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kinematic and dynamic performances
of the Rzeppa ball joint

Pier Paolo Valentini

Abstract

In this paper the influences of some relevant dimensional and geometrical errors on both the kinematic performance

and the dynamic performance of an automotive Rzeppa ball joint were investigated. The study focused on the develop-
ment of a dedicated and improved multi-body three-dimensional model of the joint and the corresponding numerical

simulations of different configurations. The model is able to manage the presence of the redundant constraints which

are present in the joint architecture because of the use of spring connections between parts which replace most of the
kinematic constraints or geometrical contact conditions. Three types of error were investigated, and both kinematic

irregularities and dynamic irregularities are reported in graphs and discussed. The effects of different articulation angles

between the inner ring and the outer ring were also investigated.
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Introduction

Coupling joints are widely used in mechanical and

industrial applications in order to transmit torque and

motion between two misaligned or displaced shafts.1

Among all the relevant features that a designer requires

in a coupling joint, two are the most important:

constant-velocity (homokinetic) transmission and load

capacity.2 The homokinetic condition is fulfilled when

the angular velocity of the input shaft is always equal

to that of the output shaft, irrespective of the angular

misalignment (articulation angle b) and irrespective of

the rotation angle.3 On the other hand, the load capac-

ity is related to the capability of transferring an ade-

quate amount of torque between the two shafts without

failure, irregularities or vibration sources.

Among the variety of coupling joints, the Rzeppa

typologies (designed and patented by the inventor

Alfred Hans Rzeppa) gained a relevant role in the last

century. Their use began in 1936 in front-wheel-drive

passenger cars produced in the USA. Their distinctive

capability is to transmit torque between inclined shafts

ideally at a constant velocity. In fact, there are a variety

of different structures with different geometrical

features but almost the same functioning principle. The

variants have been used in applications such as aircraft,

marine and industrial stationary drive systems.

One of the most common Rzeppa joint structures

(F2 classification according to Seherr-Thoss et al.1)

consists of an inner ring, an outer ring, a cage and a

series of balls (Figure 1).

Each ring has a series of meridian grooves in which

the balls are constrained to move. In the most wide-

spread automotive implementation, the central lines of

the grooves are planar circumferences belonging to

planes which are inclined at a constant angle g with

respect to the axis of the joint (Figure 1(b)). Moreover,

the centres of the balls are constrained to be located in

a plane by the presence of a metallic cage. The condi-

tion of homokineticity, which will be discussed in detail
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in the next section of the paper, is due to the precise

shape and to the assembled features that fulfil geome-

trical and kinematic considerations.

In practical applications, because of the presence of

limited manufacturing precision and assembling errors,

some irregularities may be present in the device opera-

tion. These variations may alter the kinematic perfor-

mance of the joint, producing a variable speed ratio

between the input shaft and the output shaft and caus-

ing the homokineticity of the coupling to vanish.

Moreover, irregularities may cause variations in the

reaction forces of the internal constraints, contacts and

mounting supports. Compliance and elasticity of the

parts also introduce other possible causes of irregulari-

ties. An accurate and comprehensive design should take

into account all these complications by trying to pre-

vent or control them. A study on the influence of the

errors and the compliance effects in the mechanisms is

fundamental for an accurate design and a specific allo-

cation of the tolerances in manufacturing, as testified

by several contributions in different fields (see, for

example, the papers by Brutti et al.,4 Pezzuti et al.5 and

Valentini6).

Numerical models have been widely used for addres-

sing the investigations in many fields of mechanical

transmissions. On the other hand, most of the papers

on coupling joints have dealt with ideal conditions.

Next we consider the contributions in very recent years

relating to the constant-velocity joints. In 2001,

Hayama7 presented an ADAMS model for assessing

the internal forces of a double-offset constant-velocity

universal joint, neglecting the friction contribution. In

2004, Mariot et al.8 developed a kinetostatic model

including friction in order to simulate the behaviour of

both tripod joints and ball joints. In 2005, Kimata et

al.9 discussed a dynamic three-dimensional (3D) model

of a ball joint, estimating the contact forces between

the parts. In 2008, Serveto et al.10 investigated the

influence of the geometry and the friction on the sec-

ondary torque of an automotive drive shaft. In 2008,

Pennestrı̀ et al.11 performed a kinematic and dynamic

analysis of a special type of non-homokinetic Rzeppa

joint (the so-called pilot-lever joint). More recently, in

2009, Lim et al.12 discussed a very interesting model of

a complete transmission, including tripod joints and

Rzeppa joints.

