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Abstract

Surfactant-laden liquid plug propagation and rupture occurring in lower lung airways are studied 

computationally using a front-tracking method. The plug is driven by an applied constant pressure 

in a rigid axisymmetric tube whose inner surface is coated by a thin liquid film. The evolution 

equations of the interfacial and bulk surfactant concentrations coupled with the incompressible 

Navier-Stokes equations are solved in the front-tracking framework. The numerical method is first 

validated for a surfactant-free case and the results are found to be in good agreement with the 

earlier simulations of Fujioka et al. (2008) and Hassan et al. (2011). Then extensive simulations 

are performed to investigate the effects of surfactant on the mechanical stresses that could be 

injurious to epithelial cells such as pressure and shear stress. It is found that the liquid plug 

ruptures violently to induce large pressure and shear stress on airway walls and even a tiny amount 

of surfactant significantly reduces the pressure and shear stress and thus improves cell 

survivability. However, addition of surfactant also delays the plug rupture and thus airway 

reopening.
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1. Introduction

The motion of a liquid plug in a capillary tube has been widely studied since the pioneering 

works by Fairbrother & Stubbs (1935); Taylor (1961); Bretherton (1961) due to its relevance 

in a variety of natural systems and engineering applications including pulmonary flows 

(Grotberg 1994, 2011), enhanced oil recovery (Afzali et al. 2018), two-phase monolith 

catalyst reactors (Irandoust & Andersson 1988; Kreutzer et al. 2005), gas-assisted injection 

molding (Dimakopoulos & Tsamopoulos 2003), arterial gas embolism (Mukundakrishnan et 
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al. 2009) and lab-on-a-chip systems (Stone et al. 2004; Ladosz et al. 2016). In particular, 

liquid plug formation, propagation and rupture play a crucial role in respiratory airways both 

in healthy (Burger & Macklem 1968; Hughes et al. 1970) and pathological (Hogg et al. 
2004; Griese et al. 2004; Baker et al. 1999; Gunther et al. 1996a,b; Grotberg 2011) 

conditions as well as in treatment of various pulmonary diseases such as surfactant 

replacement therapy (Stevens & Sinkin 2007), partial liquid ventilation (Shaffer & Wolfson 

1996) and pulmonary drug delivery (Yu & Chien 1997; Jensen et al. 1994).

The inside of lung airways is coated with a liquid lining that may undergo a Plateau—

Rayleigh instability and create a liquid plug obstructing gas exchange not only for that 

airway but also for all connected distal parts of the lung (Hughes et al. 1970; Kamm & 

Schroter 1989). The instability occurs when the film thickness is sufficiently large (Bian et 
al. 2010; Tai et al. 2011) and can be intensified by deficiency or disfunction of lung-

surfactant (Halpern & Grotberg 1993) as well as by flexibility of airway walls resulting in a 

capillary-elastic instability (Halpern & Grotberg 1992).

Pulmonary surfactant, which is secreted as a mixture of lipids and proteins by the alveolar 

type II cells into the alveolar space, plays a critical role in the respiratory system (Hall et al. 
1992; Goerker 1998). Surfactant molecules are composed of a hydrophilic head and a 

hydrophobic tail. Once produced, they tend to collect at the liquid film lining the alveoli and 

airways, form a buffer zone between the liquid and gas phases, interact with the cohesive 

forces between the fluid molecules and thus reduce the surface tension. It is known that the 

pulmonary surfactant reduces the work required to expand the lung in each breath by 

reducing the surface tension at the liquid-air interface and also plays a vital role in 

stabilizing the sizes of alveolar gas bubbles that prevents the collapse of alveoli and 

consequent formation of pulmonary edema, and regulating the entire breathing process 

(Clements 1962, 1997). The pulmonary surfactant also critically influences the formation, 

propagation and rupture of the liquid plugs (Grotberg 2011). Thus, the understanding of 

effects of pulmonary surfactant on the airway closure and reopening processes is of 

fundamental importance and physiological significance.

Plug propagation and rupture exert large mechanical stresses and may cause significant 

damage on the pulmonary epithelial cells (Huh et al. 2007; Tavana et al. 2011; Grotberg 

2019). In addition, the abnormal breath sounds known as respiratory crackles are also 

believed to be generated by the transient pressure waves resulting from the plug rupture and 

its interaction with the airway walls (Grotberg 2019). The crackle sounds are routinely used 

as a signature of a wide range of respiratory disorders in clinical practices (Piirila & 

Sovijarvi 1995). Experimental studies conducted on rat and rabbit lungs in vivo by 

Muscedere et al. (1994); Taskar et al. (1997) have revealed that severe lung injuries are 

caused by repetitive airway reopening in surfactant-deficient subjects. Bilek et al. (2003) 

experimentally and computationally investigated the flow-induced epithelial cell damage 

using the progression of a semi-infinite bubble in a narrow liquid-filled channel lined with 

pulmonary epithelial cells as a model for airway reopening. They found that cell damage 

surprisingly increases as reopening velocity decreases. They also showed that cell injury can 

be prevented completely by the presence of pulmonary surfactant supporting the hypotheses 

that the pulmonary surfactant protects the epithelium from the flow-induced injury during 
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the airway reopening. With the aid of computational simulations, they concluded that the 

cell damage is caused most likely by the steep pressure gradient near the bubble front, which 

has been confirmed later by Kay et al. (2004) by showing that cell damage is directly 

correlated with the pressure gradient, not the duration of stress exposure. Yalcin et al. (2007) 

investigated the effects of reopening velocity, airway diameter cell confluence, and cyclic 

closure/reopening on cellular damage using an in vitro cell culture model and demonstrated 

that cell damage increases with decreasing channel size and reopening velocity. Based on the 

experimental results, they concluded that distal airways of the lung are more prone to flow-

induced injury. The cell culture experiments by Bilek et al. (2003) and Kay et al. (2004) 

showed that pulmonary surfactant completely abates the epithelial cell damage by reducing 

the magnitude of flow-induced mechanical stresses resulting from propagation and rupture 

of liquid plugs during airway reopening process, which serves as a motivation for the present 

study that aims to investigate the mechanism of how surfactant reduces this epithelial cell 

damage.

Huh et al. (2007) performed an extensive experimental study using a microfluidic airway 

model and showed that propagation and rupture of liquid plugs generate deleterious fluid 

mechanical stresses that cause significant injury of small airway epithelial cells. They also 

showed that repetition of plug rupture greatly intensifies the cell damage suggesting that 

repeated closure and reopening can cause the epithelial cell to be injured severely even under 

the conditions that would not result in significant damage during a single reopening event. 

More recently, Tavana et al. (2011) experimentally studied the effects of surfactant on cell 

damage using a microfluidic model of small airways of the lung and confirmed the 

protective role of surfactant against flow-induced mechanical stresses in lungs. They found 

that addition of a physiologic amount of a clinical surfactant, Survanta, to propagating liquid 

plugs significantly reduces epithelial cell death and protects the epithelium.

Ghadiali & Gaver (2000, 2003) studied progression of a semi-infinite air bubble in a 

surfactant-doped, fluid-filled rigid capillary tube experimentally and computationally to 

investigate the continual interfacial expansion dynamics as a model for opening of collapsed 

pulmonary airways. They found that the physicochemical properties of surfactant can have a 

large impact on the interfacial pressure drop through modification of the surface tension and 

the creation of Marangoni stresses and thus on the dynamics of the propagation of a semi-

infinite bubble in rigid capillaries. Naire & Jensen (2005) developed a theoretical model to 

study propagation of a semi-infinite bubble through an initially liquid-filled collapsed airway 

lined with deformable epithelial cells. Their model accounts for the flow-structure 

interactions, surfactant transport around the bubble tip and cell deformation. They showed 

that surfactant reduces the pressure required to drive the bubble through a collapsed airway 

by peeling apart the airway walls and this reduction in reopening pressure can potentially 

limit damage via volutrauma.

