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- Abstract

The model used 1is thét of two fluidsfof infinite depth,kwith
the interface initially in the form of a sine wave with amplitude;
small compared to wave length. The fluids are considered Incom—
pressible, and only the linear terms in thé equations of hYdro—  [
dynamics are used. The first four sections discuss the’effects
of surface tension and viscosity;  The fifth gives a few numerical

results to illustrate the main points of the preceding sections.






EFFECTS OF SURFACE TENSION AND VISCOSITY ON
TAYLOR INSTABILITY

Richard Bellman
Ralph H. Pennington

Introduction?

If two different fluilds having a common plané boundary are
accelerated in a direction perpendicular to the boundary, any small
irregularities in the boundary will tend to change in shape. If
the acceleration is directed from the more dense to the less dense
medium, the irregularities will tend to smooth out (in the absence
of external forces). Thus the plane configuration of the inter—
face 1is a stable’one. This can be illustrated by the usual example
of a glass of water sitting at rest. If one considers the force
of gravity to be replaced by an acceleration which produces the
same effect, the water and the air are Undergoing an upwardfaccee
leration. Since the acceleration is from the more dense to the
less dense medium, the air-water interface is stable.

Returning to the general case, if the acceleration is directed
from the less dense to the more dense medium, irregularities’of
the interface will tend tb grow. This is the effeot known as Taylor
instabllity. An example is the case of glasé of water turned
upside down. Here again the force of gravity may be consldered to
be replaced by an upward acceleration. The acceleration is from

the air to the water, and the alr-water interface is instable.

* Thémresults in this paper were obtained in 1951 while both authors
- were in residence at Princeton University. :
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The water, Instead of maintaining a nearly plane lower surface
as it falls, willl tend to Jjet out into long spikes. It is the
formation and rate of growth of these spikes which we wish to
investigate, taking into account the effects of surface tension

and viscoslty.

Sectlon 1: Taylor'!'s Results.

Let us begin by presenting an account of the work done by

Taylor himself 4] (see also [2]). The model used is that of two
fluids of infinite depth. The interface (neg1ect1ng perturbatiohs)\;
is the plane y = 0, the y axis being vertical.k The initial pertur—‘
bation will be of the form cos kx, with amplitude small compared to
wave length. The problem is then two—dimensional, and the true
equation of the interface at any time is'y =’7(x,t), where the func—
tion‘y(x,t) is to be determined from hydrodynamic considerations.
The fluids will be considered to be incompressible, and only the
~linear terms in the}equations7ofwhydrodynam;qs w;;l bgnggeq.

The linearized hydrodynamical equations in either fluld are:

(1) U + vy o= 0
1
(2) ug + =Py =0
1
(3) Ve ¥ 5Py v &+ g1 =0

Here, as usual, u = component of velocity in the x direction,
v = component of velocity in the y directiOn, p - preSSure,'/9’=
density, g = acceleration of gravity, and g, is the upward accelera—

tion of the system.‘ These equations have solutions of the form
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(5) P =p, — (g+te1) Py + O,
where ¢xx + ®yy = 0 and p, 1s the mean pressure at the interface

in the unperturbed condition.

For the upper fluid we take
(6) b, = pe XY £(t) coSIKg
(7) P1 =P, — (&+81) 17 + A (01),
dnd for the lower fluid,
Ky
(8) Os = — Ae £(t) cos Kx
(9) P2 = p, — (g+g1) Fay +/02(¢2)t ,

the lower fluld being the more dense, i.e.,/PZ >‘P1. The above
relations satisfy the conditions that velocities are finite at
vy =0 and y = — 00, and that v, = vs at the (approximate) interface.

The free boundary condition at y =“ﬁ(x,t) is that

(10) <y = n(x,8)) =0 or,

1) HompEy-0 on,
(12) V- qm - NE=0

neglecting the non—linear term,

]

(13) Nt
(14) 7

v = KA f£(t) cos Kx or,

t
KA f° £(t)dt cos Kx
tO
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- The pressures at the interface must satiSfy the condition‘
(15) Py = Dp2.

