RMS quality and reclamation 

progress in surface coal mines (Ciarkowska et al., 2014; Finkenbein et al., 2013). 

Therefore, suitably chosen enzyme activities have been used to study the effectiveness 

of reclaimed treatments on soil quality under normal conditions (Finkenbein et al., 

2013; Li et al., 2012; Schimann et al., 2012; Maiti, 2013a). As reclamation succession 

age increased, most enzyme activities improved, and the enzyme contents of 

reclamation sites were higher than those of the control groups, despite the different 

vegetation treatments of reclamation sites (Baldrian et al., 2008; Li et al., 2015). Other 

studies also had similar results (Table 1). 

5.3. Larger soil fauna 

Organisms such as mesofauna and macrofauna (e.g., microarthropods, 
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macroarthropods, enchytraeids and earthworms) are only a minor fraction of the total 

living biomass in soil (Beare, 1997), but the appropriate amount of these organisms 

also reflects the condition of RMS. Larger animals are called mesofauna and include 

organisms such as earthworms, arthropods, and large nematodes; macrofauna also 

include burrowing mammals, such as moles and rabbits, which can be indicators of 

soil condition at reclamation sites. Soil fauna play an important role in the 

decomposition and incorporation of organic matter in the soil (Dunger et al., 2001; 

Petersen and Luxton, 1982). The effect of large soil fauna may be affected by many 

factors, among which the vegetation cover is the most important (Frouz et al., 2006). 

Vegetation supplies a large quantity of easily decomposable litter for mesofauna in 

post-mining sites. The non-reclaimed sites had poorly developed mesofauna 

communities, while the reclaimed sites were occupied by abundant mesofauna and 

well-developed earthworm communities (Frouz, 2002; Frouz et al., 2001). Studies 

also showed that the spatial heterogeneity of soil fauna caused by heaping may help 

soil fauna locate suitable conditions during different times of the year and help 

organisms address temporal fluctuations in environmental factors, which indicated the 

strong connection between soil recovery and abiotic processes (Frouz et al., 2011). 

6. Soil amendment measures in surface coal mining areas 

Physical, chemical and biological techniques provide powerful support and ensure 

the implementation of reclamation. During reclamation, mechanical schemes for soil 

reconstruction and other artificial methods can effectively shorten the recovery period, 

while the roles of natural regeneration and time should be given more attention. In 
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addition, reconstruction of a mine soil system depends on the vegetation for 

improving the soil physical, chemical and biological condition of disturbed sites. Such 

mine soil medium of sufficient quality may benefit from addition of organic 

amendments that will accelerate nutrient cycling, overcome chemical and physical 

limitations, and provide receptive environment for plant growth (Bendfeldt et al., 

2001). Based on the cost minimization principle, the ideal recovery method should 

focus on providing the best conditions where soils can self-create, and these 

conditions should be achieved in a fairly short time span (Filcheva et al., 2000). 

6.1. Physical amendment 

Physical amendment is the basis of reclamation, since it is the core of soil 

reconstruction and has a huge influence on the development of the landscape and 

topography. The physical amendments of RMS can be implemented along with the 

other essential aspects of soil: structure, water, fertilizer, air and heat. Techniques such 

as crushing, ripping, grading, and drainage are employed to improve physical 

conditions of minesoils (Wong, 2003). However, problems with minesoil structure are 

virtually inescapable. Overcoming physical and nutritional problems are topics 

commonly emphasized in the research. 

In surface coal mine areas, one major output that occupies large land resources is 

the dump. The stability of dumping depends on topsoil dumping techniques or 

geomorphic landform design (Topp et al., 2010; Burger, 2011). In reclamation 

succession, soil dumping techniques not only determine the soil spatial heterogeneity 

but also the vegetation schemes and microtopography, which have great impacts on 
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RMS properties (Topp et al., 2010). Without proper measures, landslides, soil erosion 

and other geological hazards will definitely increase the costs of reclamation, and 

most importantly, the safety of the local environment and society will be threatened. 

By a series of engineering measures, the goal of landscape reshaping for an 

approximate original contour (AOC) can be achieved (Burger, 2011). In addition, soil 

dumping schemes should be carefully planned before exploitation. 