Liquid plug propagation in capillary tubes has been studied computationally using various 

numerical approaches. Fujioka & Grotberg (2004) performed extensive simulations to 

investigate steady propagation of a clean liquid plug in a two-dimensional rigid channel 

without a plug rupture. They found that a capillary wave develops in the precursor film in 

the vicinity of the front meniscus as the Reynolds number increases, which results in sharp 
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pressure and shear stress peaks in the capillary wave at the front interface. Their findings 

indicate the possibility of a higher risk of epithelial cell injury on the front side of the liquid 

plug compared to the rear side. Fujioka & Grotberg (2005) later included the pulmonary 

surfactant into their computational model and performed simulations to examine effects of 

surfactant on steady propagation of a liquid plug in a similar 2D planar geometry. They 

found that the surfactant accumulates on the front meniscus interface and the surfactant-

induced Marangoni stress rigidifies the interface to make the surface velocity nearly zero. As 

a result, the liquid film near the front meniscus becomes thicker and hence the mechanical 

stresses on the wall are reduced significantly. Fujioka et al. (2008) also extended their model 

to examine the unsteady effects on plug propagation in the absence of surfactant. For this 

purpose, they performed numerical simulations to investigate the effects of precursor film 

thickness on pressure and wall shear stress for a clean liquid plug moving in a capillary tube. 

They showed that the plug length decreases monotonically until it ruptures when the driving 

pressure exceeds a critical value while the plug length increases and it does not rupture 

otherwise. However they did not simulate the plug rupture and post-rupture processes 

because of the limitation of their numerical method. Later, Hassan et al. (2011) 

computationally examined the rupture dynamics but they did not consider the effects of 

surfactant. They used an adaptive Eulerian—Lagrangian method and performed extensive 

simulations to examine the plug rupture in a liquid-lined tube. They showed that plug 

rupture results in a sudden increase of mechanical stresses on the tube wall providing a 

further evidence for significant epithelial cell injuries caused by the plug rupture as observed 

by experimentally by Huh et al. (2007).

In the present study, we computationally examine the effects of pulmonary surfactant on 

liquid plug propagation and rupture in a capillary tube as a model for distal lung airways 

using a front-tracking method (Muradoglu & Tryggvason 2008). The plug is driven by an 

applied constant pressure difference in a rigid axisymmetric tube lined by a thin precursor 

liquid film. The solubility of surfactant is accounted for and the surface tension is related to 

the interfacial surfactant concentration via an equation of state. Then extensive simulations 

are performed to investigate the effects of surfactant on the mechanical stresses that could be 

injurious to epithelial cells such as pressure, shear stress, and their gradients. It is found that 

the liquid plug ruptures violently to induce large stresses on airway walls and even a tiny 

amount of surfactant significantly reduces them, which improves cell survivability as seen in 

microfluidic experiments of Tavana et al. (2011). However, addition of surfactant also delays 

the plug rupture and thus airway reopening.

The remaining of the paper is organized as follows: The mathematical formulation is 

presented and the numerical method is briefly discussed in §2. The physical problem, the 

computational domain, initial and boundary conditions are described in §3. The results are 

presented and discussed in §4 and conclusions are drawn in 5. The numerical is validated in 

the Appendix A for a surfactant-free plug propagation without and with a rupture studied 

previously using different numerical approaches by Fujioka et al. (2008) and Hassan et al. 
(2011), respectively. Grid convergence of the numerical method is also demonstrated in the 

Appendix B.
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2. Formulation and Numerical Method

The governing equations are described in the context of the finite-difference/front-tracking 

method. The flow equations are solved in their dimensional forms but the results are 

presented in terms of non-dimensional quantities. The dimensional quantities are denoted by 

superscript *. We consider a liquid plug moving through a liquid-lined airway of radius R* 

as shown in Fig. 1. The flow is assumed to be incompressible and symmetric about the axis 

of the tube, and the gas and liquid phases are Newtonian fluids. Using a one-field 

formulation of Unverdi & Tryggvason (1992), the incompressible flow equations can be 

written for the entire computational domain as

∂ρ*u*
∂t* + ∇* ⋅ ρ*u*u* = − ∇* p* + ∇* ⋅ μ* ∇*u* + ∇*u * T

+ ∫
A*

σ* Γ* κ*n + ∇s*σ* Γ* δ x* − x f dA*,
(2.1)

where t* is the time, u* is the velocity vector, p* is the pressure field, ρ* and μ* are the 

discontinuous density and viscosity fields, respectively, and A* is the surface area. The last 

term on the right hand side represents the body force due to the surface tension, where σ* is 

the surface tension coefficient that is a function of the interfacial surfactant concentration 

Γ*, κ* is twice the mean curvature of the interface, n is a unit vector normal to the interface 

and ∇s* is the gradient operator along the interface defined as

∇s* = ∇* − n n ⋅ ∇* . (2.2)

The surface tension only acts on the interface as indicated by the three-dimensional Dirac 

delta function δ whose arguments x* and x f* are the point at which the equation is evaluated 

and the point at the interface, respectively. The treatment of surface force as a body force 

was pioneered by Peskin (1977) with the immersed boundary approach. The Navier-Stokes 

equations are supplemented by the incompressibility condition,

∇* ⋅ u* = 0. (2.3)

We also assume that the material properties remain constant following a fluid particle,

Dρ*
Dt* = 0, Dμ*

Dt* = 0,
DDc*
Dt* = 0, (2.4)

where Dc* is the molecular diffusivity of bulk surfactant concentration and 

D
Dt* = ∂

∂t* + u* ⋅ ∇* is the material derivative. The density and viscosity vary discontinuously 

across the fluid interface and are given by

ρ* = ρg*I + ρl*(1 − I), μ* = μg*I + μl*(1 − I), (2.5)
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where the subscripts “g” and “l” denote properties of the gas phase and the liquid phase, 

respectively, and I is the indicator function defined as

I x*, t* = 1  in gas phase, 
0  in liquid phase. (2.6)

The interfacial surfactant concentration Γ* is defined as the amount of surfactant per unit 

surface area. In a static system, as the bulk concentration increases, the surfactant molecules 

are adsorbed at the interface until the interface becomes saturated with surfactant and attains 

the value Γ* = Γ∞* , where Γ∞*  is the maximum equilibrium concentration. In a dynamic 

system, Γ* can exceed Γ∞*  in the region where the surfactant accumulates due to the surface 

flow. The surface tension decreases with the interfacial surfactant concentration 

approximately linearly for Γ* < Γ∞*  and the relationship becomes non-linear for Γ* ⩾ Γ∞* . 

Following Fujioka & Grotberg (2005) and Zheng et al. (2007), the surface tension 

coefficient is related to the interfacial surfactant concentration as

σ*
σs*

=
1 − β Γ*

Γ∞*
 if Γ* < Γ∞* ,

(1 − β)exp β
1 − β 1 − Γ*

Γ∞*
 if Γ* ⩾ Γ∞* ,

(2.7)

where σs* is is the surface tension of the clean interface and β is the elasticity number.