Papers dealing with the modelling and simulation of

joints with geometrical and dimensional tolerances are

limited. The most relevant problem for these investiga-

tions is that, in general, a numerical model suitable

for the simulation of an ideal joint is not suitable for

the description of imprecisions and compliances but

requires a more specialized adaptation. In a simple

joint, the kinematic loop equations may be altered in

order to introduce errors and the simulation of the

behaviour can be performed by using the same

dynamic equations as in the ideal case (see, for exam-

ple, the papers of Fisher and XXX13 and Valentini and

Pezzuti14). In a more complex joint, the kinematic

equations quite often do not take into account the pres-

ence of redundant loops and structural elasticity. In

particular, for the Rzeppa solution, a single ball mov-

ing inside two grooves and a spherical joint connecting

the two shafts may be sufficient to describe the kine-

matics of the joint.1 The presence of several ball–

groove contacts is required to increase the load capac-

ity and to distribute the transmission forces. On the

other hand, the kinematic description of these repeti-

tions produces redundant constraints which are satis-

fied simultaneously only if ideal conditions are fulfilled.

The presence of errors causes this mathematical

approach to fail and requires a different simulation

strategy. In general, neglecting redundancy and consid-

ering a single loop tend to overestimate the kinematic

irregularities since, in the real solution, the errors in a

single loop are partially dumped and balanced by the

Figure 1. (a) Photograph of an automotive Rzeppa ball joint; (b) schematic diagram of the computer-aided design model.
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others. In the same way, the contact forces are underes-

timated because over-abundant reactions are neglected.

For this reason, an accurate assessment of the effects of

the dimensional and geometrical errors has to take into

account the constraint redundancy.

In 2009, Cozzolini et al.15 presented a mullti-body

model of the Rzeppa joint (F1 classification according

to Seherr-Thoss et al.1) for assessing some of the possi-

ble errors. This computational model is a good starting

point for the investigation, but it has some important

simplifications that produced an approximated estima-

tion of the influences of the errors. First of all, the

Cozzolini et al. model did not take into account the

effect of the metallic cage. This can be an important

limitation, since experimental evidence (Figure 2) shows

that the contact forces between the balls and the cage

are relevant and produce local deformation (and wear).

Moreover, the model made use of massless points to

describe the ball–groove connections, which made the

model numerically unstable for high-speed and high-

load transmission.

For all these reasons, the purpose of the present

study is to discuss a 3D model of a Rzeppa joint, which

is suitable for generic investigations of the influences of

the elasticity and the dimensional and geometrical

errors on its performance.

The paper is organized as follows. First, the func-

tional and geometrical details of the investigated

Rzeppa joint typology are presented. Second, the

implementation of the model is discussed, focusing on

the description of contact elements. Third, the results

of some simulations including the presence of relevant

errors are presented and discussed.

Morphology and functionality of the

Rzeppa joint

The investigated solution of the Rzeppa joint consists

of an inner ring, an outer ring, a cage and six balls (see

Figure 1). Each ring has six meridian grooves, obtained

with toroidal pockets. The medial curves (in general,

circumferences) of these grooves have centres located

at the centre of the joint, and they are contained in

planes which are misaligned at a constant angle g (posi-

tive for the inner ring and negative for the outer ring)

with respect to the axis of the corresponding ring. This

geometrical feature ensures the positioning of the cen-

tres of the balls at the intersections between the corre-

sponding medial curves pairs. These intersections are

contained in a plane (transmission plane) which passes

also for the intersection of the inner shaft and outer

shaft axes. Moreover, because of the specific geometri-

cal design, it can be demonstrated1 that the transmis-

sion plane is coincident with the homokinetic plane

irrespective of the articulation angle between the input

shaft and the output shaft (Figure 3).

In fact, in order to preserve the condition of homoki-

neticity, all the centres of the balls must be located in

the bisector plane with respect to the axes of the input

shaft and the output shaft according to the theorem

stated by Myard.16 This geometrical locus, which repre-

sents the kinematic plane of transmission, is often called

the homokinetic plane.

When the shafts are misaligned, the ball–groove con-

tacts cause the centre of each ball to lie at the intersec-

tion of the two corresponding medial circumferences of

the grooves. Because of the specific geometry, the inter-

sections belong to the homokinetic plane for every mis-

alignment angle. In all the practical implementations, a

metallic cage is added to enforce all the ball centres to

be constrained to a single plane.