Another consequence of soil dumping is severe compaction by large machinery, 

which producing ground pressure greater than 5 kg cm-3 (Bradshaw, 1997). One 

effective way to solve this problem is to loosen compacted soils and establish 

vegetation immediately. No further attention should be required because the root 

growth, organic matter accumulation, and microbial community will prevent the 

return of compaction. However, a soil bulk density greater than 1.8 g cm-3 normally 

inhibits root growth completely (Bradshaw, 1997). Mechanical schemes for 

compaction are encouraged to sustain desirable plant life, and these schemes can be 

applied in the compaction area (Fulton et al., 2002).  

During reclamation, soil moisture distribution can be easily affected by the 

landform change and soil compaction. Either excess or lack of water will cause 

minesoil problems. As one of the environmental impacts of mining, the water 

disequilibrium calls for a holistic ecosystem reclamation approach (ERA) (Burger, 

2011). The ERA in the mountainous area like the Appalachian coalfields includes 

geomorphic landform design, topsoil replacement, stream reconstruction and 

reforestation. Because of the requirements for water in different coal mine areas, the 
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reconstruction of water equilibrium depends on the pre-mining hydrologic patterns, 

and addresses both terrestrial and aquatic impacts. In mountainous areas, the 

geomorphic landform design deals with soil erosion control and achieves AOC. The 

vegetation recovery needs to be established not only on the basis of AOC, but also on 

the reliance on humid system. In some areas, the vegetation establishes during the wet 

period and seedlings of non-competitive species may also be applied (Bradshaw, 

1997). In a general way, the appropriate selection of species, such as hydrophilous or 

drought-tolerant plants determines the long-term survival and effectiveness of 

reclamation. 

6.2. Chemical amendment 

The purpose of chemical amendments is to change the imbalanced state of 

minesoil. Common soil chemical remediation includes elution and the application of 

extractants that are reductant-oxidant. Some treatments, such as soil washing and 

flushing, have demonstrated potential effectiveness in removing heavy metals from 

soils (Liu and Lal, 2013). However, these methods are not the best choice for the 

remediation of minesoils due to the high costs. Therefore, lower-cost soil liming and 

fertilization are more suitable for minesoil restoration (Macdonald et al 2015). These 

methods are used to overcome some of the problems associated with acidic and barren 

conditions. Organic wastes such as sewage sludge and refuse or manure compost can 

be used as minesoil chemical amendment, as they are a slow release nutrient source. 

Inorganic wastes such as pulverized refuse, pulverized fuel ash are also suitable 

amendments. 
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As soil chemical properties also significantly influence re-vegetation success, it is 

important to actively establish site-specific vegetation, which can fulfill the objectives 

of stabilization, pollution control, visual improvement and removal of threats to 

human beings (Wong, 2003). If the minesoils have high levels of heavy metals, 

metal-tolerant plant species are better suited for such sites (Wong, 2003). Similarly, 

minesoils with saline or sodic materials require the selection of salt tolerant species 

(Purdy et al., 2005). 

6.3. Biological amendment and plants 

Plants are efficient bioaccumulators that can add organic material to the soil, and 

they are associated with a relatively large number and diversity of soil organisms 

(Zhao et al., 2013). Therefore, reforestation is often conducted on disturbed coal mine 

lands where the pre-mining land use type is forest. Biological reclamation of 

minesoils also depends on the selection of appropriate tree species and their 

ameliorative effects (Dutta and Agrawal, 2002; Mukhopadhyay et al., 2013; Sinha et 

al., 2009). The reestablishment of essential soil properties is necessary for forest 

restoration (Zipper et al., 2011), and planted trees can act as catalysts of natural 

succession (Parrotta et al., 1997b). Based on the theory of plant remediation of RMS 

and decades of research, the Forestry Reclamation Approach (FRA) was developed. 

According to the "five steps" of the FRA, rooting and formation of non-compacted 

soil medium are essential. Using less competitive ground cover for two types of trees 

and proper planting techniques would be helpful for the early stages of vegetation 

reclamation; thus, they can be good for the recovery of RMS (Zipper et al., 2011).  
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Once the plants get established, the plant-soil interactions promote ecosystem 

restoration Among several interactions in reclamation systems, the plant-soil 

interaction is one of the most important components. The mechanism of RMS 

formation and the role of vegetation in reclamation processes need to be recognized. 