The evolution equation for the interfacial surfactant concentration Γ* was derived by Stone 

(1990). Since the interfacial surfactant evolution equation is solved on a Lagrangian grid in 

the finite-difference/front-tracking framework, it is convenient to write it in the following 

form (Muradoglu & Tryggvason 2008, 2014),

1
A*

DΓ*A*
Dt* = Ds*∇s

* 2Γ* + ṠΓ*, (2.8)

where A* is the area of an element of the interface, Ds* is the diffusion coefficient along the 

interface and ṠΓ* is the source term given by

ṠΓ* =
ka*Cs* Γ∞* − Γ* − kd*Γ*  if Γ* < Γ∞* ,
−kd*Γ*  if Γ* ⩾ Γ∞* , (2.9)

where ka* and kd* are the adsorption and the desorption coefficients, respectively, and Cs* is the 

surfactant concentration in the liquid immediately adjacent to the interface. The bulk 

surfactant concentration C* is governed by the advection-diffusion equation

∂C*
∂t* + ∇* ⋅ C*u* = ∇* ⋅ Dco* ∇*C* , (2.10)
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where Dco*  is related to the molecular diffusion coefficient Dc* through the indicator function 

as

Dco* = Dc*(1 − I) . (2.11)

The source in Eq. (2.8) is related to the bulk concentration as

ṠΓ* = − Dco* n ⋅ ∇*C*  interface  . (2.12)

The adsorption layer concept developed by Muradoglu & Tryggvason (2008) is used to treat 

mass boundary condition at the interface. The method assumes that all the mass transfer 

between the interface and the bulk takes place in a thin adsorption layer adjacent to the 

interface. In this approach, the total amount of mass adsorbed on the interface is distributed 

over the adsorption layer and added to the bulk concentration evolution equation as a 

negative source term in a conservative manner. Equation (2.10) thus becomes

∂C*
∂t* + ∇* ⋅ C*u* = ∇* ⋅ Dco* ∇*C* + Ṡc*, (2.13)

where Ṡc* is the source term evaluated at the interface and distributed conservatively onto the 

adsorption layer. With this formulation, all the mass of the bulk surfactant to be adsorbed by 

the interface is already consumed in the adsorption layer before the interface. Hence, the 

boundary condition at the interface simplifies to be n ⋅ ∇*C* |interface = 0. This approach is 

easy to implement and has been found to result in a better mass conservation as compared to 

directly imposing the boundary condition (i.e., Eq. (2.12)) at the interface boundary (Irfan & 

Muradoglu 2017).

The flow equations (Eqs. (2.1) & (2.3)) are solved fully coupled with the interfacial (Eq. 

(2.8)) and bulk (Eq. (2.13)) concentration evolution equations using the finite-difference/

front-tracking method (Muradoglu & Tryggvason 2008, 2014). The spatial derivatives are 

discretized using second order central differences except for the convective term in the bulk 

surfactant evolution equation for which a fifth order WENO-Z scheme (Borges et al. 2013) 

is used. A projection method (Unverdi & Tryggvason 1992; Harlow & Welch 1965) is used 

to solve the discretized equations on a stationary, staggered Eulerian grid. The numerical 

method is overall second and first order accurate in space and time, respectively. Note that it 

is straightforward to make the numerical method second order accurate in time but the time 

stepping error is generally found to be negligibly small compared to the spatial error mainly 

due to small time step imposed by the stability requirements.

The liquid-gas interface is tracked using a separate Lagrangian grid which consists of linked 

marker points (the front) moving with the local flow velocity interpolated from the 

stationary Eulerian grid. The piece of the Lagrangian grid between two marker points is 

called a front element. The interfacial surfactant concentration equation, Eq. (2.8), is solved 

on the Lagrangian grid using second-order centered differences for the spatial derivatives 

and a first-order Euler method for the time integration. The Lagrangian grid is also used to 
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calculate the surface tension, which is then distributed onto the Eulerian grid points near the 

interface by using Peskin’s cosine distribution function (Peskin 1977), and added to the 

momentum equations as a body force as described by Tryggvason et al. (2001).

The indicator function is computed at each time step based on the location of the interface 

using the standard procedure (Tryggvason et al. 2001) and is used to set the fluid properties 

in the liquid and gas phases. It is also utilized to compute the bulk surfactant concentration 

near the interface and to distribute the surfactant source terms onto the Eulerian grid in the 

adsorption layer (Muradoglu & Tryggvason 2008).

The Lagrangian grid is restructured at every time step by deleting the front elements that are 

smaller than a prespecified lower limit and by splitting the front elements that are larger than 

a prespecified upper limit in the same way as described by Tryggvason et al. (2001) to keep 

the front element size nearly uniform and comparable to the background Eulerian grid size. 

Restructuring the Lagrangian grid is crucial since it avoids unresolved wiggles due to small 

elements and lack of resolution due to large elements. Note that restructuring the Lagrangian 

grid is performed such that the mass conservation is strictly satisfied for the surfactant at the 

interface (Muradoglu & Tryggvason 2008).

Unlike some other one-field approaches such as volume-of-fluid (VOF) and level-set 

methods, the topological changes due to breakup and coalescence are not handled 

automatically in the front-tracking method (see, e.g. Tryggvason et al. 2011). Although it is 

possible to make it automated using the indicator function (Shin & Juric 2002), we adopt a 

simpler procedure developed by Olgac et al. (2006) and assume that the liquid plug ruptures 

when the distance between the leading and trailing air fingers is smaller than a prespecified 

threshold value, lth. For this purpose, the distance between air fingers at the centerline is 

monitored during the simulations and when the distance becomes smaller than ℓth, the front 

element that is closest to the centerline on each air fingers is deleted and then a new element 

is created to merge two air fingers by connecting the hanging marker points. In the present 

study, the threshold value is taken as ℓth = Δr where Δr is the grid size in the radial direction. 

As shown in Appendix B, the results are not very sensitive to the choice of the threshold 

value as long as it is of order of the grid size.

Front-tracking method is pioneered by Glimm and colleagues (Chern et al. 1986; Glimm et 
al. 1998) and the readers are referred to Chern et al. (1986); Glimm et al. (1998); Unverdi & 

Tryggvason (1992); Tryggvason et al. (2001) for the details of the method. A complete 

description of the treatment of the soluble surfactant can be found in Muradoglu & 

Tryggvason (2008, 2014); Tasoglu et al. (2008). The method has been rigorously validated 

and successfully used to study various flows involving thin films similar to the problem 

considered in this paper, see for instance, Muradoglu & Stone (2007); Olgac & Muradoglu 

(2013a,b). The method is also validated for the clean plug propagation and rupture and the 

results are presented in the Appendix A.
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3. Problem Statement

The physical problem is sketched in Fig. 1. The flow is assumed to be symmetric about the 

axis of the channel so the computational domain has dimensions of R* in the radial direction 

and Lz* in the axial direction. Flow is initially quiescent and the liquid plug is driven by an 

applied pressure difference between the front and the rear air fingers, Δp* = p1* − p2*. The 

plug is initially located at the airway centerline close to the inlet section with the initial 

length of Lpi* . The precursor and trailing liquid film thicknesses far from the plug are denoted 

as h2* and h1*, respectively, and they are initially set to be equal. The initial plug shape is 

approximated by hemispheres of radii of R* − h2* and R* − h1* for the front and rear menisci, 

respectively. The no-slip boundary conditions are applied at the tube wall. The initial 

surfactant concentration in the liquid is prescribed to be C0* and the interfacial surfactant 

concentration is initially in equilibrium with C0*.

At the precursor film far ahead of the plug, the bulk surfactant concentration is fixed to be 

C0*.

The governing equations are solved in their dimensional forms but the results are presented 

in terms of relevant non-dimensional quantities. Following Fujioka & Grotberg (2005), the 

quantities are non-dimensionalized using the length scale ℒ* = R*, the time scale 

𝒯* = μl*R*/σs* and the velocity scale 𝒱* = ℒ*/𝒯* = σs*/μl*. Thus the non-dimensional 

velocity vector, pressure, bulk surfactant concentration and interfacial surfactant 

concentration are defined as u = u*/ σs*/μl* , p = p*/ σs*/R* , C = C*/Ccmc*  and Γ = Γ*/Γ∞* , 

respectively. Note that Ccmc*  is the critical micelle concentration. The relevant non-

dimensional numbers are then defined as

λ = ρl*σs*R*/μl
* 2, χ = Γ∞* / Ccmc* R* , Sc = μl*/ ρl*Dl* , Scs = μl*/ ρl*Ds* ,

Ka = ka*Ccmc* R * 2/Ds*, Kd = kd*R * 2/Ds*, Lpi = Lp*/R*, Δp = p1* − p2* R*
/σs*,

(3.1)

where λ is the Laplace number, χ is the dimensionless adsorption depth, Sc and Scs are the 

bulk and interfacial Schmidt numbers, respectively, Ka and Kd are the dimensionless 

adsorption and desorption coefficients, respectively, Lpi is the non-dimensional initial 

distance between the leading and trailing air fingers, and Δp is the dimensionless applied 

pressure difference.