Substituting from (7) and (9), we have

(16) = (+ga) Pa7] + Pilba)y = — (g+e1) Pa 0] + falbe),  or,
(17) — (g+81)(f2 = f1)AK Lft f(t)dt cos Kx + Pp (-Af'(t)cos Kx)
to ,

— Py (A £'(t)cos Kx) = 0 or,
(18) — (g+81) (fa= f1)AK tft £(t)at — ( Pa + POA £1(t) = O
o
or, differentiating with respect to t,
(19) ~ (g+g1) (L2 = f1) Kf(t) — (P2 + )" (t) =0
so that we may take |
(20) £(t) = sinshant

(this cholce makes the fluid velocity zero at t = 0). From (19),

(21) 2 _ _(etgy) (Lo = K

,Pz + /ﬂ

and the interface is given by
(22) q = KAn~! cos h nt cos Kx

If (g+gy) 1s negative, (21) has a positive root. The dis—
turbance grows like cos h nt, so the motion of the interface is

instable. This instability exists for all positive k, i.e., for
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all wave lengths of the initial disturbance. Note that the smaller

the wave length (= —%E), the more rapid the growth of the dis—

turbance. This limits the use of the above result for arbltrary
disburbances. Since thekdifferential equatlions used were linear,
one would expect to discuss an arbitrary disturbance by Fourier

analysis; Let the surface at time t = O have the equation

o

(23) y = f(x) = %: ay cos Kx

Then at time t, we have

o
(24) y =’;§;,a

3e coshl nt cos Kx

where n 1s essentially ik . [ Eor t # O, the series (20) will
00

diverge unless the convergence.of ; a, cos Kx 1s extremely rapild,

K

since cos hV\jKt grows so rapidly.

Section 2: Viscosity.

The effects of viséosity on the arguments of Section 1 are
clear intultively. Viscosity is not to be expected to remove the
instability, but only to reduce the raté of growth of the amplitude
of the disturbance for any particular frequency. The amount of
this reduction for small wave lengths 1s rather startling, however.
In particular, as’the frequency —> 0o, the rate of growth of
amplitude —> 0.

The model to be used here 1is that of Section 1. The (linearized)

equations governing the motion of an incompressible, viscous fluild



are
(1) U + vy = 0
(2) U, + — p. = (u + u__)
t P X XX yy
(3) vt+—%fpy+g+g1=—4“—(vxx+vyy)

whereﬁ}‘is the coefficlent of viscosity.

These equations are satisfied by
(%) us=-0, = Vyy’ v.=- ¢yk+ Vi

(5)

o
i

po — (e+e1) py + PIO)

provided that
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(6) by + Oy = O, fj—- (x +¥yy) =¥,  or. [, [2].

For the upper fluid we  take

(7} b, = pe XVt oo kx

My y+ht
(8) WV, = Be sin Kx

(9) p1 = Py — (g+81) Ay + P1(®1)t

where

o
(10) mf = K2 4+ L10

1

For tfemlower fluid,
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(11) | P = CeKy+n? cos Kx
mpy+nt _ .,
(12) WYy = De | sin Kx
(13) Pz = P, —'(g+g1')/02’y + P2 (02) |
whe re |
(149 mg = K2 + Lan |

e

In order that the veloclty components remain finite for y ——9»i,a?;

i1t 1s necessary that the real parts of m; and mp be positive.

