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Abstract: The microstructure with homogeneously distributed grains and less prior particle boundary

(PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing

(HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure

on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM),

electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight

secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different

roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain

coarsening under high temperature could be inhibited by increasing HIPping pressure which

facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping

were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and

homogeneously refined grains.

Keywords: powder metallurgy superalloy; hot isostatic pressing; prior particle boundary; grain

structure

1. Introduction

Nickel-based polycrystalline superalloys are widely used as high temperature materials for

turbine discs of advanced aircraft engines, owing to their excellent mechanical properties at elevated

temperatures [1–4]. For polycrystalline superalloys with complex compositions, powder metallurgy is an

essential manufacturing route, since it yields microstructure with less elemental macrosegregation [3,5].

Hot isostatic pressing (HIPping) is extensively adopted as a methodology of powder consolidation,

which has attracted sustainable attention over the last three decades [6–9]. In a conventional and costly

powder route, the hot processes, such as hot extrusion and isothermal forging after HIPping, are mostly

utilized to obtain disc parts with a desired microstructure [10]. Direct hot isostatic pressing (as-HIP)

could dramatically decrease the cost of PM superalloys, and it is capable of producing near-net or net

shape parts [8,11–14].

However, an unexpected phenomenon, the prior particle boundary (PPB) precipitation, occurs

during HIPping and leads to lower ductility and inferior stress rupture properties, which limits

the further development of as-HIP [15–17]. The precipitates on PPB are found consisting of oxides,

carbides, oxy-carbides, γ′ precipitates, and so on [18–20]. Previous works indicated that HIPping

at high temperature or subsequent supersolvus heat treatment could reduce the detrimental effects
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of PPB precipitation by dissolving partial precipitates and impelling grain boundary to migrate

beyond the precipitates on PPB [9,16,21]. Nevertheless, HIPping and annealing under relatively high

temperature make the grains coarsen and thereby decreases the strength of the final article according

to the Hall-Petch relation [9,22,23]. Hence, to obtain homogeneous fine-grain structure with minimized

impacts from PPB precipitation, it is critical to understand the interaction of grain structure evolution

and PPB precipitates under different processing conditions.

By setting four different HIPping experiments, this work studied the influence of temperature

and pressure of HIPping on the microstructure evolution of PM superalloy FGH96. The techniques

of time-of-flight secondary ion spectrometry (ToF-SIMS) and high-angle annular detector dark-field

scanning transmission electron microscopy (HAADF-STEM) was adopted to characterize the element

compositions and distributions of PPB precipitates in PM superalloy. Combined with other results

and analysis concerning the interactions among HIPping parameters, precipitates and grain evolution,

it illustrated the sensitivity of grain structure to the HIPping parameters, and indicated the potential of

as-HIP for PM superalloys.

2. Materials and Methods

The nominal composition of PM superalloy FGH96 used in this work is listed in Table 1. In practice,

the powder of FGH96 was prepared by argon atomization using atomization equipment HERMIGA

100/20 from Phoenix Scientific Industries (PSI, Hailsham, UK) Limited, then the screened powder

below 74 µm was loaded into a steel container and degassed to 10−3 Pa at 400 ◦C, following which the

powder was consolidated by HIPping under different conditions as indicated in Table 2. Specifically,

the average size of powders ranging from 0 to 74 µm is 42 µm. During HIPping, the temperature and

pressure were increased simultaneously, and held at set conditions for 2 h, after that, the billets were

gradually cooled within furnace.

Table 1. Nominal composition of FGH96 in wt %.

Co Cr Mo W Al Ti Nb B Zr C Ni

13.0 16.0 4.0 4.0 2.1 3.7 0.7 0.015 0.03 0.03 Bal.

Table 2. HIPping parameters of four samples.

Samples Temperature ◦C Pressure MPa

HIP96-1 1120 150
HIP96-2 1170 150
HIP96-3 1120 120
HIP96-4 1170 120

To characterize the morphology of γ
′ precipitates and PPB after HIPping, scanning electron

microscope (SEM) observation was performed under a field emission gun SEM FEI Quanta 650

equipped with an electron backscatter diffraction (EBSD) detector. To observe γ
′ phase, the

mechanically polished samples were etched in a reagent (33 vol % HNO3, 33 vol % acetic acid,

33 vol % H2O, 1 vol % HF) for 30 to 60 s. The precipitate size distributions were estimated by using

Image Pro Plus software (7.0, Media Cybernetics, Inc., Rockville, MD, USA) and taking the equivalent

diameter for each precipitate. Additionally, grain structure in four HIPped superalloys was studied by

EBSD, the samples were polished by abrasive papers, followed by vibration polishing for over 8 h.