Mathematical model of the Rzeppa joint

The proposed mathematical model of the Rzeppa joint

is constructed using multi-body dynamics techniques,

by considering all the bodies as rigid and including con-

centrated elastic elements in order to simulate the

effects of structural compliance and contacts (Figure 4).

This approach allows kinematic joint redundancies to

be avoided and the distributed reaction forces to be

computed. Of course, this approach requires a specific

assessment of the position and the properties of the

elastic elements in order to preserve the actual kine-

matic and compliance characteristics. Moreover, chang-

ing the kinematic constraints into penalty constraints

allows the geometrical and dimensional errors to be

introduced more easily and avoids producing a system

with redundant equations.

Modelling of contacts

By observing the actual configuration of the joint, it

can be seen that the mechanical actions between the

balls and the grooves originated from contact

mechanics. Under ideal conditions and neglecting

deformations, each groove geometry constrains the ball

centre so that it belongs to its medial circumference.

With this consideration, each ball was modelled with

two equivalent balls of the same radius but half the

Figure 2. Wear due to contact between the ball and the cage

in an automotive Rzeppa joint after functioning for 5000 h.

Valentini 3



mass density. The centre of the first equivalent ball was

constrained to be coincident with the meridian circum-

ference of the inner-ring groove. In the same way, the

centre of the second equivalent ball was constrained to

be coincident with the meridian circumference of the

outer-ring groove. A two-degree-of-freedom point-

to-curve kinematic constraint was imposed on both

these connections and this constraint is given by

Cj � Pj, k(u)=0 ð1Þ

Figure 3. Kinematic articulation of the inner ring and the cage in order to obtain a homokinetic transmission.

Figure 4. Kinematic constraints and elastic springs for simulating the contact mechanics between bodies and avoiding kinematic

redundancies.
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where Cj is the centre of the jth ball and

Pj, k(u)= x(u) y(u) z(u)f gT is the parametric expres-

sion (u is the parameter) of the jth meridian curve on the

kth ring. The constraints in equation (1) leave free four

degrees of freedom, namely three rotations and a transla-

tion along the curve, described by the parameter u.

In order to connect the two corresponding balls, an

equivalent spring was linked between their two centres.

This link forces the two equivalent balls to be coinci-

dent, restoring the main functionality of the joint, but

allows the compliance needed to avoid an over-

constrained system of equations. From a physical point

of view, the spring simulates the contact stiffness

between the balls and the grooves which the kinematic

constraint in equation (1) is not able to take into

account.

The elastic characteristics of the equivalent springs

are computed from the Hertz contact theory using the

formulae in Roark’s atlas.17 Following this approach,

the force–displacement relationship for a sphere–groove

contact can be computed using the expression

y= l

ffiffiffiffiffiffiffiffiffiffiffi

F2C2
E

KD

3

s

ð2Þ

where F is the applied compression force, y is the displa-

cement (the variation in the distance between the centre

of the ball and the groove), CE is a constant depending

on the material properties of the bodies in contact, KD is

a constant depending on the geometrical curvatures of

the bodies where the contact occurs and l is a coefficient

depending on the misalignment between the principal

curvature directions of the two bodies. Considering the

symmetry of the ball, it can be assumed that l = 0.288;

considering both the balls and the rings to be made of

the same material, CE can be computed as

CE =2
1� n2

E
ð3Þ

where E is Young’s modulus and n is Poisson’s ratio.

The cross-section of the grooves is in general ellipti-

cal or ogival. Considering the minimum radius of cur-

vature of the cross-section to be almost equal to the

radius of the balls, the coefficient KD can be approxi-

mated as17

KD =
1:5

1=Rball +1
�

Rgroove

ð4Þ

where Rball is the radius of the ball and Rgroove is the

radius of the inner meridian circumference of the

groove.

In fact, the direction of the force in the ball–groove

contact depends on the pressure angle a of the assem-

bly. For this reason, the displacement yball�ball of the

spring has to be projected on the contact line in order

to deduce the actual penetration distance y (Figure 5);

thus,

yball�ball =
y

sina
ð5Þ

Moreover, a ball is in contact with the two grooves

of both the inner ring and the outer ring, and so the

contact compliance is doubled. For this reason, the cor-

rected relationship between the force and the displace-

ment to be assigned to the elastic element connecting

the two balls is

yball�ball =
2

sina
l

ffiffiffiffiffiffiffiffiffiffiffi

F2C2
E

KD

3

s

ð6Þ

where yball�ball is the distance between the centres of the

spheres.