Let the interface be given by y =‘n(x,t). Then

(15) Y(t = Vi

or

(16) 'ﬁt = K(A+B)ént cos Kx
from which

(17) N = K(A+B)n—1ent cos Kx

The boundary conditions at the interface are

(18) Ug = Up
(19) Vi = vz

AV AVp
(20) — P1 + 2 M4 Syg - " P2t 2Ma —5

av ouyy _ Ave , Ju
(21) M SEb+ SUb) - ( Dre g QU2
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The 1ast’two equations state the equality of the components of
the stress-tensor.
Substitutidn in equations (18) to (21) gives four conditions_
on the constants A, B, C, and D.
From (18),‘
k t

(22) kae™ s1n kx + m;Be”" sin Kx = kce™ sin Kx —-ngent sin Kx

or
(23) KA + myB — DC + mpD = O ‘

From (19),

(24) KAent cos Kx + Bent cos Kx = — kee™t cos Kx + KDent cos Kx
or,
(25) A+B+C—=D=20

Using (20) we have, after some simplification,

(26) [ -(g+é1)(f)2~,ol)K - Pin — 2}(11{211\ + l‘ —(g+g1) (fo—pr )K _ 2/111km1]B

n n

+ Dﬁzn + 2/42K2]C — 2peKmeD 3 0

Henceforth, we will let —(g+gy)(fo—fi)K =4 . Similarly, using

(21) and some algebra, we obtain
(27) 214K2A + 4 (K? + m3)B + 24K2C — e |(K® + mlgl)n = 0

Equations (23), (25), (26), and (27) are linear and homogeneous 1in
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A, B, and D. They have non—trivial solutions if and only if the

determinant of the coefficients vanishes,

1 1 1 ~ 1
K ‘mi ~K My
(28) , | 2 el
2 k2 M (K3+m3) 2LpK? ~po (K2+mg ) | =
g —_ ]011’1—2/“11‘(2' g o QﬂleI ‘/021’1 + 2/4121{2 —2/12ng

This equation reduces to N ,
(29) E—,ﬁ + (P + f"z)n{l [(}HK + pMamz) + (MoK + pymy ):[‘ |
+ Unk E‘(].K +/}/‘2m2:] ]Z}{aK +1,M1m1:l =0

Equation (29), together with (10) and (14), gives a polynomiai
equation of tenth degree in n. Since the roots cannot be directlyl
determined, it will be more profitable to avoild rationalizatlion
and see what information can be obtalined by other means.

In Section 1 we found that n was positive, which implled that

instability occurred, when (g+g;) was negative. There

(30) n2 = _—(g+g1)(P2—F1)K

/H + fe
The value of n which determined chiefly how fast the amplltude

of the disturbance grew was

(31) n = + /“(g+gl)(P2~P1)K
/01 + Fa2



P—-403
-~10—

In the present case, then we expect that when B= —(g+g1) (Fa—F1 )K
is positive, there will be at least one root of equation (29) with

positive real part, and that for this root,

(52) fe(n) < ifﬁ’l%Pé) _ \v//;(gtié)ifﬁ;-fh)K

We shall determine whether equation (29) has a root with posi-

tive real part by considerihg ﬁ a complex variable and applying
the principle of the argument to the right half plane. Soﬁlong -
as n remaiﬂiﬁip the right half plane, the quantities m, =\/K2+ :£%3~’
and mg =\/%2+/£%2—-“'remain on one branch of theilr domain of

values, so we will run into no confusion if we write equation (29)

as

(33) l_——;&-l- (/)1+/02>n2j E“QK +\/}(§K2 +/42f}2n +/(2K + ;!:{% +f"1[01n:]

+ l&nK I/HK +jA§K2 +/*2,02r1[)*2K %? K# +/’~1/Dln] =0

Let us use the contour C consisting of the part of the imaginary
axis between (O,R) and (0,-R) and the semi—circle in the right half
plane with thls segment as dlameter.