Since soil is a fundamental component of the ecosystem, changes in soil properties are 

likely to affect future vegetation development (Frouz et al., 2008; Jangid et al., 2011). 

Soil systems also provide an important pool of many biogenic elements, such as C, N 

and P (Frouz et al., 2013), but poorly developed soils in mining areas result in the loss 

of soil nutrients. Thus, understanding the interactions of RMS and vegetation is 

particularly important because of the potential to mitigate the adverse impact of 

mining processes (Ahirwal et al., 2017b; Lal, 2004b; Schimel et al., 1994). 

The interactions between vegetation growth and soil development during the 

processes of mining and reclamation have usually been widely studied (Skousen et al., 

1994; Johnson and Skousen, 1995; Rodrigue and Burger, 2004). At reclaimed sites, 

vegetation composition affects soil organic matter content and quality, which in turn, 

affects the microbial communities and the soil functions (Frouz et al., 2009; 

Macdonald et al., 2015; Mummey et al., 2002; Sorenson et al., 2011). On the one hand, 

vegetation, has both direct and indirect effects on soils, is an efficient biomass 

generator and is a dominant factor in reclaimed ecosystems (Frouz et al., 2013). For 

better soil recovery effects, plants selection, species diversity and richness are 

important factors that determines the potential of reclamation (Wali, 1999). On the 

other hand, soil attributes, such as ample rooting media, proper aeration, and adequate 
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moisture and nutrient supply are important for the growth of the vegetation (Rodrigue 

and Burger, 2004). Although there is no uniform standard to reflect the plant growth 

and minesoil property relationship, land productivity can be used as a clear indicator 

to assess the effect of soil-plant interaction, and the comparison of it between the 

mined sites and non-mined sites and the non-forestland are necessary. 

6.4. Land use options 

The recovery effect of minesoils determines the land use potential. The 

establishment of various land-use types, including grassland, forest, cropland, 

rangeland, wildlife habitat and recreational land, is encouraged in RMS (Shrestha and 

Lal, 2006). Although the final use of reclaimed land depends on the local needs, the 

success of reclamation depends on the prevailing ecological conditions (Wali, 1999). 

The artificial effect plays a greater role than the natural effect in agricultural systems. 

However, when comparing forest systems with agriculture systems, the situation is the 

opposite. Based on the target of cultivation practices, different operations should be 

applied. For agricultural use, crop rotations and tillage cannot be neglected. One 

successful rotation is 1 year of sweet clover and grass, 1 year of winter rye, and 4 

years of alfalfa and grass. Soil tillage operations should be minimized to avoid 

compaction and structural homogenization (Krummelbein et al., 2012). Deep plowing 

at the beginning of reclamation and after 3 years of reclamation is recommended 

(Krummelbein et al., 2012). For forest reclamation, proper ameliorations such as deep 

loosing and fertilizer application are necessary, as well as the measurement of tree 

species and density of forests. However, compared to agricultural cultivation, forest 
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sites can only be ameliorated during site construction and before or when the trees are 

planted (Krummelbein et al., 2012). 

The design of the post-mining landscape is part of regional land-use planning. The 

integration of trees with agricultural crops and/or livestock either simultaneously or 

sequentially can be beneficial, and agroforestry is a sustainable and environmentally 

friendly land-use system that improves socio-economic and cultural welfare without 

competing with traditional agriculture or forestry (Krummelbein et al., 2012). 

7. Conceptual model of five phases of reclamation and future studies 

7.1. Five phases of reclamation on minesoils 

The reclamation practice of minesoil can be divided into five phases: geomorphic 

reshaping, soil reconstruction, hydrological stability, vegetation restoration, and 

landscape rebuilding, among which soil reconstruction is the core phase. The five 

phases of reclamation should be viewed not as a simple combination of separated 

steps, but as a systematic process. 

