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Abstract: The in-plane stability of shallow parabolic arches subjected to a central concen-

trated load and temperature variations was investigated in this paper. The virtual work prin-

ciple method was used to establish the non-linear equilibrium and buckling equations. Ana-

lytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifur-

cation buckling loads were obtained. Then the effects of temperature changes on the in-plane 

stability for arches with supports that stiffen under compression were studied. The results 

show that the influence of temperature variations on the critical loads for both buckling modes 

(symmetric snap-through and anti-symmetric bifurcation) is significant. The critical loads for 

the two buckling modes are higher than those only under external loads without thermal 

loading. Moreover, the critical loads increase with an increase of the thermal loadings. It can 

also be found that the effects of applying temperature field increase when either initial stiff-

ness coefficient α or the stiffening rate β is raised. Furthermore, the effect of thermal loading 

on the critical load increases with the span-rise ratio m for arches with any initial stiffness 

coefficient α and the stiffening rate β.
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Introduction 

Arches have been widely used in engineering practice, such as long-span roofs and bridges. 

Arches resist general loading by a combination of axial compression and bending actions. 

Since the width of an arch bridge is large, it produces sufficient restraining actions to prevent 

out-of-plane buckling. The analysis of in-plane stability of a shallow arch is a classical prob-

lem in applied mechanics. The classical theory for the prediction of elastic buckling loads can 

be referred to two books (Timoshenko and Gere 1961, Simitses 1976). 

For a shallow arch, its rise is quite small and so the pre-buckling nonlinear deformations 

cannot be considered as negligible. Approximate solution for the classical buckling load for 

sinusoidal shallow arches under uniformly distributed load was given by Timoshenko and 

Gere (1961). Then the closed form solutions with high precision were sought by many re-

searchers. There are two main methods to obtain the nonlinear differential equilibrium equa-

tion, i.e., the equilibrium method and the energy method. The equilibrium method was used 

by Simitses (1976) to study the stability of sinusoidal shallow arches on elastic foundations. 

The stability of shallow arches under multiple loads was investigated by Plaut (1978). Moon 

et al. (2007) investigated the elastic buckling of pin-ended shallow parabolic arches. Schreyer 

and Masur (1966) obtained the exact buckling load for fixed shallow circular arches subjected 

to a uniformly distributed radial load by using the energy method. Wicks (1991) deduced the 

buckling equations for shallow arches of arbitrary shapes. Pi et al. (2002) and Bradford et al. 

(2002) used the same method as Schreyer and Masur to study the stability of shallow circular 

arches with pin-ended and fixed supports under a uniformly distributed radial load or a con-

centrated central load, and pointed out that classical buckling theory overestimated both the 

snap-through and bifurcation buckling loads of shallow arches. Then this method was ex-

tended to study the stability of shallow arches with different supports such as pin-ended, 

fixed, horizontal elastic, and rotationally elastic restraints (Bradford et al. 2007, Pi et al. 2007, 

2008). 

In addition to external loadings, a bridge may develop stresses due to daily and seasonal 

temperature changes. It is an important loading case attracting widespread research interest 

recently (Tindal and Yoo 2003, Barr et al. 2005, Newhouse et al. 2008, Kim and Laman 2010, 

Washer et al. 2010 ). Although the thermal responses of various structures that are subjected 

to fire loading have been investigated extensively (Wang 2002), the investigation of the ef-

fects of temperature field on the buckling of arches has been quite rarely reported in the lite-

Effects of temperature variations on the in-plane stability of steel arch bridges
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ratures. Timoshenko and Gere (1961) gave an approximate solution for the thermal 

snap-through buckling of a sinusoidal shallow pin-ended arch. Then the snap-through buck-

ling of sinusoidal and parabolic shallow pin-ended arches was studied by Vahidi and Huang 

(1969). However, there is a marked difference between their solution and the one given by 

Timosheko and Gere. Bradford (2006) studied the nonlinear in-plane behavior of a circular 

arch with elastic restraints subjected to thermal loading only. It was reported that nonlinear 

behavior of a shallow arch is similar to that of a column with a small initial geometric imper-

fection under axial loading, but it cannot buckle elastically in the plane of its curvature under 

the uniform temperature field. The nonlinear in-plane thermo-elastic buckling of a shallow 

pin-ended circular arch that is only subjected to a linear temperature gradient field was dis-

cussed by Pi and Bradford (2010). Heidarpour et al. (2010) recently investigated the nonlinear 

thermal behavior of steel arches subjected to an arbitrary thermal profile which varies along 

the length of the arch as well as through the depth of the cross-section, but they did not extend 

this research to the stability of arches. 