If we denote the left-hand side of equation (33) by f(n), the
principle of the argument states that

)

(34) L g dn = i[change In argument of f(n) around C]

at

271 [number of zeros of f(n) within C]
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so0 that
(35) lim Jé;_%%@}l dn = 2wifﬁumber of zeros of f(n) in
R—>o00 ¢ t\B
right-hailf plane]
Now
T/2 ; ,
7 A l(b .
(36) 1im jA { g dn = 1lim ' (Re 7) 1 Rel¢d®
k—> 00, R—> - f(Re™ ")
‘ -r/2
iR e '
+ lim f £ ;r(lf)l) an
~ R—> o0 iR

provided that the limits on the right-hand side exist. Since they
do, we shall evaluate them separately. To evaluate the {irst term,
note that the highest power of n appearing is n5/2. In the limit

this is the only term which will matter, so

/2 T
m £ (ret?) ap = 5/2n/2, 10
er R~ii>00 - “(rel®) tonead R1—i-> 00 J/pe 7 2
| T/2 i@‘}/?‘ : /2 o
= 1lim -i—Wj 2(Re” ")7'" ypelbap = [ 5,2 140 = 5/2 1n
R—> o0 —v?gz (Re™7)- o _,;;2

Hence, in the 1limit the change of argument of f(n) when n
traverses the semicircle 1s Sw/2. The second term'in equation (36)
is 1 times the change of argument of f(n) as n traverses thekimagi—

nary axis from +1 oo to —i 00. This change of argument can be seen

directly.
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Combining the various changes, 1t is not difficult to see
that change in argument of f(n) as n traverses the imaginary axis
is from 5r/% to 37m/4 or -7

Hence

(38) lim f‘%{%‘%‘ dn = 57i/2 + (—1/28)1 = 271
R—> 00 C
Therefore, f(n) has one zero in the right half—plane, which
means that instability does occur for (> 0.
We next ask for an upper limit on the value of the real part
of this root. We note first of all that the root itself 1s real.

For positive real n, f(n) is real and continuous inmn for all k.

Forn =0, f(n) =—-28(M +M2)K < 0. For njt Vehertfe s

f(n) = 4nK [uK +\(;§15K2 +}2f§fgﬂ42}< +\‘4A—%K2 +/LL1/O.16_,7 > 0.

Hence there 1is a positivé real root between n = 0 and n =\/é9y%+f%,;
We already have, then, an upper limit on the root. At the rcot,‘

n <V/5;E:;; . This is Just as we expécted, for the positive valﬁe'
of n when viscosity was neglected (Section 1, Equation (14)) was

We can find an upper bound on this root,which’show3~more~about‘

the nature of the root. To do this, we rewrite Equation {33)'as :

1 1
— o)
(39) [(eive) (Papi )X + (Prsf “]Dlmﬁm T
[

+ 4nK =0
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(bear in mind that g + g; 1s negative). Consider also the comparison

equation

y VK Pyt N 1 o 1 s ouzk - o
(o) [leven) s P)‘+(P‘+P2)21_AK+//€E%+;‘2K+\/j@'kf;6} ey

For any K, the positive root z of (40) must be,greater than the
positive root nmof (39). The second factor of the first term has
been increased, and at a rdot this must be counter balanced by an
increase 1In the second term or a decrease in the first factor of
the first term, both of which require an increase in the root. AFdr
an upper bound on n, then, we have only to give the value of z. We

rewrite (40) as
(41) (fitfz)z? + 22K2 (f1+/2) + (g + 81)(f2 ~ 1) K =0

The positive root is

(42) z = '4H1+ﬁen@'+JUM‘+ﬂ2FK4—Qﬁgﬂﬂ%—ﬁ)Qﬁ+ﬂ)K'
‘ f2+f’1

The most interesting thing about this root is the fact that
it has a maximum for some K. Thus the introduction of viscosity has
eliminated the tendency for disturbances of small wave-length to
increase without bound. We would like to know the value of z at ths
this maximum, since this value will be an upper bound on n for4a11 K.
Differentiating (42) with respect to K and setting dz/dK = O, we’

obtain
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(43) K = g+g1 (102 PI
42(/)&1 +//V~2

Substituting this value in (41), the result is

(44) 2z = =(8+8:) "4i]2/3
f1+f§ f1+/b

This cccurs for

(M-S) K = [;'(g"'gl ) (Fa—ﬂ)] 1/3(P1+F2)1/3
EQV&ﬁpa)g

so that for all K we have

(46) n < [:(g+%1)(P2 fﬂi] /3
2(pusfe) 7 (purp)