(i) Geomorphic reshaping. In reclamation practices, geomorphic reshaping is a 

critical step of high-quality reclamation, as it is the foundation for all following 

reclamation phases (Macdonald et al., 2015; Toy and Chuse 2005). At microsite scale, 

not only will the RMS properties influence early topographic development, butthe 

suitable soil textures, placement and arrangements, will also help improve the stability 

of reshaped landform. Moreover, the creation of undulating or hilly surfaces will 

influence early ecosystem development as well as future trajectories (Macdonald et al., 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

2015) (#1 in Fig. 3). 

(ii) Soil reconstruction. The process of soil reconstruction focuses on decreasing 

negative effects by limiting factors such as compaction, acidity, soil carbon loss, 

therefore, both natural regeneration and artificial amendments will benefit this process. 

One major target of soil reconstruction is to restore RMS quality and productivity, 

thus the use of organic amendments is favorable for RMS re-establish nutrient cycling 

and development processes.  Salvaging topsoil, litter layers, seed pools and coarse 

woody debris and placing these materials on the surface of reclaimed mined sites are 

encouraged to restore soil organic matter and nutrient pools, and discourage exotic, 

invasive plants (Burger, 2011) (#2 in Fig. 3). 

(iii) Hydrological stability. Due to the close relationships between and among soil, 

water and vegetation, the hydrological stability also links soil reconstruction and 

vegetation restoration together. Vegetation removal causes hydrologic effects such as 

sediment transport (causing erosion), downstream water yields and flooding peaks, 

and soil compaction caused by traditional reclamation techniques need to be paid 

more attention (DeFries and Eshleman, 2004; Zipper et al., 2011). For the 

maintenance of hydrological stability, loosely placing RMS restores hydrologic flow 

paths, allowing water infiltration, storage, drainage, and groundwater recharge 

(Burger, 2011). Appropriately designed reshaped landforms and landscapes 

redistribute moisture, readjust water movement and maintains hydrological 

equilibrium (Macdonald et al., 2015). Moreover, established vegetation promotes the 

development of infiltration/runoff patterns, and prevents on-site effect like surface 
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runoff and off-site effect like stream erosion (Toy and Chuse 2005). Thus, an 

integrated management of topography, RMS, water, vegetation and landscape is 

required to achieve effective control of erosion and sedimentation in reclaimed mining 

areas and their surroundings (Zapico et al., 2018) (#3 in Fig. 3). 

(iv) Vegetation restoration. The importance of vegetation has been verified by 

reclamation practices (Frouz et al., 2013; Macdonald et al., 2015; Zipper et al., 2011; 

Zipper et al., 2013). Complete plants community will be a function of landform 

development, RMS condition, hydrological restoration and landscape design. The 

restoring of RMS capabilities and plants productivity also helps to provide broader 

ecosystem services. The plant-soil interaction initiates nutrient cycling and the 

development of soil biota, and improves infiltration and soil water-holding capacity. 

Further, as soil conditions on reclamation sites are often highly variable, planting a 

mixture of tree species is often advisable, and allows the developing forest to build 

resistance and resilience to pests and other stressors (Macdonald et al., 2015). Plant 

species composition also provides of a variety of potential habitats and allows the 

developing forest to build resistance and resilience to pests and other stressors 

(Parrotta et al. 1997a; Macdonald et al., 2015). In addition, the establishment of 

vegetation might be slow, but it improves surface conditions by the interactions 

between soil and plants (#4 in Fig. 3). 

(v) Landscape rebuilding. Geomorphic reshaping and landscape rebuilding are 

discussed at microsite scale and landscape scale respectively (Macdonald et al., 2015). 

Rebuilt landscapes can be sustained through effects of changes in topography (e.g. 
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land consolidation), hydrological stability (e.g. water movement and erosion risk), soil 

properties (e.g. physical, chemical and biological properties), and vegetation 

establishment (e.g. richness and diversity). Furthermore, through gardening and 

aesthetic methods, landscape rebuilding greatly improve minesoil properties and 

provide multiple ecosystem services (#5 in Fig. 3). 