In all aforementioned works, the supports with constant stiffness were considered. How-

ever, the stiffness of structural supports may change as they are subjected to increasing loads. 

When a steel arch is welded to a base plate and connected to a concrete footing with anchor 

bolts, the rotational stiffness of the base connection varies with the compressive loading. The 

characteristic of this connection for steel columns was identified by Picard et al. in a series of 

experiments (Picard and Beaulieu 1985, Picard et al. 1987). The influence of such supports on 

the stability of compressible columns was studied by Plaut (1989) and Guran (1993). Plaut 

(1990) extended his study to the elastic instability of a shallow sinusoidal arch by the classic 

method. No study appears to have been reported which has considered the in-plane elastic 

buckling of a shallow parabolic arch with supports under stiffening during compression and 

has incorporated a nonlinear pre-buckling. Most of the previous studies are limited to circular 

or sinusoidal arches, but parabolic arches are commonly used in civil engineering applications 

due to the advantage of reaching a uniform compression under a vertically distributed load. 

This is because that it is common to design the arches to resist a vertically distributed load 

that represents traffic loads and the self-weight of the bridge deck, which are transferred to 

arches via hangers. Therefore, parabolic shallow arch bridges are wildly used in practice 

(Moon et al. 2007). The parabolic arch shown in Fig.1 is a relatively simple but very useful 

structural form and has been extensively used in civil engineering infrastructure. It will be the 

main structure studied in this paper.  

Effects of temperature variations on the in-plane stability of steel arch bridges
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The purpose of this paper is to investigate the in-plane elastic buckling of shallow para-

bolic arches under an external load and temperature changes. The principle of virtual work is 

used to establish the nonlinear equilibrium equations and to obtain the analytical solution of 

the buckling loads for both the antisymmetric and symmetric buckling modes. The effect of 

temperature variations on the in-plane stability of steel arch bridges is discussed, and the 

buckling behavior of arches under both external loads and temperature changes is also inves-

tigated. 

Basic theories of shallow arches 

An in-plane nonlinear analysis is implemented to investigate the effect of temperature 

changes on the stability of a parabolic arch with elastic supports subjected to a concentrated 

central load and temperature changes as shown in Fig. 1. The cross-section of the arch is as-

sumed to be symmetric with respect to the y-axis. Considering the shallow parabolic arch with 

a small initial curvature, we assume that all of the assumptions for slender beams are valid, 

except that the arch has an initial shape described by 

2 21 [ ( / 2) ] [ / 2, / 2]
2

y x L x L L
p

= -    Í -
,  

2

8
L

p
d

=
(1) 

where d and L are the rise and span of the arch, respectively. 

By denoting u(x) and v(x) as the displacements of a generic point along the x and y direc-

tions, the nonlinear strain-displacement relationship for this point on the cross section can be 

written as (Bradford et al. 2004) 

2' 1' ( ') ''
2

v x
u v sv

p
e = + + -

, (2) 

where s denotes the distance of the point from the centroidal axis as indicated by the curvili-

near orthogonal coordinates ots shown in Fig. 1. The term 
21 ( ')

2
v

in Eq. (2) is the source of 

the geometric nonlinearity (Bradford et al. 2007). The axis ot runs along the arch passing 

through the locus of the centroid of the arch’s cross sections and the axis os is perpendicular 

to the centroidal axis of each cross section in the arch plane. 

The strain produced by the uniform temperature field ΔT can be expressed as 

t Te c= D ,  (3) 

where εt is the thermally induced strain, ΔT the temperature increment relative to its ambient 

value, and χ the coefficient of thermal expansion that is set to 1.2×10-5/℃ in this study. 

