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Abstract We study the relationship between the surface mechanical load represented
by distributed acoustic impedance and the current density distribution in a shear mode
piezoelectric plate acoustic wave resonator. A theoretical analysis based on the theory of
piezoelectricity and trigonometric series is performed. In the specific and basic case when
the surface load is due to a local mass layer, numerical results show that the current
density concentrates under the mass layer and is sensitive to the physical as well as
geometric parameters of the mass layer such as its location and size. This provides
the theoretical foundation for predicting the surface impedance pattern from the current
density distribution, which is fundamental to the relevant acoustic wave sensors.
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1 Introduction
Piezoelectric materials have been used to make acoustic wave resonators as components for

oscillators for a long time, from the early quartz crystal resonators (QCRs)[1–2] to the relatively
recent film bulk acoustic resonators (FBARs)[3] made from ZnO or AlN. They provide frequency
standards for many electronic equipments and are also used as filters for signal processing.
They may operate with bulk acoustic waves[4] or surface acoustic waves[5–6]. During the last
couple of decades, piezoelectric resonators have also been used extensively to make acoustic
wave sensors including mass, fluid, and biological and chemical sensors. Both QCRs[7–12] and
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FBARs[13–16] have been used for sensing. QCRs used for sensing are the well-known quartz
crystal microbalances (QCMs)[17–20]. Most of these sensors are based on the frequency shifts
in the resonators caused by a surface mass layer on contact with a fluid. For the modeling
of frequency-based acoustic wave sensors, the frequency perturbation integral[21] of resonators
provides the theoretical foundation and a convenient tool for calculating device sensitivity.

Some relatively recent acoustic wave resonator based sensors such as fingerprint sensors[22–29]

are used to predict the pattern of the distribution of surface mechanical load that cannot be
described by a simple frequency shift. In these sensors, the distribution of the current density
in the resonators are often used to measure the distribution of the surface load. The modeling
of these sensors presents new challenges. In this paper, we establish theoretically the basic
relationship between the small surface load and the current density distribution in a shear
mode FBAR. Either the shear mode or the thickness-extensional mode can be used for these
applications. We study the shear mode because it is simpler mathematically and is sufficient
to show the effect of interest. The equations of piezoelectricity[4] are used. When the surface
load is a local mass layer, a trigonometric series solution is obtained. The current density
distribution caused by the mass layer is calculated and examined. It is shown that the current
density distribution depends on and is sensitive to the physical and geometric parameters of
the local mass layer. Hence, the current density distribution can be used to predict the location
and size of the mass layer, and more generally, the pattern of more complicated surface load
distribution by superposition.

2 Mechanics model

Consider a piezoelectric plate of polarized ceramics or crystals of class (6mm) (see Fig. 1).
The x3-axis is determined from x1 and x2 by the right-hand rule. The plate is unbounded in
the x3-direction. Figure 1 shows a cross-section. We consider unit thickness in the x3-direction.
The plate is electroded on the major faces at x2 = ±h. The bottom electrodes are small and
identical pieces so that the currents on them can be measured separately for their distribution.
The bottom electrodes are all grounded. The top electrode is under a time-harmonic driving
voltage V (t). The plate is driven into the shear motion described by the displacement field
u3(x1, x2, t) through the piezoelectric constant e15. The top surface is loaded mechanically.
The specific load of a local mass layer is shown in the figure. The effect of the surface load is
described by its acoustic impedance Z23(x1) in general when the motion is time-harmonic. The
two minor faces at x1 = ±a are traction free and are unelectroded.

  

2h0

 

 

Fig. 1 An electroded piezoelectric plate with surface mechanical load

For crystals of class (6 mm) in motions independent of x3, the three-dimensional equations
of piezoelectricity automatically decouple into two groups for (u3, ϕ) and (u1, u2),
respectively[30–32]. What is relevant to the present paper is the so-called shear-horizontal or
anti-plane motions described by u3 = u(x1, x2, t) and ϕ = ϕ(x1, x2, t), where ϕ is the electric
potential. A function ψ[30] can be introduced through ϕ = ψ+ eu/ε, where e = e15 and ε = ε11
is the relevant dielectric constant. Then, the governing equations for u and ψ are[30–32]

c∇2u = ρu,tt, ∇2ψ = 0, (1)
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where ∇2 = ∂2
1 + ∂2

2 is the two-dimensional Laplacian, c = c44 + e2/ε, and c44 is the relevant
shear elastic constant. The nonzero stress and electric displacement components are given by{