7.2. Future studies 

RMS, the main subject of this review, is considered as the core element in the 

mining system that is easily affected by mining and reclamation processes. Traditional 

research on RMS produced better benefits from reclamation practices. Studies of the 

physical, chemical and biological properties of RMS provide specific suggestions on 

soil amendments. However, the thorough application of new technologies at 

reclamation sites is inadequate, and a full acquisition of knowledge in terms of RMS 

is still constrained by the lack of thorough studies on the minesoil system and other 

systems in mining areas. Increasingly, five phases of reclamation have been well 

established and authenticated in a 30-year reclamation practice in China. With the 

application of new technologies and the five identified phases, further research needs 

related to RMS arise (Fig. 3). These include: 

(1) Attach importance to the systematic analyses of 

soil-water-vegetations-landscape interactions: Ecosystem services in minelands are 

based on the analysis of minesoil subsystems and other subsystems such as water, 

vegetation, and landscape. Not only do the mechanisms of component interactions 

need to be understood but also value of ecosystems need to be taken seriously. 
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(2) Improve the RMS monitoring technology: The application of non-destructive 

detection technology such as computed tomography (CT) for RMS monitoring at 

micro- and meso-scale provide solutions for the disturbed soil reconstruction. Further, 

the application of remote sensing (RS), unmanned aerial vehicle (UAV) and 

ground-penetrating radar (GPR) can be used to meet the monitoring of minelands 

needs at macro-scale. 

(3) Enhance the aesthetics of reclamation: The combination of ecosystem and 

landscape is inadequate to further management and development, the aesthetics of 

reclamation that assist with landscape rebuilding and management are encouraged. 

(4) Expand the RMS research on macro-scale: Traditional RMS researches paid 

more attention on the micro- and meso-scale. With the further advance in mineland 

ecosystem service research, the RMS macro-scale studies become a trending. Thus, 

such expand on research scale can bring broader topics of RMS studies at multi-scale. 

(5) Embrace the SDGs: The UN SDGs allows soil science to demonstrate its 

relevance for realizing a sustainable society by 2030. Soils are at the heart of the 

SDGs and the unique role of soils in influencing use of other resources validates the 

efforts of the scientific community towards integrated resource management. Facing 

all challenges with new solutions, minesoil studies will contribute and extend the 

scope of soil science. 

8. Conclusions 

Minesoil recovery is a worldwide topic that has attracted the attention of 
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scientists’ for decades. The processes of surface coal mining inevitably cause the 

degradation of minesoils. Factors such as soil compaction, contamination, weathering 

and bioturbation result in drastic changes in the soil horizon, texture, hydraulic 

properties, and productivity. Inappropriate mining and reclamation measures may 

aggravate the minesoil functional deterioration. Previous studies on minesoils 

emphasized the specific aspects of soil properties that provide useful information for 

soil reclamation. The complexity and vulnerability of mining areas make the study 

and practice of reclamation difficult; therefore, more comprehensive studies are 

needed. In most mining sites, the goal of RMS recovery is to generate a forestry or 

agricultural system. The RMS system, natural system, and anthropogenic system are 

interrelated. This combination of different management systems provides many 

benefits, especially in severely damaged mining areas. Both economic yield and 

environmental protection are encouraged in modern reclamation practices. In addition, 

more attention should be paid to the natural and artificial effects on the 

comprehensive process of mining and reclamation. 

Experimental studies have shown that mining results in increased soil bulk density, 

decreased soil aeration, available water, organic matter and biomass, and variations in 

soil pH. The causes of minesoil property changes are artificial (heavy machinery 

compaction, contamination, etc.) and natural (weathering). Although reclamation 

helps RMS regain equilibrium, the processes occur over long timescales and do not 

ensure the system will recover to its original state. In spite of an increasing number of 

articles on the effects of mining and reclamation, there is an urgent need to apply new 
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concepts and multiple measures in reclamation studies and practices. The five phases 

of reclamation provide a powerful tool and guidance for understanding soil 

reclamation. Scientifically sound papers on (i) new concepts and methods to assess 

mining-induced soil degradation, (ii) new strategies for reducing soil degradation and 

(iii) systematic studies on RMS are particularly necessary for the near future. 
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Table 1 Effects of mining and amendment process on soil properties. 

perties 

Soil 

depth 

(cm) 

Undisturbed soil 

(US)/ Control 

group (CG) 

Reclaimed 

soil 

Mining 

effects 

Amendment 

effects 

Years after 

reclamation 
Land use/Plant References

        

ent (%) 