Effects of temperature variations on the in-plane stability of steel arch bridges
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On the other hand, the total strain of the arch is described by 

e te e e= + , (4) 

where εe denotes the mechanical elastic strain. All the strains are defined as positive in ten-

sion. 

Substituting Eqs.(2) and (3) into Eq. (4), we obtain 

2 2' 1 ' 1' ( ') '' ' ( ') ''
2 2e e

v x v x
u v sv T u v T sv

p p
e c e c+ + - = + D Ý = + + - D -

. 

The mechanical strain εe has two components, the axial strain εm and the bending strain εb. 

From Eqns. (2)–(4), we can obtain the mechanical axial strain and bending strain as  

2' 1' ( ') ,
2m

v x
u v T

p
ce = + + - D

''b sve = - . (5) 

The differential equations of equilibrium for a parabolic shallow arch with elastic supports 

under a concentrated central load and thermal loadings can be derived from the principle of 

virtual work which requires 
/ 2

0/ 2
/ 2

'[ ( ' ' ') '' ''] ' ' 0
L

m z i i
L

i L

v x
EA u v v EI v v dx Q v kv v

p

dd d e d d d
-

=°

+ + + - + =äñ
, (6) 

to be valid for all sets of kinematically admissible virtual displacements δu and δv, where v0 is 

the central vertical displacement, k the stiffness of rotational elastic springs, and E the tem-

perature-dependent elastic modulus, which is assumed to be constant over the cross section 

and along the longitudinal axis, since the temperature change induced by the environmental 

condition is smaller than 100 .

Integrating Eq. (6) by parts leads to the differential equilibrium equation along the hori-

zontal direction as 

' 0mEAe = . (7) 

From Eq. (7), the membrane strain εm is known to be constant and can be written as 

m

N

EA
e = -

, (8) 

where N is the actual axial compression in the arch. 

Besides the horizontal differential equilibrium equation, integrating Eq. (6) by parts also 

leads to the differential equilibrium equation in the vertical direction as 

Effects of temperature variations on the in-plane stability of steel arch bridges
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'' 0ix

z

N
EI v Nv

p
+ + =

.     (9) 

For simplicity, the following new parameter is introduced: 

2

z

N

EI
m =

, (10) 

and rearranged to yield 

2
1''

ixv
v

pm
+ = -

.  (11) 

Integrating Eq. (6) by parts can also give the boundary conditions for the arch with rota-

tional springs as 

/ 2'' ' 0z x L
EI v kv

=
+ =  and / 2'' ' 0z x L

EI v kv
=-

- = .     (12) 

When the right-hand half of an arch is used, the interval of integration on Eq. (6) is from 0 

to L/2. Integrating Eq. (6) also leads to the boundary conditions 

0' 0
x

v +=
=   and  0

''' 0
2z

x

Q
EI v

+=

- =
, (13) 

which represent that the slope and the shear force at the mid-surface of the arch are equal to 

zero. 

The boundary conditions for left-hand half of an arch can be obtained in the same way as 

0' 0
x

v -=
=   and  0

''' 0
2z

x

Q
EI v

-=

+ =
. (14) 

In addition, the kinematic boundary conditions 
0v = at / 2x L= ° (15) 

should also be satisfied. 

Plaut (1989, 1990) assumed that the stiffness of structural supports will change as they 

are subjected to increasing loads as 
2

2 2 24 ,
z

NL
k a b a b L a b

EI
m h= + = + = +

where a and b are parameters. 

Now we define the non-dimensional coefficients α and β as 

Effects of temperature variations on the in-plane stability of steel arch bridges
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z

aL

EI
a =

, and

4
z

bL

EI
b =

. 

Then the stiffness of structural supports which changes with the variation k is 
2( ) zEI

k
L

a bh+
=

where α and β are the initial stiffness coefficient and the stiffening rate respectively. 

The vertical displacement can be obtained by solving Eq. (11) with the conditions in Eqs. 