T23 = cu,2 + eψ,2, T31 = cu,1 + eψ,1,

D1 = −εψ,1, D2 = −εψ,2,
(2)

where an index after a comma denotes the partial differentiation with respect to the coordinate
associated with the index. The electrodes are assumed to be very thin. Their mechanical effects
are neglected. This is a widely-used approximation for a long time[33–34]. The mechanical effects
of the electrodes such as inertia[35–38] and stiffness[39–40] are well-studied and well-understood,
and can be included when the electrodes are not thin. For the purpose of this paper, the
current density distribution is determined by the mass layer, not the electrodes. Therefore, the
consideration of thin electrodes is sufficient. The surface load is described by an impedance
distribution Z23(x1). Then, the boundary conditions can be written as⎧⎪⎪⎨

⎪⎪⎩
T13 = 0, D1 = 0, x1 = ±a,
− T23 = Z23u,t, ϕ = V (t), x2 = h,

T32 = 0, ϕ = 0, x2 = −h.
(3)

When the surface load is simply a mass layer with density ρ′, its equation of motion for a
differential element of the mass layer is

−T23 = ρ′2h′u,tt = ρ′2h′iωu,t, (4)

where h′ is the mass layer thickness. From Eqs. (3) and (4), we identify the impedance as

Z23 = ρ′2h′iω. (5)

The free charge density on the bottom electrode is given by

σ = D2. (6)

The density of the current flowing out of the bottom electrode is

j = −σ,t. (7)

3 Trigonometric series solution

For time-harmonic motions, we use the following complex notation:

(u, ψ, ϕ, V ) = Re((U,Ψ,Φ, V ) exp(iωt)). (8)

The real and imaginary parts of the complex amplitude of a field are equivalent to a real
amplitude and a phase angle. The real and time-harmonic physical fields are obtained by
taking the real parts of the complex fields according to Eq. (8). In terms of U and Ψ, Eqs. (1)
and (3) become

c∇2U = −ρω2U, ∇2Ψ = 0, (9)

U,1 = 0, Ψ,1 = 0, x1 = ±a, (10)

Ψ +
e

ε
U = V , x2 = h, (11a)

cU,2 + eΨ,2 = −Z23iωU, x2 = h, (11b)
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Ψ +
e

ε
U = 0, x2 = −h, (12a)

cU,2 + eΨ,2 = 0, x2 = −h. (12b)

The general solution to Eqs. (9) and (10) can be obtained by separation of variables[31–32],

U =A
(0)
1 cos(η(0)x2) +A

(0)
2 sin(η(0)x2)

+
∞∑

m=2,4,6,···
(A(m)

1 cos(η(m)x2) +A
(m)
2 sin(η(m)x2)) cos(ξ(m)x1)

+
∞∑

m=1,3,5,···
(A(m)

3 cos(η(m)x2) +A
(m)
4 sin(η(m)x2)) sin(ξ(m)x1), (13)

Ψ =B
(0)
1 +B

(0)
2 x2

+
∞∑

m=2,4,6,···
(B(m)

1 cosh(ξ(m)x2) +B
(m)
2 sinh(ξ(m)x2)) cos(ξ(m)x1)

+
∞∑

m=1,3,5,···
(B(m)

3 cosh(ξ(m)x2) +B
(m)
4 sinh(ξ(m)x2)) sin(ξ(m)x1), (14)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
η2
(0) =

ρω2

c
,

ξ(m) =
m

2a
π, η2

(m) =
ρω2

c
−

(m
2a
π
)2

, m = 1, 2, 3, · · ·.
(15)

A
(m)
1 through A

(m)
4 and B

(m)
1 through B

(m)
4 are undetermined constants. They need to be

determined by the remaining boundary conditions at x2 = ±h in Eqs. (11) and (12). This
can only be carried out in specific cases. The basic and useful case of a local mass layer will
be studied in the next section. Then, more complicated distributions can be predicted by
superposition.