0-45 2.2 (US)  52.4 Increase  19 Forest–shrub–grass Wang et al., 2015

0-12 9.4 (US) 40.5 Increase  25 Nonagricultural land use Turman and Senci

 (g cm-3) 

0-15 1.17 (US) 1.29-1.42 Increase Decrease 28 Pasture, hay, forest Shrestha and Lal

0-20 1.65 (CG) 1.35-1.50  Decrease 15 Shrub Fu et al., 2010 

0-10 1.52 (CG) 1.53  Decrease 37 Crop Kolodziej et al., 2016

0-15 1.29 (CG) 1.46  Increase >22 Crop Rahe et al., 2015

0-15 1.41 (US) 1.69 Increase  <1 Grassland Shrestha and Lal

0-40 38.35-40.11 (CG) 40.92-50.19  Increase 15 Shrub Fu et al., 2010 

0-40 51 (CG) 62  Increase 25-30 Shrub Cejpek et al., 2013

ng capacity (%) 

0-10 30.38 (CG) 34.95  Increase Untold Crop Sen and Kumar, 2016

0-20 33.2 35.1  Increase 16 Forest Ahirwal and Mai

0-40 63 (CG) 55  Decrease 25-30 Shrub Cejpek et al., 2013

 (%)e 0-40 29 (CG) 39  Increase 25-30 Shrub Cejpek et al., 2013

on rate (cm h-1) 

0-10 6.55 (CG) 25.23  Increase >22 Crop Rahe et al., 2015

0-10 5.2 (US) 9.4  Increase 26 Pasture Shukla et al., 2004

50 10.4 (CG) 16.5  Increase 13 Forest Clark and Zipper

0-15 1-2 8  Increased 4 Untold Guebert and Gaed

0-20 2.96 (US) 0.28 Decrease  10 Forest Ahirwal and Mai

hydraulic 

S (m d-1) 

0-10 4.0 (CG) 4.5  Increase 37 Crop Kolodziej et al., 2016

15-79 3.2 (CG) 0.3  Decrease 4 Crop Krummelbein et al
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Soil 

depth 

(cm) 

Undisturbed soil 

(US)/ Control 

group (CG) 

Reclaimed 

soil 

Mining 

effects 

Amendment 

effects 

Years after 

reclamation 
Land use/Plant References

0-15 4.6-7.0 (US) 4.9-8.1 Increase  <1 Grassland Shrestha and Lal

0-5 7.7 (CG) 8.3  Increase 8 Plantation Helingerova et al

0-10 7.47 (CG) 7.33  Decrease 18 Forest Li et al., 2015 

0-20 7.4 (US) 8.3  Increase 14 Shrub Yang and Wang, 2

0-15 6-8 (US) 8.1  Increase 10 Forest Shrestha and Lal

 conductivity (dS m-1) 

0-15 0.04-0.30 (CG) 0.23-0.53  Increase 

24-58 

Crop/Grassland Lorenz and Lal, 

Kumar, 2016; 

2004 

0-15 0.04-0.15 (US) 0.12-0.35 Increase  
1-19 

Forest–shrub–grass Shrestha and Lal

al., 2015 

ogen (g kg-1) 

0-20 0.19 (CG) 0.46  Increase 15 Shrub Fu et al., 2010 

0-10 1.79 (CG) 1.54  Increase >22 Crop Rahe et al., 2015

0-15 1.77-2.96 (US) 0.54-1.10 Decrease  <1 Grassland Shrestha and Lal

0-45 2.6 (US) 6.5 Increase  19 Forest–shrub–grass Wang et al., 2015

c carbon (TOC)  0-10 21.97 (CG) 17.27  Increase >22 Crop Rahe et al., 2015

 

0-40 1.41-1.47 (CG) 5.22-5.73  Increase 15 Shrub Fu et al., 2010 

0-15 35.3-65.5 (US) 10.9-29.2 Decrease  <1 Grassland Shrestha and Lal

0-10 11.80 (CG) 10.99  Decrease >22 Crop Rahe et al., 2015

0-15 11.3-15.2 (US) 8.4-12.0 Decrease  <1 Grassland Shrestha and Lal

0-15 4.4 (CG) 11.9  Increase 58 Grassland Lorenz and Lal, 2007

 0-20 3.11 (CG) 9.23  Increase 15 Shrub Fu et al., 2010 

 