Our study is focused on modeling plug rupture and airway reopening in adult human lungs. 

This phenomenon is prominent in surface-tension dominated flows, i.e., when the airway 

radius is small enough. Owing to the bifurcation of bronchi and bronchioles, which reduce 

their radii each time as the airway splits, the required conditions are met from the 7th or 8th 

generation on, where the gravitational effects become negligible. Following Crystal (1997), 

we assume R* ∈ [0.05,0.1] cm as a typical range for the airway size of an adult lung airway 

at 9th to 10th generation. Another assumption of our model consists in positing that the 
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bilayer liquid, which lines the airway wall and is formed by mucus and serous, can be 

conceptually homogenized in a Newtonian fluid with intermediate properties. This approach 

has recently been followed by Tai et al. (2011), who took μl* = 0.13 poise, ρl* = 1g/m3 and 

σs* = 20 dyn/cm. The resulting Laplace number is λ = 𝒪(100). We thus assume λ = 100 as the 

reference value.

For the pulmonary surfactants, the adsorption and the desorption kinetics are 

ka* ≈ 1.7 × 103cm3/g ⋅ s and kd* ≈ 1.7 × 10−21/s (Otis et al. 1994; Launois-Surpas et al. 1992), 

whereas the critical micelle bulk concentration Ccmc* ≈ 10−3g/cm3. Agrawal & Neuman 

(1988) measured the surface diffusivity of pulmonary surfactants as 

Ds* ∈ 1 × 10−7, 7 × 10−7 cm2/s. Based on these values, the reference non-dimensional 

absorption and desorption rates are set to Ka = 104 and Kd = 102. The maximum equilibrium 

interfacial concentration has been estimated by Schurch et al. (1989) for the pulmonary 

surfactants to be Γ∞* ≈ 3.1 × 10−7g/cm2. Using this value as a reference, we predict the 

dimensionless adsorption depth to be χ ≈ 0.01. Finally, we assume the elasticity number β = 

0.7 (Otis et al. 1994) and the Schmidt numbers Scs = 100 and Sc = 10 (Fujioka & Grotberg 

2005).

The effects of the surface viscosity and the disjoining pressure are not taken into account in 

the present study. The surface viscosity for the lung surfactant was measured by Meban 

(1978) to be in the range of μs = 2 × 10−7 − 2.2 × 10−5 kg/s. More recently, Rudiger et al. 
(2005) reported that the surface viscosity of natural lung surfactant preparations is below μs 

~ 5 × 10−6 kg/s except for Survanta for which the surface viscosity varies greatly and can 

increase up to μs~ 18 × 10−6 kg/s in very high concentrations. For R* = 10−3 m, the 

Boussinesq number Bq = μs

μlR*  can be estimated to be in the range of 0.2 < Bq < 22. More 

recently, Zell et al. (2014) have shown that the actual values of surface viscosity for common 

surfactants are actually a several orders of magnitude smaller than those measured earlier, 

which suggests that it is reasonable to assume Bq < 1. Thus the effects of surface viscosity 

are expected to be minor as discussed recently by Gounley et al. (2016). We finally note that 

an extremely fine grid is required to resolve the effects of disjoining pressure, which is 

computationally infeasible even in the present axisymmetric simulations.

The elastic nature of airways is another mechanical property neglected in the present study. 

The entire airway tree consists of elastic tubes that become increasingly more flexible and 

compliant in the lower generations (Halpern & Grotberg 1992; Grotberg 2011; Heil & Hazel 

2011). The relative importance of the air-wall elasticity can be characterized by ΓHH =
σs*

R*K*

where K* = E*
12 1 − ν2

hw*
R*

3
 is the flexural rigidity with E*, ν and hw*  being the Young’s 

modulus, the Poisson’s ratio and thickness of the airway wall, respectively (Hazel & Heil 

2003). This parameter represents the ratio of the surface tension forces to the bending 

stiffness of airway wall. Following Halpern & Grotberg (1992), the dimensional values for 
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the 9th-10th generation can be specified as R* = 5 × 10−2 cm, E* = 6 × 104 dynes/cm2, 

hw* = 2.5 × 10−3cm and ν = 0.5, which yields ΓHH = 480 ≫ 1. As seen, the elasticity of the 

airway wall and resulting fluid-structure interactions are likely to be significant and need to 

be taken into account for more accurate modeling of pulmonary flow in the generations 

considered in the present study. Note that Halpern & Grotberg (1992) define another non-

dimensional parameter, ΓHG =
1 − ν2 σs*

E*hw*
, which represents the ratio of surface-tension forces 

to elastic forces and is related to ΓHH as ΓHG = 1
12

hw*
R*

2
ΓHH. Using the same dimensional 

values, we obtain ΓHG = 0.1 conforming the significance of the tube elasticity.

4. Results and Discussion

In this section, simulations are performed to examine the effects of surfactant on liquid plug 

propagation and rupture dynamics. All the computations are performed using tensor-product 

structured grids that are uniform in the axial direction and slightly stretched in the radial 

direction in order to better resolve the liquid film regions between the tube wall and air 

fingers. The stretching is done in such a way that the radial grid size, Δr, is two times larger 

at the centerline than that at the tube wall. The computational domain extends Lz* = 20R* in 

the axial direction and the center of the liquid plug is initially located at zc* = 2.95R*. The 

present numerical method is validated against the previous computational studies of Fujioka 

et al. (2008); Hassan et al. (2011) for a surfactant-free liquid plug propagation without and 

with a rupture, respectively. As discussed in Appendix A, the present results are found to be 

in good agreement with the previous simulations performed using different numerical 

techniques. A comprehensive grid convergence study is also conducted to determine the 

minimum grid size to obtain grid-independent solutions. As detailed in Appendix B, a grid 

resolution containing 96 cells in the radial direction is found to be sufficient to reduce the 

spatial discretization error below 3%. Therefore this grid resolution is used in all the 

simulations presented here.

We first designate a baseline case to facilitate a systematic examination of the effects of 

various flow parameters. Based on the discussions in §3, the baseline case is defined as Δp = 

1, Lpi = 1.0, λ = 100, χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100 and β = 0.7. Only 

one non-dimensional parameter is varied at a time. The bulk surfactant concentration of C0 = 

5 × 10−5 is also used as the baseline value unless specified otherwise. Simulations are first 

performed for the base case and the evolution of the bulk and interfacial surfactant 

concentrations are shown in Fig. 2 before and after the plug rupture at non-dimensional 

times of t = 49.33, 202.39, 240.90, 241.47, 242.10 and 273.85. This figure shows that the 

interfacial surfactant accumulates on the front meniscus interface with a maximum 

concentration located around the stagnation point at the shoulder where both the mechanical 

stresses are expected to be maximum and prone to cause significant damage on epithelial 

cells (Huh et al. 2007). In other words, the interfacial surfactant accumulates where it is 

needed to protect the epithelium before and after the rupture takes place. In this figure, the 

surface velocity is also plotted as dashed lines to show the rigidification effect of the 
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surfactant. Note that the surface velocity is defined as Us* = ur* ⋅ t where t is the unit tangent 

vector at the interface and ur* is the relative velocity of the interface with respect to the frame 

moving with the tip of the leading air finger and the laboratory frame before and after the 

rupture, respectively. The surface velocity is non-dimensionalized as Us = μl*Us*/σ*. As seen, 

the surfactant-induced Marangoni stresses immobilize where the surfactant is accumulated. 

The interfacial surfactant also accumulates on the interface of the trailing meniscus near the 

centerline but with about an order of magnitude smaller concentration compared to that on 

the front meniscus. The effects of the surfactant on the mechanical stresses are shown in Fig. 