4 Case of a local mass layer

The thickness of a local mass layer is given by (see Fig. 1)

2h′(x1) =

{
2h0, c < x1 < d,

0, else.
(16)

The substitution of Eqs. (13) and (14) into Eqs. (11a) and (12a) yields the following linear
algebraic equations for the undetermined coefficients:⎧⎪⎪⎨

⎪⎪⎩
B

(0)
1 +

e

ε
A

(0)
1 cos(η(0)h) =

V

2
,

B
(0)
2 h+

e

ε
A

(0)
2 sin(η(0)h) =

V

2
,

(17)

⎧⎨
⎩
B

(m)
3 cosh(ξ(m)h) +

e

ε
A

(m)
3 cos(η(m)h) = 0, m = 1, 3, 5, · · · ,

B
(m)
4 sinh(ξ(m)h) +

e

ε
A

(m)
4 sin(η(m)h) = 0, m = 1, 3, 5, · · · ,

(18)

⎧⎨
⎩
B

(m)
1 cosh(ξ(m)h) +

e

ε
A

(m)
1 cos(η(m)h) = 0, m = 2, 4, 6, · · · ,

B
(m)
2 sinh(ξ(m)h) +

e

ε
A

(m)
2 sin(η(m)h) = 0, m = 2, 4, 6, · · · .

(19)
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At the same time, the substitution of Eqs. (13) and (14) into Eqs. (11b) and (12b) yields

− cA
(0)
1 η(0) sin(η(0)h) + cA

(0)
2 η(0) cos(η(0)h) + eB

(0)
2

+
∞∑

m=1,3,5,···
(−cA(m)

3 η(m) sin(η(m)h) + cA
(m)
4 η(m) cos(η(m)h)

+ eB
(m)
3 ξ(m) sinh(ξ(m)h) + eB

(m)
4 ξ(m) cosh(ξ(m)h)) sin(ξ(m)x1)

+
∞∑

m=2,4,6,···
(−cA(m)

1 η(m) sin(η(m)h) + cA
(m)
2 η(m) cos(η(m)h)

+ eB
(m)
1 ξ(m) sinh(ξ(m)h) + eB

(m)
2 ξ(m) cosh(ξ(m)h)) cos(ξ(m)x1)

=ω2ρ′2h′(A(0)
1 cos(η(0)h) +A

(0)
2 sin(η(0)h)

+
∞∑

m=1,3,5,···
(A(m)

3 cos(η(m)h) +A
(m)
4 sin(η(m)h)) sin(ξ(m)x1)

+
∞∑

m=2,4,6,···
(A(m)

1 cos(η(m)h) +A
(m)
2 sin(η(m)h)) cos(ξ(m)x1)), (20)

cA
(0)
1 η(0) sin(η(0)h) + cA

(0)
2 η(0) cos(η(0)h) + eB

(0)
2

+
∞∑

m=1,3,5,···
(cA(m)

3 η(m) sin(η(m)h) + cA
(m)
4 η(m) cos(η(m)h)

− eB
(m)
3 ξ(m) sinh(ξ(m)h) + eB

(m)
4 ξ(m) cosh(ξ(m)h)) sin(ξ(m)x1)

+
∞∑

m=2,4,6,···
(cA(m)

1 η(m) sin(η(m)h) + cA
(m)
2 η(m) cos(η(m)h)

− eB
(m)
1 ξ(m) sinh(ξ(m)h) + eB

(m)
2 ξ(m) cosh(ξ(m)h)) cos(ξ(m)x1)

=0. (21)

Equations (20) and (21) depend on x1. To obtain the algebraic equations for the undetermined
coefficients, we multiply Eqs. (20) and (21) by cos(ξ(n)x1) with n = 0, 2, 4 and so on, and
integrate them over [−a, a]. We also do the same with sin(ξ(n)x1) where n = 1, 3, 5 and so on.
This results in the following linear algebraic equations for the undetermined coefficients:

(c(−A(0)
1 η(0) sin(η(0)h) +A

(0)
2 η(0) cos(η(0)h)) + eB

(0)
2 )2a

=ω2ρ′2h0

(
(A(0)

1 cos(η(0)h) +A
(0)
2 sin(η(0)h))(d− c)

+
∞∑

m=1,3,5,···
(A(m)

3 cos(η(m)h) +A
(m)
4 sin(η(m)h))

2a
mπ

(
cos

(mπ
2
c
)
− cos

(mπ
2
d
))

+
∞∑

m=2,4,6,···
(A(m)

1 cos(η(m)h) +A
(m)
2 sin(η(m)h))

2a
mπ

(
sin

(mπ
2
d
)
− sin

(mπ
2
c
)))

, (22)
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(c(−A(n)
3 η(n) sin(η(n)h) +A

(n)
4 η(n) cos(η(n)h))

+ e(B(n)
3 ξ(n) sinh(ξ(n)h) +B

(n)
4 ξ(n) cosh(ξ(n)h)))a

=ω2ρ′2h0

(
(A(0)