0-10 2.93 (CG) 2.55  Increase Untold Crop Sen and Kumar, 2016

0-15 11.4 (US) 24.2 Increase   Crop Kumar and Mait

0-10 8.76 (CG) 8.39  Decrease Untold Crop Sen and Kumar, 2016

0-10 15.58 (CG) 14.79  Decrease Untold Crop Sen and Kumar, 2016
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reclamation 
Land use/Plant References

0-15 101.2 (US) 43.49 Decrease   Crop Kumar and Mait

0-10 2.78 (CG) 2.52  Decrease Untold Crop Sen and Kumar, 2016

0-15 30.5 (US) 7.03 Decrease   Crop Kumar and Mait

0-15 168 (US) 1112.33 Increase   Crop Kumar and Mait

 

0-10 0.06 (CG) 0.03  Decrease Untold Crop Sen and Kumar, 2016

0-15 0.25 (US) 0.51 Increase   Crop Kumar and Mait

0-10 0.85 (CG) 0.63  Decrease Untold Crop Sen and Kumar, 2016

0-15 45.33 (US) 1195 Increase   Crop Kumar and Mait

atter (%) 0-20 0.78 (CG) 1.35  Increase 0.6 Forest Li et al., 2012 

        

e activitya         

g g-1) 0-20 0.27 (CG) 0.10  Decrease 0.6 Forest Li et al., 2012 

g g-1) 0-20 1.39 (CG) 1.77  Increase 0.6 Forest Li et al., 2012 

g g-1) 0-20 1.63 (CG) 1.51  Increase 0.6 Forest Li et al., 2012 

e (U cm-2) 0-5 351 (CG) 1090  Increase 45 Forest Baldrian et al., 20

Dehydrogenase (μg INF g−1 2 

−

0-10 334.6-499.1 (US) 24.3-339.5 Decrease  
Untold 

Grassland 
Claassens et al., 2

Microbial biomass (μg Cmic 0-15 175 (CG) 237  Increase 
22-32 

Forest 
Frouz et al., 2013

Fungal PLFA (μg cm-2) 0-5 0 (CG) 2.5  Increase 45 Forest Baldrian et al., 20

Bacterial PLFA (μg cm-2) 0-5 0.9 (CG) 14.7  Increase 45 Forest Baldrian et al., 20

erial PLFA 0-10 0.04-0.22 (US) 0.02-0.32 Unclear  Untold Grassland Claassens et al., 2

0-30 0.12 (CG) 0.09  Decrease 22-32 Forest Frouz et al., 2013

oups (%) 0-10 31.00-48.65 (US) 20.46-49.22 Decrease  Untold Grassland Claassens et al., 2
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Land use/Plant References

Ergosterol (μg cm-2) 0-5 0.15 (CG) 13.35  Increase 45 Forest Baldrian et al., 20

o flora (g) 0-10 2.93 (CG) 2.02  Decrease 25 Forest Filcheva et al., 2000

0-10 0.75 (CG) 0.39  Decrease 25 Forest Filcheva et al., 2000

m g-1) 0-5 4.3-12.8(CG) 3.3-6.2  Decrease 15-25 Shrub Frouz and Novakov

(castb % of soil 0-15 26.7 (CG) 23.1  Increase 
22-32 

Forest 
Frouz and Novakov

a Soil enzyme activity can be characterized by the amount of catalase, urease, and invertase. 

b According to Frouz et al., 2009. 
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Figure 1 Coal mining and reclamation processes. 

 

Figure 2 Inter-linkages between RMS subsystem and other subsystems. AS and NS represent 

artificial system and natural system respectively, and the marks on the edge of every subsystem 
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show which part of the big systems it belonged to. 

Figure 3 Effects of mining and reclamation processes on soils and interactions among natural, 

artificial and reclaimed mine soils (RMS) systems. The five phases of reclamation indicate the five 

most important amendment factors on RMS. Soil reconstruction is the core of the five phases, and 

all phase are closely connected. AE is artificial effects; NE is natural effects; and the imbalance 

size imbalance on the figure indicates the different contributions. RMS degradation rate will 

decrease as mining processes decrease and reclamation accelerates. 
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