One can, of course, make better approximations for n. For
the general case this prooeés does not seem to offer much, since
the general state of affairs 1s now established

A quite complinated but straightforward, calculation shows
that n has only one maximum | ' e

Note that in this present Section one cannot éatisfy'the éon—
dition that the velocities be zefo when t = 0. Apparently because
of the linearization performed, one obtains no motion at all 1f

one attempts to satisfy this condition.
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Sectlon 3: Surface Tension.

We now introduce the effects of surface tensiOh intokthe
arguments of Section 1, [2]. 1t is to be éxpected that the pres—
ence of surface tension'will remove the instability for suffii .
clently small wave lengths. This is indeed the case, as will be
shown. |

To introduce surface tension 1nto,the arguments of;Section 1,

we merely replace equation (15) of that Section by the condition

(1) /02 - /% Tl‘ﬁ&x = Ok

Substituting from equations (7), (9), and (21) of Section 1,

we have

(2) - (e+81) (Po—f1)7] + ;p2(¢2)t - fﬂ(®1)t + Ta Vg = O OP: 

(3) - (g+g1>(f§—f%)-A Kn~t sinhl nt cos Kx —-(f}+f%)An sinhl’nt cos Kx
B - - °%° ol sintlont cos Kx = 0

so that

(4) n? = —(eg+e1) (fo—f1) K Ty K3

fﬂ +'f2 B fﬁ *—f@

The condlition given for Taylor Instability was that g + 81 be
negative. But we see from equation (4) that the amplitude of the

initial disturbance grows only when

(5) — (e+g1) (fe—F1) K — T:K® S 0

Pé + fi ; fﬁ + Pz
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or

(6) K <\// - (8+g1%(,2—k1)

1

or

(7) ”)\>,21?/ s
‘ —(g+g1)( 2= 1)

where A = —%I—' is the wave—length of the initial disturbance.

Thus for wave—lengths smaller than those satisfying condition (7),
there 1s no instability’ W ’
Another fact of importance is expressed by equation (4). Since
the right-hand éide has an absolute maximum, there is a "most dan%
gerous frequency," i.e;, a frequency for which the amplitude of
the disturbance grows most rapidly.
The most dangerous frequency 1s that frequency for which n, or

n?, is a maximum. At this frequency, then,

8 j (g‘gl)(l 2 fi) 7{ | ]-"1 K3 — O

from which

(9) K = - (g+g1) (P2-01) -

1
=

This explains the hanging of water droplets on the underside of a
horizontal surface, such as a ceiling. Such a droplet 1s underg
going an upward acceleration of 980 cm/sec® and will tend to drip
because of Taylor 1lnstability unless its effective wave—length is
too small to satisfy (7). For water, the critical wave-length 1s
about A= 27 /74/890 = 1.73 cm. Droplets of larger diameter will
tend to drip, whlle smaller ones will tend to hang. (Actually,

of course, the true critical diameter will be different because of
circular symmetry, etc., but the above at least contains the prin-—
ciple involved.
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Substituting this value in equation (4), we have

(10) n® = 2 l:-(g+g1 ) (/Dg——f\l )j 3/2
3\/371-{; /02 + [Ol

It is remarkable to note the small effect which the numerilcal
value of the surface tension has on the rate of growth of ampli-—
tude. Although it is the quantity which places a 1limit on the rate
of growth of amplitude, it is felt numerically only in the one-—

fourth power, as equation (10) shows.

Section 4: Viscosity and Surface Tension.