In order to describe the contact between the balls

and the cage, another series of elastic elements was

included. Since the faces of the cage which are in con-

tact to the balls are planar, we can consider these ele-

ments connecting the centres of the balls as the

midplane of the cage, with springs whose stiffness can

Figure 5. Geometrical relationship between the spring displacement and the contact penetration.
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be computed using another relationship based on the

Hertz contact theory14 and given by

yball�cage= l

ffiffiffiffiffiffiffiffiffiffiffi

F2C2
E

KD

3

s

ð7Þ

where yball�cage is the distance between the centre of the

ball and the cage midplane, KD = 2Rball and l =

1.040.

Since the contact between the balls and the cage

occurs on only one side at a time, a single spring con-

necting only one of the two ball pairs is sufficient.

Linear damping characteristics c were added to all

the springs. They simulate the structural contact damp-

ing of steel and they were considered as 5% of the cor-

responding critical values approximated by

c=0:0532
ffiffiffiffiffiffiffiffiffiffi

kmeq

p

ð8Þ

where k is the average stiffness value of the element

which connect the two parts and meq is the equivalent

mass of the subsystem (which can be approximated as

the mass of the smaller connected part).

Considering that the joint is usually well lubricated

(it is sealed and filled with grease), friction has been

neglected in each contact pair.

Other constraints

The model also includes a revolute joint for constrain-

ing the inner ring to the ground and a revolute joint for

constraining the outer ring to the ground, which leaves

free the rotational degrees of freedom around its axis.

A constant rotational velocity (driving constraint)

was imposed on the inner ring and a constant resisting

torque was applied to the outer ring.

The equations governing the dynamics of each model

were implemented, using a Lagrangian approach18 and

managing a redundant set of variables,19 and were

solved using the GSTIFF integrator.20 The equations

of motion were arranged and solved in terms of general-

ized coordinates according to

d

dt

∂T

∂ _qi
�

∂T

∂qi
�

∂cT

∂qi
� l=Qi c= 0 ð9Þ

where qi is the ith generalized coordinate (i goes from 1

to the number of generalized coordinates), _qi = dqi=dt

is the time derivative of the ith generalized coordinate,

T is the kinetic energy of the system, c is the vector

containing the constraint equations written in terms

of the generalized coordinates (this term includes the

contribution of the prescribed rotation of the inner

ring), l is the vector containing the Lagrange multi-

pliers associated with each constraint and Qi is the

sum of all generalized forces acting on the ith coordi-

nate qi (this term contains all the contributions of the

contact springs and the external torque applied to the

outer ring).

Ideal configuration and errors

The first set of simulations concerns the ideal config-

uration of the joint, i.e. a joint whose parts do not have

any error. The joint was simulated at misalignments of

5�, 10� and 15� in order to investigate also how this

influences the performances.

The main geometrical and simulation parameters are

reported in Table 1.

Three different errors were investigated. The maxi-

mum tolerance values of these errors are chosen accord-

ing to the ISO 2768-1 recommendation for medium-

precision manufacturing.21

The first error is a geometrical error of flatness which

may occur in the cage geometry. Since the cage forces

the balls to belong to a single transmission plane, an

error in the flatness influences the fulfilment of this con-

dition. In fact, this error forces the points of contact

between the balls and the cage to be offset with respect

to the expected contact plane, with the consequence

that the centres of the ball will be offset too.

For this reason, the flatness error in the cage was

simulated by changing the zero-force length of all the

springs which connect the cage to the ball centres. The

values of these zero-force lengths were chosen by pick-

ing random variations in the interval 6 0.2 mm, as sug-

gested by the ISO norm for the flatness error.

The second simulated error is a dimensional inaccu-

racy concerning the radius of one of the medial circum-

ference of the grooves of the inner ring. According to

the ISO 2768-1 recommendation for medium-precision

manufacturing, the amplitude of the above-mentioned

error was assumed to be 0.3 mm. It was included by

directly changing the geometrical parameter which

Table 1. Geometrical (without errors) and simulation parameters of the numerical investigations.

Parameter Value

Radius Rgroove of the radius of the inner meridian circumference of the groove 45 mm
Inclination g of the inner-ring groove and outer-ring groove with respect to their axes 10�
Radius Rball of the ball 10 mm
Young’s modulus E of the material of each part 206 GPa
Poisson’s ratio n of the material of each part 0.3
Rotational velocity vin of the inner ring 1000 r/min
Resisting torque Tof the outer ring 50 N m
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defines the radius of one medial circumference of the

groove.