3 where the time evolution of the constant contours of the pressure in the plug region are 

plotted side by side for the clean and the contaminated cases. Since the clean plug ruptures 

earlier, the snapshots are taken at times t − trupture = −167.62, −36.70, 0.0, 0.55, 1.15, 1.81, 

3.71, 10.10 and 39.19, where trupture is the rupture time that is 216.41 and 238.54 for the 

clean and contaminated cases, respectively. This figure qualitatively shows that even a small 

amount of surfactant can significantly reduce the pressure on the wall, i.e., the maximum 

magnitude of the wall pressure is reduced as much as 15% and 22% before and after the 

rupture, respectively. In addition, the larger negative wall pressure in the clean case indicates 

that the surfactant-deficient airways are more prone to collapse during the plug rupture 

process. The surface velocities are also plotted as dashed lines in this figure. The 

rigidification effect of the surfactant is better seen in this figure, i.e., the interface velocity 

reduces in the contaminated case as the surfactant accumulates at the interface and the 

interface of the leading air finger becomes almost completely immobilized before the plug 

ruptures. The surfactant-induced rigidification of interface is believed to be the main 

mechanism responsible for stabilization of the thinning film and inhibition of coalescence of 

interfaces (plug rupture) as discussed recently by Soligo et al. (2019).

The effects of the surfactant are quantified in Fig. 4 where the time evolutions of the plug 

length, the maximum difference in wall pressure, the minimum wall pressure and the 

maximum difference in wall shear stress are plotted for the clean and contaminated 

interfaces. Simulations are performed for precursor film thickness of h2 = 0.05 and h2 = 0.07 

to demonstrate how the precursor film thickness influences the plug motion and rupture in 

the clean and contaminated cases. As seen, the plug rupture results in sudden jumps in the 

wall pressure and wall shear stress, and the surfactant reduces the magnitude of the 

mechanical stresses significantly for both values of the precursor liquid film thickness. The 

plug ruptures earlier and the wall pressure and wall shear stress variations become larger 

when the initial precursor film is thinner as also observed by Fujioka et al. (2008); Hassan et 
al. (2011). It is also interesting to see that the surfactant generally delays the plug rupture, 

which indicates that the excessive surfactant delays and may even prevent airway reopening 

as will be discussed in detail below.

We next examine the effects of bulk surfactant concentration on the plug propagation and 

rupture. For this purpose, simulations are performed for various bulk surfactant 

concentrations in the range C0 = 0 (clean) and C0 = 5 × 10−4 (highly contaminated), and the 

results are shown in Figs. 5–7. Figure 5 shows the time evolutions of the plug length (Lp), 

the maximum difference in the wall pressure (Pmax−Pmin) and the maximum difference in 

the wall shear stress (τmax − τmin). As seen, the rupture is delayed and the mechanical 
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stresses on the wall are reduced significantly as C0 is increased, and the rupture is prevented 

completely after C0 ⩾ 5 × 10−4. The distributions of the interfacial surfactant concentration 

(Γ), the Marangoni stress (τM) and the surface velocity (Us) are also plotted in Fig. 6 just 

after the plug ruptures, i.e., at t = trupture with trupture being the rupture time, as a function of 

the arclength (s) measured from the centerline in the clockwise and counterclockwise 

directions for the leading and trailing fingers, respectively. Note that the arclength of the 

trailing air finger is made negative to distinguish it from that of the leading air finger as 

sketched in Fig. 1. When the liquid plug ruptures, a negative arclength denotes a point on the 

interface whose axial location zp is smaller than the axial location of the rupture point 

zrupture. Note that the Marangoni stress is defined as τM* = ∂σ*
∂s* . As seen, the pressure and 

viscous shear stress on the tube wall are monotonically reduced when the bulk surfactant 

concentration is increased mainly due to accumulation of more interfacial surfactant at the 

rear edge of the leading air finger close to the wall. As C0 increases, the interfacial surfactant 

concentration increases on both the front and the trailing meniscus interfaces but the 

increase is more dramatic for the front meniscus. At low concentrations, the interfacial 

surfactant is largely accumulated at the back shoulder of the leading air finger and the 

interfacial surfactant distribution gets wider and eventually covers the entire interface of the 

front meniscus as the bulk concentration increases. The Marangoni stresses oppose to the 

viscous shear stresses, and thus reduce the mobility of the interface, which is known as the 

rigidification effect of surfactant as first explained consistently by Frumkin & Levich (1947). 

The immobilization effect of surfactant is shown in Fig. 6b where the interfacial surfactant 

concentration and surface velocity distributions are plotted for the various values of bulk 

surfactant concentration. As can be seen in this figure, the surface velocity decreases 

monotonically as C0 increases and the meniscus interface is immobilized almost completely 

for C0 ⩾ 2.5 × 10−4. When the plug ruptures, the interface retracts quickly towards the 

airway wall. The effects of surfactant on the retraction of the interface are shown in Figure 7 

where the time evolutions of the minimum radius of the interface Rmin and the snap velocity 

Vsnap defined as Vsnap =
dR min 

dt  are plotted after the rupture. This figure shows that the 

surfactant does not have significant effect on retraction when C0 ⩽ 5 × 10−5 but the 

retraction velocity reduces slightly as C0 is further increased. Figure 8 illustrates the 

variation of the wall pressure and the wall shear stress at various times before and after the 

plug ruptures for a clean (C0 = 0), a mildly contaminated (C0 = 5 × 10−5) and a highly 

contaminated (C0 = 10−4) cases. Since plugs rupture at different axial locations, the axial 

coordinate is shifted by the rupture point zrupture to facilitate a direct comparison. As can be 

seen in this figure, not only the magnitudes but also gradients of the wall pressure and wall 

shear stress become large especially near the leading and trailing menisci and are amplified 

significantly by the plug rupture. Note that the gradients of the mechanical stresses are as 

important as their magnitudes in potentially injuring the cells (Glindmeyer et al. 2012). 

Figure 8 also shows that the surfactant generally reduces both magnitude and gradient of 

mechanical stresses on the wall and its effects are amplified as more surfactant is added to 

the plug liquid. These results confirm the experimental study of Bilek et al. (2003) that the 

flow-induced cell injuries can be abated completely by adding more surfactant into the 

liquid plug. However, the surfactant comes with a side effect: It also delays the plug rupture 

significantly implying that an excessive amount of surfactant may even prevent airway 
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reopening. Therefore there must be a just sufficient amount of pulmonary surfactant for the 

best functioning of the lungs. Note that surfactant reduces the mechanical stresses by two 

mechanisms: (i) The Marangoni stresses due to surface tension gradient, which effectively 

rigidifies the interface, and (ii) the reduction in the Laplace pressure due to the reduction in 

surface tension, which consequently reduces the pressure in the liquid near the plug’s 

meniscus, as seen in Fig. 8.

The elasticity number may be considered as the strength of the surfactant, so it is expected to 

have a similar effect on the plug propagation and rupture as does the bulk surfactant 

concentration. This is verified in Fig. 9 where the results are plotted for the bulk surfactant 

concentration of C0 = 10−4 and various values of the elasticity number while keeping the 

other parameters the same as the baseline case. Note that the bulk surfactant concentration is 

taken to be much larger than the baseline value in order to see significant surfactant effects 

even for a small value of the elasticity number. As seen in this figure, the mechanical 

stresses are reduced and plug rupture is delayed as the elasticity number is increased. Figure 

10 shows that the interfacial surfactant is accumulated and narrowly distributed on the 

shoulder of the leading air finger rendering a large part of the interface nearly clean at small 

elasticity numbers. The distribution gets wider as the elasticity number increases and 

eventually covers the entire back side of the leading air finger resembling the case with an 

excessive bulk surfactant concentration in Fig. 5. The interface mobility is reduced 

monotonically as β increases, and the interface of the leading and trailing menisci 

immobilizes almost completely for β ⩾ 1 showing the rigidification effect of surfactant.