1 cos(η(0)h) +A
(0)
2 sin(η(0)h))

2a
nπ

(
cos

(nπ
2a
c
)
− cos

(nπ
2a
d
))

+
∞∑

m=1,3,5,···
(A(m)

3 cos(η(m)h) +A
(m)
4 sin(η(m)h))

a

(m+ n)π

(
sin

( (m+ n)π
2a

c
)

− sin
((m+ n)π

2a
d
))

+
∞∑

m=1,3,5,···
m=n

(A(m)
3 cos(η(m)h) +A

(m)
4 sin(η(m)h))

1
2
(d− c)

+
∞∑

m=1,3,5,···
m �=n

(A(m)
3 cos(η(m)h) +A

(m)
4 sin(η(m)h))

a

(m− n)π

(
sin

( (m− n)π
2a

d
)

− sin
((m− n)π

2a
c
))

+
∞∑

m=2,4,6,···
(A(m)

1 cos η(m)h+A
(m)
2 sin(η(m)h))

·
(
− a

(m+ n)π

(
cos

((m+ n)π
2a

d
)
− cos

((m+ n)π
2a

c
))

+
a

(m− n)π

(
cos

( (m− n)π
2a

d
)
− cos

( (m− n)π
2a

c
))))

, n = 1, 3, 5, · · · , (23)

(c(−A(n)
1 η(n) sin(η(n)h) +A

(n)
2 η(n) cos(η(n)h))

+ e(B(n)
1 ξ(n) sinh(ξ(n)h) +B

(n)
2 ξ(n) cosh(ξ(n)h)))a

=ω2ρ′2h0

(
(A(0)

1 cos(η(0)h) +A
(0)
2 sin(η(0)h))

2a
nπ

(
sin

(nπ
2a
d
)
− sin

(nπ
2a
c
))

+
∞∑

m=1,3,5,···
(A(m)

3 cos(η(m)h) +A
(m)
4 sin(η(m)h))

( a

(m+ n)π

(
cos

((m+ n)π
2a

c
)

− cos
( (m+ n)π

2a
d
))

+
a

(m− n)π

(
cos

((m− n)π
2a

c
)
− cos

( (m− n)π
2a

d
)))

+
∞∑

m=2,4,6,···
(A(m)

1 cos(η(m)h) +A
(m)
2 sin(η(m)h))

a

(m+ n)π

(
sin

( (m+ n)π
2a

d
)

− sin
((m+ n)π

2a
c
))

+
∞∑

m=2,4,6,···
m=n

(
A

(m)
1 cos(η(m)h) +A

(m)
2 sin(η(m)h)

)1
2
(d− c)

+
∞∑

m=2,4,6,···
m �=n

(A(m)
1 cos(η(m)h) +A

(m)
2 sin(η(m)h))

a

(m− n)π

(
sin

( (m− n)π
2a

d
)

− sin
((m− n)π

2a
c
)))

, n = 2, 4, 6, · · · , (24)

c(A(0)
1 η(0) sin(η(0)h) +A

(0)
2 η(0) cos(η(0)h)) + eB

(0)
2 = 0, (25)



Effects of surface impedance on current density in a piezoelectric resonator 683

c(A(n)
3 η(n) sin(η(n)h) +A

(n)
4 η(n) cos(η(n)h))

+ e(−B(n)
3 ξ(n) sinh(ξ(n)h) +B

(n)
4 ξ(n) cosh(ξ(n)h)) = 0, n = 1, 3, 5, · · · , (26)

c(A(n)
1 η(n) sin(η(n)h) +A

(n)
2 η(n) cos(η(n)h))

+ e(−B(n)
1 ξ(n) sinh(ξ(n)h) +B

(n)
2 ξ(n) cosh(ξ(n)h)) = 0, n = 2, 4, 6, · · · . (27)

Equations (22)–(27) and (17)–(19) form a complete system of linear algebraic equations for the
undetermined coefficients. They are solved on a computer. Then, according to Eq. (7), the
current density of interest can be calculated from

j = iωε
(
B

(0)
2 +

∞∑
m=2,4,6,···

ξ(m)(B
(m)
1 sinh(ξ(m)x2) +B

(m)
2 cosh(ξ(m)x2)) cos(ξ(m)x1)

+
∞∑

m=1,3,5,···
ξ(m)(B

(m)
3 sinh(ξ(m)x2) +B

(m)
4 cosh(ξ(m)x2)) sin(ξ(m)x1)

)
. (28)