(12)-(15) as 

2 2 2
2

2

3 2

1 cos cos( ) 1[ ( )]
cos 2

( )(sec 1){ cos( ) ( )[sin( ) ]}
2 ( 2)z

x
v x

p

Q
x M x x x

EI

h mg m h
m h

a bh h gy m h m m
m h a bh

-
= - -

+ -
+ + - - -

+ + , (16) 

where / 2Lh m=  is the axial force coefficient. The coefficients γ and ψ can be written as
2

2
( ) 2

2 ( ) tan /
a bhg
a bh h h
+ +

=
+ + , 

2

2
tan [2 ( ) tan( / 2) / ]

2 ( ) tan /
h a bh h hy

a bh h h
+ +

=
+ + , 

and M(x) is defined as 

1, 0
( )

1, 0
x

M x
x

²ë
= ì- <í .   

The average membrane strain over the arch span can be calculated from Eq. (5) as 
/ 2 2

/ 2

1 ' 1( ' ( ') )
2

L

m
L

v x
u v T dx

L p
e c

-
= + + - Dñ

.  (17) 

Also from Eq. (8), we can obtain 

2 2z
m z

z

IN N
i

EA EI A
e m= - = - Ö = -

,     (18) 

where iz is the radius of gyration of the cross section about the major principal axis given 

by /Z zi I A= .

Then the nonlinear equilibrium conditions for shallow arches can be established by equat-

ing Eq. (17) to Eq. (18), and substituting Eq. (16) into Eq. (17). The nonlinear equilibrium 

conditions for rotational restrained parabolic shallow arches can be given as 
2

1 1 1 0A Q B Q C+ + = , (19) 

where the coefficients A1, B1 and C1 are given by 
2

2
1 4

1 sin cos 2(1 cos ) sin (4 cos ) 3 ,
4

A
h h h h h hy y

h h h h
ë û- - -

= - - +ì ü
í ý

Effects of temperature variations on the in-plane stability of steel arch bridges
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2

1 4
1 sin cos (1 cos ) ,

2cos 2cos
B

h h h hgy g
h h h

ë û- -
= +ì ü

í ý
2 2 2 2

2 2
1 1 2 2

1 sin cos 2 14 ,
4 cos 3 16t t

p
C D m

L

h h h h h he g e
q q h h h

ë û-å õ å õ å õ= + - = + - -ì üæ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ í ý

with m=L/d denoting the ratio of the arch span to the arch rise, θ denoting the geometric pa-

rameter defined by θ=L
2/4izp, and Q  the dimensionless load defined by

4 z

QpL
Q

EI
=

. 

While the arch is fully restrained against lateral displacements and twist rotations, it may 

buckle in either a symmetric snap-through or an anti-symmetric bifurcation mode. 

Snap-through buckling 

The snap-through buckling load can be obtained by finding the maximum value of Q by dif-

ferentiating Eq. (19) using (Schreyer and Masur 1966) 

0dQ

dh
=

. (20) 

Then the relationship between the dimensionless load Q  and the parameter η during the

symmetric snap-through is given by 
2

2 2 2 0A Q B Q C+ + = , (21) 

where the coefficients A2, B2 and C2 are given by 

2 2 *
2 1 4

2 2
*

1 sin cos 1 2( sin cos )2 {(sin ) cos(2 ) 2cos
4 2 2

2(1 cos ) (1 cos ) sin (4 cos )2(1 cos )sin },
2

A A
h h h h h hh y h h yy

h h h
h h h hy h hy y

h h h

- -
= - - + - +

- - -
- - - + +

2
* *

2 1 4 2

2 2
*

2

1 (sin cos )sin sin sin cos2 { ( )
4cos 2cos 2cos

(1 cos )sin (1 cos ) sin (1 cos ) },
2cos 4cos 2cos

B B
h h h h h h h h h hgy gy g y gy

h h h h
h h h h h h hg g g

h h h

- -
= - - + +

- - -
+ + +

2 2 2 2
2 1 2 2

* 2
2

1 ( sin cos )(1 2 tan )( ) { tan
4 2 cos

2( sin cos ) 2 },
cos 3

C D
h h h h h hg h g
q h h h

h h h gg h
h h

- -
= - - -

-
+ -

and the coefficients γ* and ψ* are 

Effects of temperature variations on the in-plane stability of steel arch bridges
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3 2 2 2 2