We next perform simulations to investigate the effects of the applied pressure difference, Δp, 

and the Laplace number, λ, on the rupture dynamics for the clean and contaminated cases. 

The pressure difference drives the flow and determines the speed of the plug while the 

Laplace number accounts for the combination of inertia, tube size (curvature), the surface 

tension and viscous effects. Thus they both influence the fluid dynamics of the plug motion 

and rupture. First, Δp is varied in the range Δp = 0.75 and Δp = 3 while keeping all the other 

non-dimensional parameters the same as the baseline case. The bulk surfactant concentration 

is C0 = 10−4 for the contaminated case. Figure 11 shows that both the clean and the 

contaminated plugs rupture earlier as Δp increases. Increasing Δp makes the trailing air 

finger moving faster and thus the trailing liquid film thicker, which enhances the volume loss 

of the liquid plug to rupture sooner. In addition, the mechanical stresses are also intensified 

monotonically with increasing Δp, implying the increased risk of cell injuries during airway 

re-opening process in deep breathing. Addition of surfactant reduces the mechanical stresses 

on the tube wall but it also delays the plug rupture for all the values of Δp as expected. It is 

also interesting to observe that the effects of surfactant are more pronounced as Δp is 

reduced. This can be attributed to the fact that the Marangoni stress becomes more dominant 

over the viscous stresses as flow velocity and thus viscous stresses decrease with decreasing 

Δp. The plug rupture does not occur at very low values of Δp. We then carry out 

computations to investigate the influence of the Laplace number on clean and contaminated 

plug rupture dynamics in the range 20 ⩽ λ ⩽ 1500 with the other parameters held constant 

at their baseline values. The Laplace number is varied by changing the density of the liquid 

to show the effects of inertia. Figure 12 shows the effects of the Laplace number on rupture 

time and mechanical stresses on the airway wall. The inertial effects are clearly seen in 12a 
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especially in the initial stage at high λ values, i.e., λ ⩾ 500. The plug rupture is delayed as 

λ increases and the plug rupture does not occur after about λ ⩾ 2000 in the present case. 

The effects of inertia are better reflected on the retraction of interface after the rupture as 

shown in Fig. 13. As seen, the retraction velocity Vsnap decreases significantly as λ 
increases mainly due to enhanced inertial effects. In general, the mechanical stresses 

increase as λ increases. The surfactant has a similar effects as before: It reduces the 

mechanical stresses and slows down airway reopening.

Further simulations are performed to examine the effects of the non-dimensional adsorption 

and desorption coefficients (Ka and Kd), Schmidt numbers (Sc and Scs) and the 

dimensionless adsorption depth (χ). The non-dimensional adsorption and desorption 

coefficients are varied together such that their ratio is constant at Ka/Kd = 100 and the other 

parameters are fixed at their baseline values. Note that the vanishing values of Ka and Kb 

correspond to the insoluble case that will be discussed later separately. Simulations are 

performed for the values of (Ka, Kd) = (103,10), (104,102), and (105,103), and the results are 

shown in Figs. 14 and 15. As seen in Fig. 15, the surfactant concentration is reduced 

significantly at the interface of the leading meniscus as Ka and Kd are increased since the 

concentration exceeds the equilibrium value (e.g., Γeq ≈ 0.01) there and is released back into 

the bulk liquid more quickly at higher values of Ka and Kd. As a result, the overall effect of 

the surfactant is decreased as Ka and Kd are increased (Fig. 14). We then investigate the 

effects of molecular diffusivity. Enhanced molecular diffusivity smooths the interfacial 

surfactant distribution more effectively and thus reduces the Marangoni stresses. It is 

therefore expected that the effect of surfactant increases as the Schmidt number increases, 

which is confirmed in Fig. 16 where the simulation results are shown for the Schmidt 

numbers in the range 1 ⩽ Sc ⩽ 100 and 10 ⩽ Scs ⩽ 1000 together with the results obtained 

for the clean case. This figure shows that the plug rupture is delayed and the mechanical 

stresses are reduced as the Schmidt number is increased. The adsorption depth characterizes 

the depth beneath the interface diluted by surfactant adsorption and it decreases as the bulk 

surfactant concentration C0 increases. Therefore increasing χ is expected to have a 

qualitatively similar effect as decreasing C0. Figure 17 shows the effects of the adsorption 

depth on the plug rupture and the maximum difference in wall pressure in the range 0.001 ⩽ 
χ ⩽ 1. As seen, the plug rupture is slightly delayed and the maximum difference in wall 

pressure is slightly decreased with increasing χ. Although not shown here, the shear stress is 

also reduced slightly as χ is increased.

In many theoretical and numerical studies, surfactant solubility is ignored to simplify the 

analysis. We finally examine the effects of surfactant solubility on plug rupture dynamics. 

For this purpose, the adsorption and desorption coefficients are set to zero, i.e., ka* = kd* = 0, 

and computations are carried out for the bulk surfactant concentration in the range 10−5 ⩽ 
C0 ⩽ 5 × 10−4. The results are shown in Fig. 18 where the fully soluble simulation results 

obtained using the baseline parameters are also plotted to facilitate a direct comparison. As 

seen, the surfactant solubility becomes more pronounced as the bulk surfactant concentration 

increases. Since the overall effect of surfactant is small at a very small bulk concentration 

(e.g., at C0 = 10−5) as seen in Fig. 5, it is safe to say that the surfactant solubility is generally 

important and should be taken into account in a plug rupture analysis.
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5. Conclusions

Effects of surfactant on a liquid plug propagation and rupture in a liquid-lined tube are 

studied computationally as a model for airway reopening. The flow equations are solved 

fully coupled with the bulk and interfacial surfactant concentration evolution equations in 

both phases using a front-tracking method. The numerical method is validated for a clean 

liquid plug propagation without and with a rupture against the previous numerical studies of 

Fujioka et al. (2008); Hassan et al. (2011), respectively. Then extensive simulations are 

carried out to investigate the effects of the bulk surfactant concentration, the elasticity 

number, the applied pressure difference, the Laplace number and surfactant solubility on 

liquid plug rupture dynamics and the flow-induced mechanical stresses on the tube wall.

It is found that surfactant generally reduces the pressure and shear stress on the tube wall 

before and after the plug rupture occurs and this effect is more pronounced as either amount 

or strength of surfactant increases, which confirms the protective role of pulmonary 

surfactant for the epithelial cells. The pre-existing interfacial surfactant adsorbed on the 

precursor film is swept by the front meniscus as the plug moves through the tubes and the 

surfactant accumulates on the front meniscus interface with the maximum concentration at 

the stagnation point on the shoulder of the leading air finger. The non-uniform distribution 

of the interfacial surfactant concentration results in large Marangoni stress on the precursor 

film near the front meniscus, which counteracts the viscous shear stresses and reduces the 

mobility of the liquid-air interface. When the interfacial surfactant concentration exceeds the 

equilibrium value, it is released back into the liquid plug creating high bulk surfactant 

concentration in the vicinity of the stagnation point at the shoulder. The interfacial surfactant 

concentration is narrowly distributed near the stagnation point at a low bulk surfactant 

concentration and its distribution gets wider and eventually covers the entire interface of the 

front meniscus as bulk surfactant concentration increases. Increasing the elasticity number is 

found to have a similar effect as does increasing the bulk surfactant concentration. The 

mechanical stresses are monotonically reduced as either the bulk surfactant concentration or 

the elasticity number increases, which strongly supports the hypotheses that the pulmonary 

surfactant protects the epithelium from the flow-induced injury during the airway reopening. 

However, the surfactant comes with a side effect: It generally delays and can even prevent 

the plug rupture and thus airway reopening. Present study shows that neither lack nor excess 

of pulmonary surfactant is desirable. The lungs perform best in the presence of a just 

sufficient amount and strength of surfactant.