5 Numerical results for a local mass layer

For numerical results, consider an AlN[41] resonator with ρ = 3.26 × 103 kg/m3 and c44 =
118 × 109 (1 + i/Q)N/m2, where i is the imaginary unit, and Q is the material quality factor.
A complex elastic constant is used to include material damping. For AlN, the value of Q
ranges from 100 to 700[42–44]. It describes the material damping only. Real devices have other
origins of damping such as air resistance and energy leaking at mounting points. Therefore,
a larger value of Q = 50 is used in the calculations below as a representation of the total
damping. The piezoelectric constants e = e15 = −0.48C/m2. The dielectric constant ε = ε11 =
8.0 × 10−11 F/m. The resonator length 2a = 200 μm, and the thickness 2h = 1 μm[45–47]. The
local mass layer is within (c, d). The mass ratio between the mass layer and the crystal plate
is described by

R′ = ρ′2h0/(ρ2h).

Some of the above parameters will be varied and specified later in individual figures. We use
the following fundamental shear resonance frequency of an unbounded AlN plate as a frequency
unit:

ω0 =
π

2h

√
c

ρ
. (29)

The actual resonance frequency of the resonator in our numerical example is slightly below
Eq. (29) because of the inertia of the surface mass layer.

Numerical tests show that the trigonometric series converges rapidly. With 58 or 60 terms,
the absolute values of the displacement distributions at the plate bottom shown in Fig. 2
are indistinguishable. Therefore, 60 terms are used for the rest of the calculations. The
displacement is large under the mass layer and decays quickly outside the mass layer edges. This
is the so-called energy trapping effect of mass layers in resonators. It can be seen that there are
some small oscillations near the edges of the local mass layer. This is because a local mass layer
is described by a piecewise constant function (see Eq. (16)) with finite discontinuities at the
mass layer edges where a trigonometric series converges with oscillations (Gibbs phenomenon).
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Fig. 2 Displacement distribution showing convergence when c = 60 μm, d = 70 μm, R′ = 0.02,

V = 2V, and Q = 50 (color online)

Figure 3 shows the effects of the mass layer location on the displacement distribution at
the bottom of the resonator. The real and imaginary parts as well as the absolute value of the
complex displacement are all presented for complete understanding. This figure suggests the
possibility of measuring the location of the mass layer through vibration distribution, which
can be realized electrically using the related current density distribution as to be seen in the
following content.

Figure 4 shows the effects of the mass layer location on the current density distribution at

µ µ
µ µ

µ µ
µ µ

µ µ
µ µ

Fig. 3 Effects of mass layer location (c, d) on displacement distribution: (a) real part, (b) imaginary

part, and (c) absolute value, when R′ = 0.02, V = 2 V, and Q = 50 (color online)
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.

. .

µ µ
µ µ

Fig. 4 Effects of mass layer location (c, d) on current density distribution: (a) real part, (b) imaginary

part, and (c) absolute value, when R′ = 0.02, V = 2 V, and Q = 50 (color online)

the bottom of the resonator, which is the main result of the present paper. It can be seen
that the current density is the maximal under the mass layer. More generally, if there are
several local mass layers at different locations, it is reasonable to expect several corresponding
peaks of the current density distribution. Hence, there is correspondence between the surface
impedance distribution and the current density distribution. This provides the theoretical
foundation for measuring the surface mechanical load distribution pattern through the current
density distribution.

Figure 5 shows the effects of various physical and geometric parameters on the current
density distribution. In Fig. 5(a), the current density increases as the driving voltage increases,
which is as expected from the linear theory used. Figure 5(b) shows that for a larger Q or
less damping, the current density is larger because of stronger vibration. When the mass layer
is wider, so is the current density, as shown in Fig. 5(c). When the mass layer is heavier, the
current density becomes smaller, as shown in Fig. 5(d).

6 Conclusions

The relationship between a surface local mass layer and the current density distribution at
the bottom electrodes is established. The current density is large under the mass layer and is
sensitive to its geometric and physical parameters. Thus, the current density distribution is
closely related to the pattern of the surface mass layer or acoustic impedance distribution in
general, and can be used to measure the surface impedance pattern. This provides the basic
understanding of the mechanism of a class of acoustic wave sensors.
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Fig. 5 Effects of (a) V , (b) Q, (c) mass layer size, and (d) mass layer inertia on current density

distribution, when c = 60 μm, d = 70 μm, R′ = 0.02, V = 2V, and Q = 50 unless varied (color
online)
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