*
2

1 1[ tan ( )sec ( ) tan ]
2 2 ,

2 2 ( ) tan
d

d

bh g bh h h a bh h a bh hg mg
m h a bh h

- + + - +
= =

+ +

2 2 2 2
*

2

2 2 2 2

2

tan [ tan( / 2) ( )sec ( / 2) / 4 ( ) tan( / 2) / 2]
2 2 ( ) tan

[ tan ( )sec / 2 ( ) tan / 2] .
2sin cos 2 ( ) tan

d

d

y m h bh h h a bh h a bh hy
m h a bh h

hy y bh h h a bh h a bh h
h h h a bh h

+ + - +
= =

+ +

+ + - +
+ -

+ +

For a given value of the geometric parameter θ, a solution of the symmetric snap-through 

buckling load and the corresponding value of the axial force parameter η can be obtained by 

solving Eqs. (19) and (21) simultaneously.  

Bifurcation buckling 

The arch may buckle from the pre-buckling equilibrium position u and v to an adjacent 

buckling equilibrium position u+Δu and v+Δv. In the buckled configuration, the principle of 

virtual work can also be used for equilibrium, which requires 

/2

/2

( ) '[ ( ) ' ( ) ' ( ) ']( ) ( ) '' ( ) ''
L

m m z
L

v v x
EA u u v v v v EI v v v v dx

p

dd d e e d
-

ë û+ D
+ D + + + D + D + D + + D + Dì ü

í ý
ñ

0
/2

( ) ( ) ' ( ) ' 0i i

i L

Q v v k v v v vd d
=°

- + D + + D + D =ä
                     

(22) 

where Δεm is the membrane strain generated during buckling, given by 

'' ' 'm

v x
u v v

p
e D

D = D + + D
.  

For antisymmetric bifurcation buckling, the buckling displacement Δv is antisymmetric 

whereas the pre-buckling displacement v is symmetric. Therefore, the terms Δv' and v'Δv' are 

antisymmetric and their integrals within the interval [-L/2, L/2] vanish. In addition, the 

boundary conditions require that Δu=0 at x= ±L/2, so that the average buckling strain Δεm is 

zero. 

Integrating Eq. (22) by parts and considering Eqs. (8)-(11) and zero average strain Δεm 

during buckling, the buckling differential equilibrium equation in the vertical direction can 

be obtained as 
2 '' 0ivv vmD + D = . (23) 

The boundary conditions for the buckling equilibrium can also be obtained by integrating 

Eq. (22) by parts and considering Eqs. (12)-(15), which gives 

/ 2'' ' 0z x L
EI v k v

=
D + D =  and / 2'' ' 0z x L

EI v k v
=-

D - D = . (24) 

Effects of temperature variations on the in-plane stability of steel arch bridges
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The general solution of Eq. (23) can be written as 

1 2 3 4sin( ) cos( )v G G x G x G xm mD = + + + .                    (25)

Using the boundary conditions Δv=0 at x= ±L/2 and Eq. (24) leads to four linear homo-

geneous algebraic equations with respect to G1-G4. For the existence of non-trivial solution 

for G1-G4, the determinant of the coefficient matrix of the four linear algebraic equations 

must vanish, which yields 
2 2 2

2( )sin ( )sin ( )cos[ cos ]{ [sin ]} 0
2 2 2

a bh h a bh h a bh hh h h
h h

+ + +
+ + - =

.         (26) 

When the first factor of Eq. (26) is set to zero, the axial force coefficient becomes η=ηs

and the corresponding buckling shape is symmetric, which will not induce antisymmetric 

bifurcation buckling. When the second factor of Eq. (26) is set to vanish, the coefficient 

η=ηc. The antisymmetric buckling shape can be obtained as: 

3
sin[sin( ) ]ux

v G x
hm

h
D = -

. (27) 

Then, by substituting the coefficient ηc into Eq. (19), the equation for the antisymmetric 

critical load can be derived. Accordingly, the critical load can be obtained by solving the qua-

dratic equation. 