The applied pressure difference (Δp) and the Laplace number (λ) influence the plug rupture 

dynamics similarly but in a opposite way. The mechanical stresses increase while the rupture 

time decreases as the applied pressure difference increases or the Laplace number decreases. 

It is found that the plug does not rupture when Δp is reduced below or λ is increased above a 

critical value. Addition of surfactant reduces the mechanical stresses and delays plug rupture 

for all values of the applied pressure difference and the Laplace number. The non-

dimensional adsorption and desorption coefficients, the bulk and interfacial Schmidt 

numbers and the adsorption depth are found to have moderate effects on plug rupture 

dynamics.
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Finally the effects of surfactant solubility are investigated. It is found that the solubility is 

significant whenever the surfactant has a significant influence on the plug propagation and 

rupture dynamics. Insoluble surfactant model generally results in excessive inter-facial 

surfactant concentration especially near the stagnation point at the shoulder of the leading air 

finger, which results in underprediction of the mechanical stresses and overprediction of the 

rupture time.
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Appendix A.: Validation

The numerical method is first validated for the motion and rupture of a liquid plug in the 

absence of surfactant, i.e., C0 = 0. To facilitate direct comparison with the previous 

numerical simulations, the flow parameters are set to Δp = 1; Lpi = 1.0, λ = 1000, 

λ = 1000, μg*/μl* = 0.01 and ρg*/ρl* = 0.02. Simulations are performed for the precursor film 

thicknesses of h2 = 0.05 and h2 = 0.07, and the results are compared with the computational 

results of Fujioka et al. (2008); Hassan et al. (2011) for a plug propagation without and with 

a rupture, respectively. Note that Fujioka et al. (2008) performed simulations only until the 

plug ruptures due to the limitations of their numerical method but their results are expected 

to be numerically more accurate owing to a body-fitted curvilinear grid used in the 

simulations. As can be seen in Fig. 19a, the present results are in good agreement with the 

results of Fujioka et al. (2008) for the time evolution of the plug length until the plug 

ruptures. Figure 19b–d compare the present results with the results of Hassan et al. (2011) 

for the time evolution of maximum difference in wall pressure, maximum difference in wall 

shear stress and minimum wall shear stress, respectively. Figures 19b–d show that the 

present results are also in reasonable agreement with the computational results of Hassan et 
al. (2011). We note that, although not shown here, there is a significant deviation between 

the computational results of Fujioka et al.(2008); Hassan et al. (2011) for the evolution of 

liquid plug length and plug rupture time, and the deviation increases with increasing h2. In 

particular, Hassan et al. (2011) predicted the plug rupture to occur significantly earlier 

especially for the larger precursor film thickness cases, i.e., h2 > 0.07. Since Fujioka et al. 
(2008) use a body-fitted grid and thus resolve the flow field much better, we expect that their 

results are numerically more accurate. To facilitate a direct comparison, the time is shifted to 

match the peak values of Pmax − Pmin, τmax − τmin and τmin in Figs. 19b–d. The pressure and 

shear stress distributions on the tube wall just before the plug ruptures are compared with the 

results of Fujioka et al. (2008) in Fig. 20. As can be seen in this figure, the present results 

are in very good agreement with those of Fujioka et al. (2008) for both quantities.

Appendix B.: Grid Convergence

A grid convergence study is conducted to determine the minimum grid size required to 

reduce the spatial discretization error below a threshold value, e.g., 3% in the present study. 

For this purpose, simulations are performed for the contaminated case of C0 = 5 × 10−5 
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using five different grid resolutions containing 32 × 640, 48 × 1280, 64 × 1280, 96 × 1920 

and 128 × 2560 cells. Figure 21 shows the time evolution of plug length and maximum 

difference in wall pressure computed using these five grid resolutions. In this figure, the 

vertical dashed lines indicate the times at which the spatial discretization error is quantified 

and plotted in the inset of each plot. It is clearly seen in this figure that the difference among 

the results is decreasing with grid refinement, indicating that grid convergence is achieved. 

The nearly linear relationship between the flow quantities and the square of the grid size 

confirms the expected second order spatial accuracy of the method.

The Richardson extrapolation is used to estimate the relative spatial error for a given grid 

resolution. For this purpose, the relative error for a flow quantity, Q, is defined as

ϵQ(Δz) =
QΔz 0 − QΔz

QΔz 0
, (B1)

where QΔz denotes the value computed on a grid with the cell size of Δz while QΔz→0 is the 

spatial error free value predicted using the Richardson’s extrapolation assuming a second-

order accuracy in space. The insets in Fig. 21 show that the grid resolution containing 96 × 

1920 cells is sufficient to reduce the spatial error below 3% for all three times for both flow 

quantities. Therefore this grid resolution is used in all the results presented in the present 

study unless specified otherwise.

Finally, the effects of the threshold distance, ℓth, are examined. The plug is ruptured when it 

gets thinner than ℓth at the centerline. For this purpose, simulations are performed and the 

results are shown in Fig. 22 for the contaminated case with C0 = 5 × 10−5 for the various 

values of ℓth in the range 0.5Δr ⩽ ℓth ⩽ 2Δr, where Δr is the grid size in the radial direction 

near the centerline. As seen, the rupture is slightly delayed as ℓth is reduced but the 

mechanical stresses are not affected significantly as long as ℓth is of order of Δr. Although 

not shown here, similar results are obtained for all the other flow quantities for both the 

clean and the contaminated cases.
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Figure 1. 
The computational setup for the plug propagation and rupture. The plug moves from left to 

right due to applied pressure difference Δp* = p1* − p2*. The arclength (s*) is measured from 

the centerline in the clockwise and counterclockwise directions for the leading and trailing 

air fingers, respectively. Note that the arclength of the trailing air finger is made negative to 

distinguish it from that of the leading air finger. When the liquid plug ruptures, a negative 

arclength denotes a point on the interface whose axial location zp is smaller than the axial 

location of the rupture point zrupture.
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Figure 2. 
Time evolution of interfacial (left portion) and bulk (right portion) surfactant concentration 

for C0 = 5 × 10−5. Snapshots are taken at times t = 49.33, 202.39, 240.90, 241.47, 242.10 

and 273.85. Time progresses from left to right and from top to bottom. The dashed lines 

show the surface velocity of the interface. The surface velocity is computed with respect to 

the tip of the leading air finger before the rupture (top row). The intersection of the dashed 

lines with the interface indicates the stagnation points. (Lpi = 1.0, Δp = 1, λ = 100, β = 0.7, 

χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100).
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Figure 3. 
Time evolution of interface and pressure contours for a clean (left side) and a contaminated 

(right side) plug. Snapshots are taken at times t − trupture = −167.62, −36.70, 0, 0.55, 1.15, 

1.81, 3.71, 10.10 and 39.19, where trupture is the rupture time that is 218.28 and 240.92 for 

the clean and contaminated cases, respectively. Time progresses from left to right and from 

top to bottom. The dashed black lines show the surface velocity of the interface. The surface 

velocity is computed with respect to the tip of the leading air finger before the rupture (top 

row). The intersection of the dashed lines with the interface indicates the stagnation points. 

The non-dimensional parameters are Lpi = 1.0, Δp = 1, λ = 100 both for the clean and the 

contaminated cases. The other parameters for the contaminated case are C0 = 5 × 10−5, β = 

0.7, χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100.
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Figure 4. 
The combined effects of the bulk surfactant concentration and the liquid film thickness. 