In this Section we comblne the results of the two preceding
to give an over-all picture including both surface tension and
viscosity. We would expect that as in Section 3, there would be
no instability for small wave lengths; and that for longer wave
lengths, the rate of’growth‘of amplitude of the disturbance will be
less than that given in Section 3. | |

The procedure will be to take the arguments of Section 2, where
viscoslty 1s considered, and alter them to include the effects of
surface tension. To do this we must replace equation (20) of

Sectlon 2 by

D Bvy S/
(1) —p2 + 2 Mo + P -2 = - T ST/

oy N

Substitution in this equation from equations (7) — (17) of Sectlon 2

yields




P-403
~18-

l:- i + Pin + 2/&1’1{2 IA + ]:—— —%— + 2/*1sz]13
+ [—— 2/LL2K2 — ,021'1 C -+ 2/-42Km2D = O,

where a = p(g+81)(€2—(ﬁ)K — T1K3.

The other three conditions on A, B, C, and D are the same as those

in Section 2, namely:

(3)

and D.

A+B+C~-D=020

(equation (25) of Section 2)

KA +my B - KC + moD = 0O

(equation (23) of Section 2), and

2 JyK2A + 4 (K2 + m3)B + 2 MeK3C — e (K2 + mB)D = O

(equation (27) of Section 2)

Equations (6) — (9) are linear and homogeneous in A, B, C,

They have non—trivial soiutions if and only 1if the deter=MR

minant of the coefficients vanishes,

.

-1
1 1 1 1
K mi -K Mo
2 M K2 M (KP+m% ) 2 BK? =M (K2+mE ) = O
~ & & prnt2pm K2 - %-+gpixm1 | -epgxzafén 2MzKmp
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This equation reduces to

(7) [} X + (P1+fé)n€] [@#1K +;M2m2) +;€ﬂ2K +/ﬂ1m1):] ',
+ 4n K EAIK +‘/«(2m2:] &sz +/Alm1:] =0 |

This 1s precisely equation (29) of Section 2 with ﬁg= f(g+gi)(ﬁz—f%)K
replaced by o = —(g+g1)(f§—fﬁ)K — T1K3. 1In Section 3, where sufe
face tensilon alone was considered, we found stability for £ < O
and instability for o« > 0. We shall show that these conditions still
hold. |

For a.> O, the result is immediatekfrcm Section 2. Para—

phrasing the results of Section 2 for o > O instead of €§> 0, we

have: for o« > 0, equation (7) (where Mym; ﬁAk?K2+fﬁfﬁn and

Mamz =\ZL§K2+F2F2H—3 has just one root with stitive real part. This
root is itself real and is less thah\/d/ﬂl+f§ . We will return
to the problem of a better estimate of this root after proving
stability for « < O. | |

To establish stablility for « < 0, we again apply the principle
of the argument, as in Section 2. The result is established by a
series of straightforward but laborious arguments which we shall
omit.

We turn now to the instable case, « > 0. We found that in this

case the equation
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@ [+ (A4 peind]

1 1 ]
+ - ;
- [/ﬁK +/p8K% + pafen MoK +\//A§K2 + My fin
+ 4nK = O
had one posltive root.

There are two immediate upper bounds for this root. The first,

already given, is

(9) n <, /..___P‘_.._ = \/ —(gtg1) (Fo—fL)K — T1K®
f)l +f)2 : ' /‘31 +/(>2 |

and for all X,

' Va2 [(e+ea) (Pa—py) T2
(10) n < 537" T}”(Pﬁ,ﬁgil/é

Relations (9) and (10) state merely that the rate of growth
when both viscosity and surface tension are considered is less than
that when surface tension alone 1is considered. ’

The second upper bouhd on n comes from‘comparison‘of (8) with

equation (40) of Section 2. Since

(11) o = —(g+81)(P2-fﬁ)K - T1K3 < (g+81)(F;—fﬁ)K,

the root of (8) must be less than that of equation (39) of Section 2
for given K. This may be seen in the following way. Suppose the
value of « in (8) 1is increased. The first factor of the first term

tends to become more negative. Ar increase in n will decrease both
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factors of the first termyand incfease the second term, to
counterbalance the change in « Thus the root of equation (40)
of Section 2 is an upper bound on the root of (8). This is merely
a statement of the physical fact that the rate of growth when both
viscoslty and surface tension are considered is less than that
when viscosity alone is consildered.
From the study made of equation (39)'in Section 2 we can give

an upper bound for the root of (8), namely,

(M + 22K 4V ( + pBRKE — (gegl) (PE—F1) (Perfi)K
(fé + P1)