Limits for different buckling modes 

Figure 2 shows the relationship between the dimensionless load Q and the axial force 

coefficient η for arches with supports that stiffen under the compressive load (α=β=0.5), 

where the arches have the span-rise ratio m=100. From the previous section, we know that the 

arch buckles in an antisymmetric bifurcation mode when the axial force coefficient η=ηc. 

Substituting α=β=0.5 into the second factor of Eq. (26), we can obtain ηc =3.8195. For the 

arch with the geometric parameter θ=50, the axial force increases with the concentrated cen-

tral load until the antisymmetric bifurcation buckling occurs when the axial force coefficient η 

reaches 3.8195. However, for the geometric parameter θ=16, the upper point of bifurcation 

lies on the descending curve as shown in Fig. 2, which means that symmetric buckling will 

occur first. For the geometric parameter θ=8, the maximum axial force ηmax<ηc, and the arch 

buckles in a symmetric mode. 

It should be noted that the shallow arch may not buckle and it behaves just as a beam 

curved in elevation when the arch has lower geometric parameter θ. The buckling does not 

Effects of temperature variations on the in-plane stability of steel arch bridges
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occur for the geometric parameter θ=3, due to the fact that the maximum axial force coeffi-

cient ηmax<ηs (ηs =2.1498 for α=β=0.5). 

The corresponding nonlinear buckling and post-buckling behavior of arches are shown in 

Fig.3 as the variations of the dimensionless load Q with the dimensionless central vertical 

displacement v0/d. v0 is the vertical displacement at the crown (x=0) of the arch. For the bi-

furcation buckling mode, it can be seen from Fig. 3(d) that when the external load reaches the 

critical value at the bifurcation buckling point, bifurcation associated with the antisymmetric 

deformation of the arch occurs. After bifurcation buckling, the curve becomes a straight line 

with negative slope until buckling occurs at another bifurcation point as indicated by the cir-

cle shown in Fig. 3(d).  

For the symmetric snap-through buckling mode, it can be seen from Fig.3(b) that the di-

mensionless central vertical displacement increases with the external load along the nonlinear 

equilibrium path until the limit point is reached. If the load is further increased, there is no 

adjacent equilibrium configuration and the only possible equilibrium state exists at a finite 

distance apart. Then the arch snaps through from the limit point to another equilibrium point. 

A third buckling type is that the arches buckle in the symmetric snap-through mode first and 

then bifurcate antisymmetrically in the unstable region, which is on the descending branch of 

the load-defection curve as shown in Fig.3(c). For the shallow arches with lower geometric 

parameters θ as shown in Fig.3(a), there is no bifurcation point or limit point on the 

load-defection curve. The vertical displacement just increases as the external load increases 

and the arch will not buckle. 

The typical nonlinear behavior of a shallow parabolic arch under external loads and a 

uniform temperature field ΔT=30℃ is also shown in Fig.2 and Fig.3 (broken lines). The other 

geometric parameters and boundary conditions, such as the span-rise ratio m and the support 

stiffness coefficient α and β, are the same as the shallow arch under external loads only. It can 

be seen form Fig.2 that the limits for different buckling modes are not changed with the tem-

perature variation. For the arch with the maximal axial force coefficient ηmax≥ηc, it buckles in 

an antisymmetric mode when the axial force coefficient η=ηc. However, if the bifurcation 

buckling point lies on the descending segment of the curves for the dimensionless critical load 

vs. axial force coefficient, snap-through buckling will occur first. For the arch with the axial 

force coefficient ηs≤ ηmax<ηc, buckling occurs as a symmetric snap-through mode. When the 

maximal axial force coefficient ηmax<ηs, the arch may not buckle, but remains in a state just as 

a beam curved in elevation. 

Effects of temperature variations on the in-plane stability of steel arch bridges
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However, the buckling mode will vary with the temperature increment for the arches 

with the same geometry. For the arch with the geometric parameter θ=16, as shown in Fig. 

2(c), the arch buckles in a symmetric mode under external loads only, but the arch buckles in 

an antisymmetric bifurcation mode when ΔT=30℃.  