EBSD scan step size for all samples was set as 0.5 µm to guarantee enough pixels in each detected

grain. The EBSD data were analyzed via HKL CHANNEL5 software (Oxford Instruments, Hobro,

Denmark) and the equivalent grain size was calculated based on the measurement of grain area

AreaGrain, 2
√

AreaGrain
π

.
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Transmission electron microscope (TEM) samples were made by slices in diameter of 3 mm cut

from corresponding alloys with thickness about 50 µm and twin-jet electropolished in a reagent of

90 vol % ethanol and 10 vol % perchloric acid under −25 ◦C and 20 V. TEM observation was carried out

on FEI TEM instruments Tecnai G2 F20 (Hillsboro, OR, USA) and Titan G2 60–300 (Hillsboro, OR, USA)

with accelerating voltage of 200 KV and 300 kV respectively, and the images of high-angle annular

detector dark-field scanning transmission electron microscopy (HAADF-STEM) was obtained from

Titan G2 60–300 (Hillsboro, OR, USA), which clearly presented the relative location of compounds

at PPB.

Time-of-flight secondary ion spectrometry (ToF-SIMS) installed at FERA3 microscope (Tescan,

Brno, Czech Republic) was used to detect the segregation or distribution of alloying elements at PPB

in larger scale than HAADF-STEM. The positive Xe ions energy of ToF-SIMS was set as 30 keV and the

ion beam current was 50 pA.

3. Results

Figure 1 shows the microstructures of four FGH96 superalloys after HIPping at different

conditions from various scales by EBSD, SEM, and TEM. By combining the SEM and EBSD maps at

the corresponding locations of PPB, it is found that a large part of PPB acts as grain boundary after

HIPping, especially for the PPB with high sphericity which outlines the original shape of the powder

with less distortion during HIPping. In some cases, partial PPB is enclosed in grains, such as the grain

A and D in HIP96-1 and HIP96-4 shown in Figure 1. A series of small grains are located along PPB as

highlighted in the EBSD IPF maps.

 

−

μ

γ′

Figure 1. Images showing the microstructure of FGH96 after HIPping under different conditions.

(a–e) 1120 ◦C/150 MPa; (f–j) 1170 ◦C/150 MPa; (k–o) 1120 ◦C/120 MPa; (p–t) 1170 ◦C/120 MPa;

(a,f,k,p) EBSD inverse pole figures (IPF) maps highlighting grains with equivalent diameter under

5 µm; (b,g,l,q) magnified images of the corresponding areas outlined by dashed lines in black; (c,h,m,r)

SEM images showing the morphologies of PPB outlined by dashed lines in white; (d,i,n,s) TEM images

showing the tiny precipitates on PPB; (e,j,o,t) SEM images showing the large γ
′ on PPB in HIPped

alloys after etching.
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The TEM and SEM images demonstrate that a number of small precipitates and irregularly large

γ
′ existed at PPB. The tiny precipitates below 200 nm are related to oxides and carbides, such as ZrO2,

TiC, NbC, etc., as described in many other works [20,22,24,25]. The size and distribution of these

precipitates on PPB are hardly different in the four specimens at that scale.

Specifically, HADDF-STEM images and corresponding EDS mappings present more significant

information about the size and shape of PPB precipitates, and the element distribution in HIP96-2,

as indicated in Figure 2. ZrO2 with high concentration of Zr is smaller than the (Ti, Nb)C carbides.

The discontinuously distributed compounds on PPB, oxides and carbides, are mainly embedded in

large γ
′-Ni3(Al, Ti) precipitates.

 

γ′

γ′

 

γ′

γ′

Figure 2. Images showing the elements and compounds at PPB of HIP96-2, in specific, (a,b)

HADDF-STEM images; (c–h) corresponding EDS mappings of Zr, Ti, Nb, Al, Ni and Cr respectively;

(i) schematic illustrating relative location of different compounds.