(12) n <

and for all K,

o [eten) (Pe—p 02
1
(13) n < 2(P1+f2)1/3(f‘1+f§)173

The upper bounds on n given by (9), (10), (12), and (13).w111
not usually be of great practical value. TFor particular cases,
numerical methods must be used.

A 1little can be said about “he frequency for which (8) has
maximum root. The effect of viscosity is to shift the maXimum toward
smaller K, or greater wave lengths. Furthermore, n has a uniquek

maximum as a function of K.
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Section 5: Numerical Examples.

In order to demonstrate the effects of surface tension and
viscosity, we give some examples forkordinary fluids. k

Example . If the two fluids involved are air and water, sur—
face tension would be expected to play an importént role 1n the

development of Taylor instability. We use

(1) fair = 0

(2) fwater = 1 g/cc

(3) Ty = 74‘dyneé/bm

(4) g+ gy = -2 x 10* cm/éeégﬁz —20g

Figure 1 shows values on n vs. k when surface tension is con—

sidered and when 1t 1s neglected. The corresponding equations are:
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= 2:10* K — 74k% and,

(6) n? =2 x 10%* K

For the surface tension case, n has a maximum of about 355
at K = 9.5 (A= 0.66 cm) and drops to zero at K = 16.4 (A= 0.38 cm).
The deviation from the no-surface tension case is indistinguishable |
for K <3 (Hn > 2.1 cm),

Experiments have been made by Lewis [3] for accelerations on
the order of that used above, at wave-lengths on the order of cne

centimeter. However, the published results are not in a form which
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allow comparison with those given above. Itfwéuld appear that
experimental verification of the effects of surface tension should’
not be difficult to obtain with appafatus like that used by Lewis.
Example 2. If the two flulds involved are air and glycerine,
becth surface ténsion and viséosity would be exXpected to play an

important role in the devélopment~of Taylor instability. We use ,,'
(7) Pair = 0

(8) Fglycerine = 1.26 g/cc

(9) Mair = 0

(10) /iglycerine = 14.9 poises

(11) Ty = 63 dynes/cm

(12) g + g1 = 2:10%* cm/sec?

Figure 2 shows values of n vs. k undef‘four different condi—
tions:

1. Neilther surface tension nor viscosity acting.

2 Viscosity only acting. |

2. Surface tension only acting.

i ;

. Both viscosity and surface tension acting.

In this way the relative importance of the two effects for
various wave lengths are made apparent. The corresponding equations

are:

(13) 1. n? = 2-10%K
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(1%) 2. [-2-10*(1.26)K + 1.26n% ] [:v«14-9)2K2+(14'9)(1'26)Er114f9K:]f

+ 4nK = 0
(15) 3. n? = 2-10%*%K — —§§6-K3
X
)2K24+(14.9)(1.26)n

(16) 4. [2-10*(1.26)K + 63K> + 1. 26n2j][:
VI(14.9)

+___.L__]
14.9K
+ 4nK = 0 -

It 1s seen that the viscosity is unimportant for K < 1 (A> 6.28 cm)
and that the surface tension is unimportant for K < 3 (A > 2.1 cm).
Experiments have been made by Lewis [3] for acceleratlons on the

order of that used above, at wave-lengths on the order of one centi-
meter. It would seem that the viscoslty effects would be apparent

in these experiments. This would lead to an observed value of n

much smaller than that preduéfed by the theory for non-—viscous bt
fluids. However, the experiments gave an observed value n greater

than that predicted by the simple theory. Lewis explains this on

the basls of viscous drag on the channelrsides~in the apparatus.
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