By comparing the solid lines and broken lines in Fig.2 and Fig.3, it can be seen that the 

arch under a uniform temperature field ΔT=30℃ has an initial axial compressive force when 

the external load is zero, whereas it has a zero initial compressive force when ΔT=0℃. Fur-

thermore, the arch has an initial upward vertical displacement for ΔT=30℃ when the external 

load is zero, which is not observed when ΔT=0℃. The critical loads for the two buckling 

modes when ΔT=30℃ are higher than those under external loads only. 

Effects of temperature variation on critical loads 

Parabolic shallow arches with pin-ended supports 

The critical loads obtained by solving Eqs. (19) and (21) simultaneously and the bifurca-

tion buckling loads given by Eqs.(19) when the axial force coefficient η=ηc for a group of 

pin-ended shallow parabolic arches are shown as the variation of dimensionless critical load 

with the geometric parameter θ in Fig. 4. The temperature change ΔT=30℃ with different 

span-rise ratios is considered. The dimensionless critical loads for arches under external loads 

only are also given in Fig.4 for comparison. It should be noted that the critical loads for arches 

under external loads with the same geometric parameter θ have no correlation with the 

span-rise ratios m. It can be seen that both the snap-through and bifurcation critical loads un-

der temperature field ΔT=30℃ are higher than those under external loads only. For the arches 

with lower geometric parameters θ, symmetric snap-through buckling is the dominant mode 

while for the larger geometric parameters θ, antisymmetric bifurcation buckling is the domi-

nant mode. Moreover, the influence of the temperature variation increases with θ. However, 

the effect becomes less significant when θ>20.  

It can also be observed form Fig.4 that the critical load increases with the span-rise ratio 

m for both the snap-through and bifurcation buckling modes. Furthermore, the limit of geo-

metric parameters between bifurcation and snap-through buckling modes decreases with the 

increase of the span-rise ratio m, and the effects of applying temperature increment are very 

little when m<20. 
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Figure 5 shows the effects of the thermal load on the in-plane stability of shallow 

arches by plotting the dimensionless critical loads against the temperature increment ΔT when 

the geometric parameter θ=10. It can be found that the dimensionless critical load ratio is li-

nearly increasing with ΔT. Furthermore, the influence of the thermal loading is more signifi-

cant when the span-rise ratio becomes higher.  

For the arch with θ=10, given small change of the temperature, it buckles in a symme-

tric mode, whereas when the temperature change is large (e.g. ΔT >=23°C for m=100), it 

buckles in an antisymmetric mode. It can be seen from Fig.5 that the limit of the temperature 

variation for different buckling modes increases with the decrease of the span-rise ratio m.  

Parabolic shallow arches with load-dependent supports 

The influence of temperature changes on the in-plane stability of shallow arches with 

supports stiffened due to compression is shown in Fig. 6 and Fig.7 as the variations of the di-

mensionless critical load with respect to the initial stiffness coefficient α and the stiffening 

rate β, respectively. The stiffening rate β is equal to 0 in Fig.6, and the initial stiffness coeffi-

cient α is equal to 0 in Fig. 7. Assuming that the span-rise ratio m is 20 and the geometric pa-

rameter θ is equal to 20, the temperature changes ΔT correspond to 10℃, 30℃, and 50℃ in 

Figs.6 and 7, respectively. The dimensionless critical loads for arches under a uniform tem-

perature field ΔT=0℃ are also given in Figs.6 and 7 for comparison. 

It can be seen that the critical load for arches under changing temperature with arbitrary 

initial stiffness coefficient α and the stiffening rate β is higher than that for arches under ex-

ternal loads only. As expected, the critical load increases with the increase of α or β. However, 

the influence of the rotational supports on the critical load becomes less significant when α or 

β is larger. For any temperature change shown in Fig.6 and Fig.7, the increase of the critical 

load is very small with the initial stiffness coefficient α>5 and the stiffening rate β>0.5. 