The third simulated error is an angular misalignment

of the inclination of the plane in which one of the inner-

groove meridian circles is located. According to the ISO

2768-1 recommendation for medium-precision manu-

facturing, the amplitude of the error was assumed to be

0.5�. Again, it was included by directly changing the

geometrical parameter which defines the inclination of

the plane in which one of the inner-groove meridian cir-

cles is located.

Simulation approach

In order to assess the influences of the investigated

errors on the kinematic and dynamic performances of

the Rzeppa joint, several characteristics were moni-

tored. These are the rotational speed of the outer ring

(which gives an assessment of the kinematic irregulari-

ties) and the reaction forces and moments of both revo-

lute joints between the rings and the ground (which

give an assessment of the dynamic irregularities).

In the ideal case (i.e. perfect geometry), the transmis-

sion ratio is constant and the angular velocity of the

outer ring is also constant. The reaction forces and

moments on the revolute joints of both the inner ring

and the outer ring are also constant because they need

to balance the well-known secondary torque C2 arising

from the global equilibrium of the system,10 which is

given by

C2 =Cin tan
q

2

� �

ð10Þ

where Cin is the input torque and q is the angle of misa-

lignment (i.e. the articulation angle).

In the case of errors, a variation in the constant val-

ues is expected.

Results and discussion

Starting with the first error, the geometrical inaccuracy

in the flatness of the cage causes the loss of perfect

homokineticity with irregularities in the transmission

ratio with the same frequency as that of the rotation

(Figure 6). The higher-frequency oscillations in the

graphs are due to numerical errors in the integration of

the equations which, however, do not cause instability,

and so they can be neglected. The irregularities increase

almost linearly with increasing articulation angle. At

15�, they reach a maximum of 0.3%.

The reaction forces and moments acting on the revo-

lute joints of both the inner ring and the outer ring are

also irregular but with a frequency which is the double

that of the rotation. Figures 7 and 8 present these irre-

gularities for the inner ring. It can be observed that the

mean value of the dynamic actions is almost the same

as that of the ideal case, while the amplitudes of the

irregularities increase with increasing misalignment

angle between the inner ring and the outer ring. The

higher-frequency oscillations in the graphs are due to

numerical errors in the integration of the equations

which, however, do not cause instability. The irregula-

rities in and the amplitudes of the outer ring are very

similar, and their graphs are omitted.

Concerning the second error, the dimensional inac-

curacy in the radius of one of the meridian grooves of

the inner ring causes the loss of perfect homokineticity

Figure 6. Kinematic irregularities in the angular velocity of the outer ring due to the flatness error of the cage.

Valentini 7



with irregularities in the transmission ratio with the same

frequency as that of the rotation (Figure 9). The ampli-

tudes of these irregularities are much smaller than those

caused by the first error. They increase with increasing

articulation angle between the inner ring and the outer

ring. At 15�, they reach a maximum of 2.1 3 10–3%.

The reaction forces and moments acting on the revo-

lute joints of both the inner ring and the outer ring are

Figure 7. Dynamic irregularities in the inner-ring–ground reaction force due to the flatness error of the cage.

Figure 8. Dynamic irregularities in the inner-ring–ground reaction moment due to the flatness error of the cage.
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also irregular with a frequency which is the same as

that of the rotation. Figures 10 and 11 present these

irregularities on the inner ring. It can be observed that

the mean value of the dynamic action is different from

the ideal case and that their amplitudes increase with

increasing articulation angle between the inner ring and

the outer ring. The irregularities in and the amplitudes

of the outer ring are very similar, and again their

graphs are omitted.

Concerning the third error, the angular inaccuracy in

the plane of the medial circumference of one of the mer-

idian grooves of the inner ring causes the loss of perfect

Figure 9. Kinematic irregularities in the angular velocity of the outer ring due to the dimensional error in the radius of the inner-

ring groove.

Figure 10. Dynamic irregularities in the inner ring–ground reaction force due to the dimensional error in the radius of the inner-

ring groove.

Valentini 9



homokineticity with irregularities in the transmission

ratio with two contributions to the frequency. The main

contribution consists of irregularities of the same fre-

quency as that of the rotation (Figure 12). The second-

ary contribution consists of irregularities with smaller

amplitudes but with a frequency which is the double

that of the rotation. This secondary contribution is

more visible for a larger misalignment angle between

the axes of the rings. The amplitudes of these irregulari-

ties are very similar to those caused by the first error.