As mentioned above, the compounds such as ZrO2, (Ti, Nb)C, and γ
′ are the detected PPB

precipitates in this work, to verify that in larger scale, the ToF-SIMS experiment is performed on

FGH96-2. As shown in Figure 3, the ToF-SIMS results indicate that the Zr, Ti, Nb, Al, Ni are segregated

at PPB in various degree. Zr corresponds to the ZrO2 oxide along PPB. Since Ti, Nb, Al, Ni are

γ
′-Ni3(Al, Ti, Nb) forming elements, and Ti, Nb also tend to form (Ti, Nb)C carbide, it seems hard to

identify the existence of these two kinds of compounds by judging the element distribution, but some

specific areas of PPB, like the regions outlined by the dashed black lines in Figure 3, are segregated by

carbide forming elements Ti, Nb and lack Ni and Al, which proves the presence of (Ti, Nb)C carbide at

PPB; the other PPB parts with significant segregation of Ni, Al, Nb and Ti may contain the combination

of the abovementioned compounds.
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Figure 3. ToF-SIMS results showing the distribution of corresponding detected element ions in HIP96-2

after HIPping, wherein the grey one is the SEM image indicating the presence of PPB and the color

maps show element ions detected by ToF-SIMS, the area in dashed line show the segregation of Ti, Nb

and impoverishment of Ni, Al. The color bar at right reflects the relative content of detected ions.

The size distributions of large primary γ
′ at PPB vary from one to another, which are indicated in

Figure 4. Generally, γ′ at PPB in alloys HIPped at 1170 ◦C is smaller. However, the effect of HIPping

pressure on the γ
′ precipitates seems unclear, the average size of the primary γ

′ at PPB drops at near-γ′

solvus HIPping with the pressure decreased, inversely, the average diameter of the γ
′ on PPB increases

slightly with the decline of the HIPping pressure under higher temperature.

 

γ′
γ′

γ′ γ′
γ′ γ′

γ′

 

Figure 4. Size distributions of primary γ
′ on PPB after HIPping under different conditions.

(a) 1120 ◦C/150 MPa; (b) 1170 ◦C/150 MPa; (c) 1120 ◦C/120 MPa; (d) 1170 ◦C/120 MPa.
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Additionally, the grain size distributions and average grain sizes at different HIPping conditions

are various, as shown in Figure 5. Firstly, the temperature has more significant effects on the grain

structure, the frequency of small grains decreases as the HIPping temperature changes from near-γ′

solvus to high supersolvus, and the average grain size increases correspondingly. The pressure has

no apparent influence on the grain structure in alloys HIPped at 1120 ◦C; but under supersolvus

temperature 1170 ◦C, the average grain size increases slightly at lower HIPping pressure.

 

γ′

γ′

γ′ γ′
γ′

γ′

0D exp( )

Figure 5. The grain size distributions of four FGH96 superalloys after HIPping under different

conditions, (a) 1120 ◦C/150 MPa; (b) 1170 ◦C/150 MPa; (c) 1120 ◦C/120 MPa; (d) 1170 ◦C/120 MPa.

4. Discussion

As mentioned previously, the precipitates on PPB can be divided into two types, namely, the small

refractory oxide and blocky carbide compounds, and the irregularly large γ
′. The oxide and carbide

are mainly formed by diffusion and segregation of Zr, Ti, Nb, etc., for example, the Zr could react with

residual oxygen in the container at extremely low partial oxygen pressure and moderate temperature;

some of the oxides may have already formed during atomization prior to consolidation [20,26,27].

The stable MC-type carbide starts to precipitate by element segregation or dissolution of metastable

carbide which releases the forming elements of the carbide [24,28]. The oxide and carbide precipitate at

the early stage of HIPping in a rapid speed and remain highly stable at elevated temperatures, thereby

the morphology and distribution of this type of compound under four sets of HIPping parameters has

less difference at the scale of TEM.

On the other hand, the γ
′ on PPB is dramatically impacted by the temperature of HIPping, as γ′

on PPB starts to dissolute into matrix when the HIPing temperature exceeds γ
′ solvus. Since the

dissolution of γ′ is a diffusion-controlled process, the diffusion coefficient of solute can basically
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reflect its speed. As shown in Equation (1), the diffusion coefficient of solute, D, is closely related

with temperature,

D = D0 exp(
−Q

RT
) (1)

in which the Q represents diffusion activity energy, D0 is deemed as a constant. Since dissolution is

diffusion controlled, the higher supersolvus temperature of HIPing facilitates the process, and the

primary γ
′ dissolves into matrix rapidly as the HIPing temperature reaches 1170 ◦C, which causes the

dramatic decrease of its average size and fraction.