Time evolution of (a) plug length (Lp), (b) maximum difference in wall pressure (Pmax − 

Pmin), (c) minimum wall pressure (Pmin) and (d) maximum difference in wall shear stress 

(τmax − τmin) is plotted for liquid film thickness of h2 = 0.05 and h2 = 0.07, and for C0 = 0 

(clean) and C0 = 5 × 10−5 (contaminated) cases. (Lpi = 1.0, Δp = 1, λ = 100, β = 0.7, χ = 

0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100).
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Figure 5. 
Effects of bulk surfactant concentration on the plug propagation and rupture in the range C0 

= 0 (clean) and C0 = 5 ×10−4 (highly contaminated). Time evolution of (a) plug length (Lp), 

(b) maximum difference in wall pressure (Pmax − Pmin) and (c) maximum difference in wall 

shear stress (τmax − τmin). (Lpi = 1.0, h2 = 0.05, Δp = 1, λ = 100, β = 0.7, χ = 0.01, Sc = 10, 

Scs = 100, Ka = 104, Kd = 100).
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Figure 6. 
Effects of bulk surfactant concentration on (a) the interfacial surfactant concentration and 

Marangoni stress distributions and (b) surface velocity distribution at t = trupture for C0 ⩽ 2.5 

× 10−4 and at t = 453.5 for C0 = 5 × 10−4. (Lpi = 1.0, h2 = 0.05, Δp = 1, λ = 100, β = 0.7, χ 
= 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100).
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Figure 7. 
The time evolution of the minimum radius of the neck and its time derivative (“snap 
velocity”) after the rupture. (Lpi = 1.0, h2 = 0.05, Δp = 1, λ = 100, β = 0.7, χ = 0.01, Sc = 

10, Scs = 100, Ka = 104, Kd = 100).
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Figure 8. 
Wall pressure and wall shear stress distributions for a clean plug (C0 = 0) (top row), a mildly 

contaminated plug (C0 = 5 × 10−5) (middle row) and a highly contaminated plug (C0 = 10−4) 

(bottom row). (Lpi = 1.0, h2 = 0.05, Δp = 1, λ = 100, β = 0.7, χ = 0.01, Sc = 10, Scs = 100, 

Ka = 104, Kd = 100).
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Figure 9. 
Effects of elasticity number on plug propagation and rupture in the range β = 0 and β = 1.5. 

Time evolution of (a) plug length (Lp), (b) maximum difference in wall pressure (Pmax

−Pmin) and (c) maximum difference in wall shear stress (τmax − τmin). (Lpi = 1.0, h2 = 0.05, 

Δp = 1, λ = 100, χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100, C0 = 10−4).
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Figure 10. 
Effects of elasticity number on the interfacial surfactant concentration and surface velocity 

distributions at t = trupture for β ⩽ 1 and at t = 316.2 for β = 1.5. (Lpi = 1.0, h2 = 0.05, Δp = 1, 

λ = 100, χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100, C0 = 10−4).

Muradoglu et al. Page 31

J Fluid Mech. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Effects of applied pressure difference (Δp = p1 − p2) on plug propagation and rupture. Time 

evolution of (a) plug length (Lp), (b) maximum difference in wall pressure (Pmax−Pmin), (c) 

maximum difference in wall shear stress (τmax − τmin) and (d) the retraction after the rupture 

for the applied pressure difference in the range 0.75 ⩽ Δp ⩽ 3. (Lpi = 1.0, h2 = 0.05, λ = 

100, β = 0.7, χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100, C0 = 10−4).
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Figure 12. 
Effects of the Laplace number (λ) on plug propagation and rupture. Time evolutionof (a) 

plug length (Lp), (b) maximum difference in wall pressure (Pmax−Pmin), (c) maximum 

difference in wall shear stress (τmax − τmin) for the Laplace number in the range 20 ⩽ λ ⩽ 
1500. The solid and dashed lines show the clean and the contaminated cases, respectively. 

(Lpi = 1.0, h2 = 0.05, Δp = 1, β = 0.7, χ = 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100, C0 = 

10−4).
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Figure 13. 
Effects of the Laplace number (λ) on the retraction of the interface after the plug rupture for 

the Laplace number in the range 20 ⩽ λ ⩽ 1500. The solid and dashed lines show the clean 

and the contaminated cases, respectively. (Lpi = 1.0, h2 = 0.05, Δp = 1, β = 0.7, χ = 0.01, Sc 
= 10, Scs = 100, Ka = 104, Kd = 100, C0 = 10−4).
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Figure 14. 
Effects of the non-dimensional adsorption and desorption coefficients on plug propagation 

and rupture. Time evolution of (a) plug length (Lp), (b) maximum difference in wall pressure 

(Pmax−Pmin) and (c) maximum difference in wall shear stress (τmax − τmin). (Lpi = 1.0, h2 = 

0.05, C0 = 10−4, Δp = 1, λ = 100, β = 0.7, χ = 0.01, Sc = 10, Scs = 100.)
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Figure 15. 
Effects of the non-dimensional adsorption and desorption coefficients on interfacial 

surfactant concentration and surface velocity distributions at t = trupture. (Lpi = 1.0, h2 = 0.05, 

C0 = 10−4, Δp = 1, λ = 100, β = 0.7, χ = 0.01, Sc = 10, Scs = 100.)
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Figure 16. 
Effects of the Schmidt numbers on plug propagation and rupture. Time evolution of (a) plug 

length (Lp), (b) maximum difference in wall pressure (Pmax−Pmin) and (c) maximum 

difference in wall shear stress (τmax − τmin). (Lpi = 1.0, h2 = 0.05, C0 = 10−4, Δp = 1, λ = 

100, β = 0.7, χ = 0.01, Ka = 104, Kd = 100).
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Figure 17. 
Time evolution of the plug length (Lp) for various values of dimensionless adsorption depth 

(χ). The inset shows time evolution of maximum difference in wall pressure (Pmax−Pmin). 

(Lpi = 1.0, h2 = 0.05, C0 = 10−4, Δp = 1, λ = 100, β = 0.7, Sc = 10, Scs = 100, Ka = 104, Kd 

= 100).
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Figure 18. 
Effects of surfactant solubility. Time evolution of (a) plug length (Lp), (b) maximum 

difference in wall pressure (Pmax−Pmin) and (c) maximum difference in wall shear stress 

(τmax − τmin). (d) The interface surfactant concentration and Marangoni stress distributions 

at t − trupture = 0.52 for C0 ⩽ 5 × 10−4, and at t = 452.84 and t = 605.89 for C0 = 5 × 10−4 for 

the soluble and insoluble cases, respectively. For the insoluble cases, C0 is used to determine 

the initial equilibrium concentration at the interface. (Lpi = 1.0, h2 = 0.05, Δp = 1, β = 0.7,χ 
= 0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100, C0 = 10−4).
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Figure 19. 
Validation for the clean interface case. The evolution of (a) the plug length, (b) maximum 

difference in wall pressure (Pmax−Pmin), (c) maximum difference in wall shear stresses (τmax 

− τmin), and (d) the minimum wall shear stress (τmin) for the precursor film thicknesses of h2 

= 0.05 and h2 = 0.07. The present results are compared with the computational results of 

Fujioka et al. (2008); Hassan et al. (2011). (Lpi = 1.0, ΔP = 1, λ = 1000).
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Figure 20. 
Validation for the clean interface case. The variation of (a) the pressure and (b) the shear 

stress on the tube wall just before the plug rupture for Lpi = 1.0, ΔP = 1 and λ = 1000.
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Figure 21. 
Grid convergence. The time evolution of plug length (left) and the maximum pressure 

difference on the wall (right) computed using various grid resolutions ranging between 32 × 

64 and 128 × 2560. The symbols in the insets show the respective values computed at the 

times indicated by dashed vertical lines for various grid sizes while the solid lines are the 

linear least-squares fits to the numerical value.
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Figure 22. 
The effects of the threshold distance (ℓth) used to rupture the plug in the range 0.5Δr ⩽ ℓth ⩽ 
2Δr. The insets in the upper right and lower left corners show time evolution of the 

maximum difference in wall pressure (Pmax−Pmin) and the enlarged view of Lp around the 

rupture time, respectively. (C0 = 10−4, Lpi = 1.0, h2 = 0.05, Δp = 1, λ = 100, β = 0.7, χ = 

0.01, Sc = 10, Scs = 100, Ka = 104, Kd = 100).
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