They increase (both main and secondary contributions)

with increasing articulation angle between the inner

Figure 11. Dynamic irregularities in the inner ring–ground reaction moment due to the dimensional error in the radius of the

inner-ring groove.

Figure 12. Kinematic irregularities in the angular velocity of the outer ring due to the angular error in the plane of the medial

circle of the inner-ring groove.
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ring and the outer ring. At 15�, their combined effect

reaches a maximum of 0.25%.

The reaction forces and moments acting on the revo-

lute joints of both the inner ring and the outer ring are

also irregular with two frequency contributions which

have the same period and the same trend as those of

the kinematic irregularities. Figures 13 and 14 present

these irregularities for the inner ring. It can be observed

that the mean value of the dynamic actions is the same

as in the corresponding ideal case and that their ampli-

tudes are smaller than those of the first error and the

second error and increase with increasing articulation

angle between the inner ring and the outer ring. Also,

for this error, the irregularities in and the amplitudes of

the outer ring are very similar, and they are omitted.

Conclusions

In this paper, the influences of some relevant dimen-

sional and geometrical errors on the kinematic perfor-

mance and the dynamic performance of a Rzeppa ball

joint were investigated. The study is based on the devel-

opment of a dedicated multi-body 3D model and

numerical simulations.

The model was revealed to be able to manage the

occurrence of redundant constraints because of the use

of specific spring connections between parts which

describe the contact conditions with force relationships

that are simpler than position constraints. The elastic

characteristics of these spring elements were computed

using the Hertz theory in order to take into account the

structural stiffnesses of the mating parts.

The modelling strategy produced a stable and precise

integration of the equations of motion, allowing the

irregularities to be demonstrated in an accurate way

without numerical problems.

Three types of error were investigated: a geometrical

error in the flatness of the active surface of the cage, a

dimensional inaccuracy in the radius of one of the mer-

idian grooves of the inner ring and an angular misalign-

ment in the inclination of the plane in which one of the

meridian circles of the inner groove is located.

The presence of each of these errors causes both

kinematic irregularities and dynamic irregularities, the

amplitudes of which increase with increasing articula-

tion angle of the joint. The geometrical error of flatness

in the active surface of the cage causes kinematic irregu-

larities with the same frequency as that of the rotation

and dynamic irregularities with a frequency which is

double that of the rotation. The dimensional inaccuracy

in the radius of one of the meridian grooves causes kine-

matic irregularites and dynamic irregularities with the

same frequency as that of the rotation. The angular mis-

alignment of one of the meridian circles of the inner

groove causes more complex irregularities which involve

a primary frequency equal to that of the rotation and a

secondary frequency which is double that of the rota-

tion and the effects of which become increasingly rele-

vant with increasing angular misalignment of the joint.

The proposed investigation pointed out that, in

the actual configuration with common precision

Figure 13. Dynamic irregularities in the inner-ring–ground reaction force due to the angular error in the plane of the medial circle

of the inner-ring groove.
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manufacturing, the functioning of the Rzeppa joint

produces irregularities which influence both the homo-

kineticity characteristic and the presence of dynamic

self-excitations. All these aspects should be taken into

account in the choice of manufacturing precision, in

the design of the joint and in the allocation of the toler-

ances when looking at the desired performances. Given

a desired maximum amplitude of the irregularities, the

values of the combined tolerances can be assessed by

addressing specific simulations and comparing the val-

ues of the corresponding effects.

The same methodology of investigation and the

same modelling techniques can be extended to other

ball-type coupling joints.
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articulés. Bull Soc Math France 1931; 59: 183–210.

17. Young WC and Budynas RG. Roark’s formulas for stress

and strain. New York: McGraw-Hill, 2002.

18. Haug EJ. Computer-aided kinematics and dynamics of

mechanical systems, Vol 1. Boston, Massachusetts: Allyn

and Bacon, 1988, pp. 48–104.

19. Pennestrı̀ E, Mariti L, Valentini PP and Belfiore NP.

Comparison of solution strategies for multibody

dynamics equations. Int J Numer Meth Engng 2011;

88(7): 637–656.

20. Gear CW. The numerical integration of ordinary differ-

ential equations. Math Comput 1967; 21: 146–156.

21. ISO 2768-1 General tolerances for linear and angular

dimensions. Geneva: International Organization for Stan-

dardization, 1989.

Valentini 13