The effects of the temperature changes on the in-plane stability of shallow arches with 

varying rotational resistance against compression are shown in Fig.8 and Fig.9 by plotting the 

dimensionless critical load ratio n against ΔT, given different initial stiffness ratios and stif-

fening rates. Ratio n is defined as the ratio of the critical load for arches under external loads 

and a uniform temperature field to that for arches under external loads only. The initial stiff-

ness ratios shown in Fig.8 correspond to the values of 1, 2, and 5 respectively, and the stif-

fening rates shown in Fig.9 correspond to the values of 0.1, 0.2, and 0.5 respectively. The 
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geometric parameter θ is assumed to be 20 in Fig.8 and Fig.9, and the span-rise ratio m with 

the values of 20 and 100 are considered. 

 It can be seen that the critical load ratio increases with the increasing of temperature 

changes for different initial stiffness ratios and stiffening rates, and the critical load ratios are 

almost linearly proportional to ΔT shown in Fig.8 and Fig.9. It can also be found that the crit-

ical load ratio increases with either the initial stiffness coefficient α or the stiffening rate β for 

any given  temperature increment. Furthermore, the effect of temperature changes on the 

critical load increases with the span-rise ratio m for arches with any initial stiffness coefficient 

α and the stiffening rate β. 

Conclusions 

The static in-plane stability of parabolic shallow arches with elastic supports subjected to 

a concentrated central load and temperature variations was studied in this paper. The virtual 

work principle was adopted to establish the nonlinear equilibrium equation and the buckling 

equilibrium equation for arches with the support stiffness increasing with the axial force. The 

critical loads for both symmetric snap-through buckling and antisymmetric bifurcation buck-

ling were obtained. 

The criteria for classification of different buckling modes have been discussed. For the 

arch with the maximal axial force coefficient ηmax≥ηc, it will buckle in an antisymmetric bi-

furcation mode when the axial force coefficient ηmax=ηc, but if the bifurcation buckling point 

lies on the descending segment of the curves for the dimensionless critical load vs. axial force 

coefficient, snap-through buckling will occur first. For the arch with the axial force coefficient 

ηs≤ ηmax<ηc, buckling occurs as a symmetric snap-through mode. When the maximal axial 

force coefficient ηmax<ηs, the arch may not buckle, but remains in a state just as a beam curved 

in elevation. 

It was found that applying thermal loadings will significantly affect the critical loads for 

both the symmetric snap-through and antisymmetric bifurcation modes, as well as on the 

post-buckling behavior. The critical loads for the two buckling modes are higher than those 

without thermal loadings. Moreover, the critical loads increase almost linearly to the temper-

ature increment. The influence of the thermal loading increases with the geometric parameter 

θ of shallow arches. For a shallow arch, the buckling modes may change with the temperature 
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increment. The temperature variation limit for different buckling modes increases as the 

span-rise ratio m decreases. 

It has also been found that the critical load increases with either the initial stiffness coef-

ficient α or the stiffening rate β. The effects of thermal loadings increase with α or β. Fur-

thermore, when temperature field is applied, the critical load increase with the span-rise ratio 

m for arches with any initial stiffness coefficient α and the stiffening rate β. 

Future research aims to focus on issues such as the stability of the parabolic shallow arch 

with initial imperfection, the elastoplastic stability and measures to enhance the critical load 

of parabolic shallow arches. 
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Figure Captions

Figure 1 Parabolic shallow arches: geometry and loading. 

Figure 2 The relation between dimensionless load and axial force parameter η

(a) θ=3  (b) θ=8  (c) θ=16  (d) θ=50

Figure 3 Buckling and postbuckling behavior of shallow arches 

(a) θ=3  (b) θ=8  (c) θ=16  (d) θ=50

Figure 4 Dimensionless critical load vs arch geometric parameter θ for pin-ended arches 

Figure 5 Effects of temperature changes on the critical load for pin-ended arches 

Figure 6 Critical loads against initial stiffness coefficient α

Figure 7 Critical loads against stiffening rate β

Figure 8 Critical load ratios against temperature changes with different initial stiffness rates 

(a) m=20 (b) m=100

Figure 9 Critical load ratios against temperature changes with different stiffening rates 

(a) m=20 (b) m=100
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