The temperature and pressure could directly modify the grain structure through affecting

mechanisms of recovery (RV), recrystallization (RX) and grain growth. With the temperature increased,

the yield strength of powders declines and the powder starts to deform which introduces accumulated

dislocations in powders [17]. Generally, to initial RX, critical dislocation density should be satisfied,

and the dislocation density in the bulk ρ under isothermal deformation is related with RV and working

hardening before recrystallization as described by Equations (2) and (3) [29,30]:

dρ

dε
=

dρ+

dε
−

dρ−

dε
(2)

dρ

dt
= k1

√
ρ − k2ρ (3)

wherein, t is the time, ε represents equivalent strain. The right two positive terms of above equations

correspond to work hardening and RV respectively. The work hardening term,
dρ+

dε
, which equals to

k1
√

ρ, means that the accumulation of moving dislocations varies with imposed strain, k1 means the

storage coefficient; the recovery term,
dρ−

dε
, equivalent to k2ρ, indicates that dislocation annihilation is

enhanced with increasing of strain. k2 depends essentially on temperature, as RV is a thermal activated

process which mainly dominated by glide or climb of dislocations, hence higher temperature facilitates

RV and the decrease of dislocation density [31]. On the other hand, higher pressure yields higher strain

energy in the matter and accelerate the RX, which contributes to the drop of grain size after HIPping.

In terms of grain growth, the grain boundary migration velocity v can be expressed by Equations

(4) and (5) [30,32]:

v = M·∆P (4)

∆P = PD − PR (5)

wherein the driving force per unit volume of boundary ∆P derives from the difference between the

thermodynamic driving pressure PD and the resistive pressure PR. M is the mobility of the grain

boundary, which can be estimated by [30,33]:

M = M0· exp(
−Qapp

RT
) (6)

where the M0 is the pre-exponential factor, and positive Qapp is the apparent activation energy.

By combining Equations (4) and (6), we can see that increasing HIPping temperature accelerates

grain growth.

Additionally, the interaction of moving grain boundary and secondary phase particles is hardly

ignorable considering the Zener pining effect contributing to PR, the resistance of second-phase particle

on the moving dislocation or grain boundary [34,35]. The general Zener pining effect PZ is expressed

as [36]:

PZ =
3Vf ·γ

2r
(7)

where, the r is the radius of particle size, γ is the grain boundary energy, and Vf is the volume fraction

of particle.
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As concluded by Song and Aindow [37], comparing with oxide and carbide precipitates, the γ
′

on PPB with much larger volume fraction plays a dominating role on restraining grain boundary

migration. In addition, the less precipitates are mainly surrounded by the primary γ
′ since they are

preferential nucleation sites of γ′ [20,32], which further weakens their pining effects. Equation (7)

reflects that the difference of the pining force of γ′ at PPB is generated from the ratios of Vf/r. Assuming

the area fraction of γ′ at PPB Va equals to Vf, the ratios Vf/r of four HIPped alloys HIP96-1, HIP96-2,

HIP96-3, HIP96-4 are estimated to be 0.036, 0.031, 0.038 and 0.030 µm−1, respectively, illustrating that

the pining force in the FGH96 alloys HIPped under higher temperature is weaker.

In this work, higher temperature of HIPping increases the mobility of the grain boundary,

and contributes to the reduction of pining force from γ
′ precipitate at PPB. Higher pressure facilitates

the deformation and RX of powders under consolidation, which contributes to the drop of grain size

after HIPping.

5. Conclusions

The PPB precipitation and grain structure in nickel-based superalloy FGH96 after HIPping under

different temperature and pressure were studied in this work. From the above results and analysis,

the following conclusions can be reached:

(1) The PPB precipitates mainly consisted of large primary γ
′, small ZrO2 oxides and MC carbides in

the four HIPped FGH96 superalloys.

(2) Comparing with HIPping under near-γ′ solvus 1120 ◦C, HIPping at 1170 ◦C accelerates the grain

boundary migration and dissolution of γ′ on PPB, which impels the moving grain boundary to

bypass the PPB.

(3) As RX is facilitated under higher pressure, HIPping at 150 MPa is preferred to obtain a

microstructure with homogeneously refined grains.

(4) In general, reducing the pining effects by dissolution of PPB precipitates through HIPping at

high supersolvus temperature may induce excessive grain growth of grains, but increasing the

pressure could suppress this tendency.
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